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Abstract. Several new interfaces have recently been developed requiring PATH to solve a mixed complementarity
problem. To overcome the necessity of maintaining a different version of PATH for each interface, the code was
reorganized using object-oriented design techniques. At the same time, robustness issues were considered and
enhancements made to the algorithm. In this paper, we document the external interfaces to the PATH code and
describe some of the new utilities using PATH. We then discuss the enhancements made and compare the results
obtained from PATH 2.9 to the new version.
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1. Introduction

The PATH solver [12] for mixed complementarity problems (MCPs) was introduced in
1995 and has since become the standard against which new MCP solvers are compared.
However, the main user group for PATH continues to be economists using the MPSGE
preprocessor [36]. While developing the new PATH implementation, we had two goals:
to make the solver accessible to a broad audience and to improve the effectiveness of the
code on large, complex problems. Therefore, this paper is split into two main parts, each
discussing one of these issues.

We completely redesigned the PATH implementation using object-oriented design tech-
niques in order to easily maintain the code, rapidly build interfaces to the solver, and
quickly test new ideas regarding the algorithm. The relevant components of the PATH
library, necessary to add new interfaces and port the code to different architectures, are the
subject of Section 2. A discussion of some of the interfaces built using this functionality

*This material is based on research supported by National Science Foundation Grant CCR-9619765 and GAMS
Corporation.
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208 FERRIS AND MUNSON

and how they influenced design decisions can be found in Section 3. Some of the interfaces
now supported include links to AMPL [23], GAMS [6], MATLAB, and NEOS [9], as well
as a callable subroutine library version. To further broaden the user base, implementations
for some of the interfaces presented are available online at

http://www.cs.wisc.edu/cpnet/path.html

and the PATH library can be freely obtained by contacting one of the authors.

Two significant changes were previously made to the code described in [12, 13] for
improved reliability. One was the introduction of a crashing technique [14] to quickly
identify an active set from the user-supplied starting point. The other was the addition of
a proximal perturbation scheme [1, 2] to overcome problems with a singular basis matrix.
The new implementation has further improved numerical properties and restarts when a
stationary point of the merit function is found. These changes have led to a more effective
version of the code. Section 4 describes the new extensions made to the algorithm for
improved robustness. Finally, Section 5 reports on a comparison made between PATH 3.0
and PATH 2.9 on a suite of test problems.

Some notation and definitions are in order before proceeding. The mixed complemen-
tarity problem (MCP) is defined using lower bounds, [ € {3t U {—o0}}”, and upper bounds,
ue{MU{oo}},suchthat! <u. Let B:={z e |l <z <u},and F : B —> RN". The
vector z € B is a solution to MCP(F, B), if and only if exactly one of the following holds
foreachi e {1, ..., n}:

li<zi<wu and Fi(z2) =0
z; =1; and F;(z) > 0
i = U; and F,'(Z) < 0.

The core PATH algorithm [12] uses a nonsmooth Newton method [34] to find a zero of
the normal map [33] associated with the MCP. The normal map for the MCP is given by

F(mr(x)) +x —m(x)

where 7 (x) represents the projection of x onto B in the Euclidean norm. It is well known
that if x is a zero of the normal map, then 7 (x) solves the MCP. A non-monotone pathsearch
[13, 20] using the residual of the normal map

| F () +x —mx)l

as a merit function is used to improve robustness. A proof of convergence and rate of
convergence results can be found in [32]. The enhancements described in this paper do not
change the basic properties of the algorithm; they only modify the implementation. Hence,
the theory already developed [12, 32] still applies.
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2. Component interfaces

Object-oriented design techniques were used to completely restructure the PATH code. The
basic premise is to encapsulate data and functions together into objects. The implementation
for each of the objects is hidden from the user. Virtual classes are used for system-dependent
code and the basis package. The exact implementation for each of these objects is chosen at
link time without making any modifications to PATH. C was chosen as the implementation
medium so that we can easily port the code to any platform. In this section, we discuss the
external interfaces required in order to link the code with new utilities.

The overriding concern faced when developing the component interfaces was flexibility.
The goal was to easily support any environment, architecture, or programming language
using the same interfaces. In order to achieve this goal, the component interfaces are split
into two parts: the system-dependent components, which include memory allocation, tim-
ing mechanisms, error reporting, and output, and the interface-specific functions, which
provide information about the problem and mechanisms to perform function and Jacobian
evaluations. The interface writer also provides a driver program that performs initializa-
tions and calls the main PATH routine. We describe the system-dependent objects required,
mechanisms needed to provide problem data, and the driver in the following subsections.

2.1.  System-dependent objects

The system-dependent objects provide an abstract view of the machine. Whenever the PATH
code is ported to a new architecture, only implementations for these virtual base classes
need to be coded. The four objects comprising the system-dependent interface, memory,
time, error, and output, are now described and the required functionality given.

2.1.1. Memory. The memory object consists of all necessary functions to allocate and
relinquish memory. We distinguish between two different types of memory allocation:
general memory allocation and the allocation necessary for the basis factors. The general
memory allocation routine is frequently called upon to allocate relatively small pieces of
memory. The factor allocation requires a single large section of memory to be obtained.
Mechanisms optimized for these differing types of memory request patterns can be coded.
Table 1 describes the functionality required of the memory object.

We guarantee that within the core PATH algorithm only one set of factors will be allocated
at a time. However, the sequence Memory_AllocateFactors(), Memory_FreeFactors() may
be repeated within the code.

A standard implementation for this object would use the routines malloc() and free().
More sophisticated implementations are possible. For example, the GAMS implementation
of these routines places the factors on the GAMS heap, a portion of memory previously
allocated as workspace for the MPSGE preprocessor.

2.1.2, Time. The time object measures the amount of time spent in particular sections of

the PATH code. The object requires the definition of a structure, struct_Time, containing the
private data members for the class. An implementation using the clock() standard function
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Tuble 1. Memory object functions.

Function Description

void *Memory_Allocate (long int) Allocate the specified number of bytes from memory and return a poi-
nter to the allocated memory

void ¥*Memory_AllocateFactors Allocate the specified number of bytes of memory and return a pointer

(long int) to the allocated memory. The amount of memory requested in Mem-

ory_AllocateFactors() is typically much greater than that requested
in Memory_Allocate()

void Memory_Free (void *) Free the indicated memory allocated with Memory_Allocate()

void Memory_FreeFactors (void *) Free the indicated memory allocated with Memory_AllocateFactors()

Tuble 2. Time object functions.

Function Description

Time *Time_Create () Allocate and return a time structure

void Time_Destroy (Time *) Free the indicated time structure

void Time_Start (Time *) Place the correct value for the current time in the indicated structure
double Time_Query (Time *) Return the number of seconds elapsed since the indicated structure

has been started

might define the structure as follows:
struct _Time { clock_t time; };

where clock_t is declared in the standard header file time.h. The necessary functions for
the time object are found in Table 2.

System-dependent routines such as rusage() on a UNIX platform can be used to implement
the time object. On the DOS/Windows platform the clock() function can be used. We refer
the reader to the code available online for these implementations.

2.1.3. Error. The functions contained in this package provide the user with information
concerning warnings and errors. A warning tells the user about difficulties or nonstandard
events encountered. At the end of the warning, control should be returned to the PATH
algorithm. An error on the other hand is fatal. Execution should stop at the end of the error
routine. The requisite functions are in Table 3.

An interesting contrast in the error function implementation can be found in the online
codes by comparing the standard implementation using exit() with the MATLAB interface
error routine, which uses mexErrMsgTxt(). When exit() is used, the operating system frees
all previously allocated memory and the program terminates. In the case of MATLAB,
we need to relinquish all allocated memory before returning control back to MATLAB,
otherwise, the MATLAB session leaks memory. The mexErrMsgTxt() routine deallocates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INTERFACES TO PATH 3.0 211

Tuble 3. Error object functions.

Function Description

Warning (char *,...) A warning has been generated. Do something with
the information and return to the code

Error (char *,...) An error has been generated. Do something with the
information and exit from the program

the necessary memory for us before returning control back to MATLAB. The use of exit()
is entirely inappropriate within the MATLAB session.

2.1.4. Output. Output is a key object because support for output from both C and FOR-
TRAN is required. We have an enumerated type, Output_Mode, that indicates the necessary
type of output. This enumerated type has three elements:

Output_Log. The log is used to demonstrate that PATH is making progress.

Output_Status. The status file is used for debugging purposes and records the essential
information for this task.

Output_Copy. Output specified for copy is placed into both the log file and the status file.

Our use of these modes is motivated by GAMS standards. A brief description of the required
functionality can be found in Table 4.

A typical C implementation uses the standard functions vprintf(), viprintf(), and vsprintf().
FORTRAN output is considerably more difficult and depends upon the system and com-
piler. Details on FORTRAN output can be found in the online stand-alone FORTRAN
code. However, the PATH code remains unchanged even if FORTRAN output is used.

2.2. Problem-specific interface

To accommodate all of the available interfaces, we have abstracted problem-specific in-
formation from the PATH algorithm. Five functions are required in the problem-specific
interface implementation and are given in Table 5. The function_evaluation() and jaco-
bian_evaluation() functions should return the number of domain violations encountered in
the evaluation. A domain violation occurs, for example, when we attempt to take the log
of a negative number or we encounter division by zero.

Tuble 4. Output object functions.

Function Description

Output_Printf (Output_Mode, char *,...) Output the indicated message of type Output_Mode
to the correct place

Output_VPrintf (Output_Mode, char *, va_list) Output the indicated message to the correct file
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Tuble 5. Problem-specific interface functions.

Function Description
void problem_size (int *n, int *nnz) Give the size of the problem and number of nonzeros in the
Jacobian

void bounds (int n, double *z, double Give the lower and upper bounds and a starting point for the
*1b, double *ub) problem

int function_evaluation (int n, double Evaluate the function for a point z € B. Return the number of
*z, double *f) domain violations

int jacobian_evaluation (int n, double Evaluates the function and Jacobian for a point z € B. Return
*z, int wantf, double *f, int *nnz, int the number of domain violations. The Jacobian is stored in
*col, int *1en, int *row, double *data) a compressed column format. Initially nnz is the allocated

size for the row and data arrays. The actual number of non-
zeros in the Jacobian should be supplied before returning

void variable_name (int var, char *buf, Provide a name for the specified variable
int bufSize)
void constraint_name (int con, char Provide a name for the specified constraint

*buf, int bufSize)

For the sake of compatibility, indices are in the FORTRAN format, i.e., an index goes
from one to the number of indices. The sparse matrix is stored in compressed column format.
Furthermore, the structure of the sparse matrix need only be determined and allocated once.
We guarantee that the PATH code will not alter the structure. Finally, we also note that
contrary to previous versions of the code, the addition of a diagonal element to the sparse
Jacobian is no longer required.

2.3. Driver

Once the interfaces have been written, a main driver routine must be specified. Pseudocode
for such a routine follows:

1. Initialize system-dependent parts.

Call Options_Default().

3. Create an initial Path structure
using Path_Create().

4. Invoke Path_Solve().

5. Do something with the results.

6. Finish system-dependent parts.

N

If special setups need to be performed for the system-dependent parts of the code, they are
done at the beginning. Options_Default() ensures that all defaults have been set and must
be issued before solving the problem. An options file may be read using the command
Options_Read(). Users who repeatedly invoke the algorithm can directly allocate required
workspaces and reuse that workspace from one PATH solve to the next. This is a key point
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for applications solving a sequence of MCPs, as is done in [15]. The argument lists for the
aforementioned routines can be found in the online version of the PATH header files.

These component interfaces have been successfully used to construct links to the GAMS
and AMPL modeling languages. We have also developed MATLAB and NEOS hookups
using the same library. Details on these interfaces and how to invoke PATH directly from
C and FORTRAN codes are now given.

3. Supported interfaces

A number of new interfaces are now supported by the PATH implementation. We briefly dis-
cuss some of them and describe how their unique characteristics influenced the component
interface design.

3.1. Matlab

The MATLAB interface (for MATLAB versions 5.0 and above) to PATH consists of a
single mex file. Function and Jacobian evaluations are provided by the user as MATLAB
m-functions. Hence, the PATH interface routines function_evaluation() and jacobian_evalua-
tion() are implemented via the mexCalIMATLAB() function. The problem size and bounds
are passed directly to the mex function. The memory and error routines are implemented
using the mxCalloc() and mexErrMsgTxt() routines provided by the MATLAB API. The
abstract view of the machine provided by the new PATH library permits this and gives
distinct advantages over previous implementations when a user interrupts the PATH code
from within MATLAB. A MATLAB user invokes PATH with the following syntax:

z = pathsol(z, 1, u, cpfunjac)

The name pathsol is used to avoid conflicts with the MATLAB defined variable path. Here,
I and u are the bounds on the variables, and cpfunjac is the name of an m-file for evaluating
the function F and its Jacobian J. The corresponding file cpfunjac.m contains the definition
of

function [F, J, domerr] = cpfunjac(z, jacflag)

that computes the function F and if jacflag = 1 the sparse Jacobian J at the point z. domerr
returns the number of domain violations encountered during the evaluation.

If the fourth input argument to pathsol is omitted, the code takes a function cpfunjac as
its default. If [, u are also omitted, z is assumed non-negative. If PATH fails to solve the
problem, then a MATLAB error is generated. This is part of the pathsol.m file, so a user
could modify the termination behavior if desired.

3.2. Callable subroutines

To encourage other users to invoke PATH from directly within their applications we have
developed two interfaces allowing the code to be called from either a C or FORTRAN
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program. The aim of our design was to be as simple as possible in order to eliminate most
of the errors that may occur while coding a particular application to use PATH. Therefore,
the standalone interface is even simpler than that described in Section 2.2.

The C interface consists of three routines:

void pathMain(int n, int nnz, int #*status,
double *z, double *F,
double *1, double *u);
int funcEval(int n, double *z, double *F)
int jacEval(int n, int nnz, double *z, int *col,
int *len, int *row, double *data);

The user has the responsibility of writing the latter two routines and linking them with the
library of PATH routines. The first evaluates the nonlinear function F at z € B. Contrary
to many codes for MCP, we guarantee that the function F will only be evaluated within
the box, B. The second fills in the relevant information about the Jacobian of F at z in
compressed column format. The data regarding bounds and size are passed to the pathMain()
routine, which returns the solution z and F(z) along with a termination criterion status. The
values for status are available in the header file ‘Path.h’; a value of 1 indicates successful
completion.
The FORTRAN interface is almost identical:

subroutine pathmain(n, nnz, status, z, F, 1, u)
integer function funceval(n, z, F)
integer function jaceval(n, nnz, z,

col, len, row, data)

The PATH libraries for certain machine architectures are now freely available by con-
tacting one of the authors.

3.3. NEOS

NEOS [9] enables users to submit optimization problems across the Internet to the NEOS
server. The server contacts a client, transmits the problem information to the client, which
then attempts to solve the problem. Results are sent back to the original submitter. The
PATH solver is hooked up to NEOS via a suite of interface routines [21].

When a user submits an MCP problem to NEOS, the user specifies FORTRAN functions
initpt(), xbounds(), and fcn(), along with an integer to represent n. The interface uses
ADIFOR [5] to compute the Jacobian for the FORTRAN function representing the problem.
The sparse structure and number of nonzeros in the Jacobian are also generated. The PATH
problem-specific interface routines of Section 2.2 are coded to use the sparse Jacobian and
the data supplied by the other routines passed to NEOS. All these routines are linked with
the PATH library to produce an executable that is run on one of the machines in the Condor
pool [30] available at Wisconsin,
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Current work involves generating a new C interface using ADOL-C [27] and allowing
the PATH solver to be called across the Internet as a subroutine in a manner similar to that
outlined in Section 3.2.

3.4. GAMS

The major users of PATH continue to be economists, many of whom use the code [13]
for solving MCP models generated with the MPSGE preprocessor [36, 37] of the GAMS
modeling language [6]. CPLIB [16], a suite of routines giving a solver access to problem-
specific information, including function and Jacobian evaluations, facilitates the linkage of
PATH and other solvers [1, 4, 7, 35] to GAMS. The GAMS/MCP interface to PATH [16]
remains essentially unchanged. However, several new uses of the code from within GAMS
were made possible because of the added flexibility provided by the object-oriented design,
the reuse of memory, and access to the workspace. Two examples are the GAMS/CNS
interface, and the bundle method for solving MPEC, which uses PATH as a subroutine to
solve MCP subproblems. The latter usage is described in [15].

Recently, GAMS added the constrained nonlinear system, CNS, model type to their
language. The constrained nonlinear system is defined by a set of bounds, B and a function
F:B — %", A solution to CNS(F, B) is such that x € B and F(x) =0. The most popular
approach in GAMS to solving this problem has been to set up a dummy objective function
and solve

min(0 subjectto F(x) =0, x € B. D

The new CNS model type allows solvers such as CONOPT [17] and MINOS [31] to set up
alternative internal models to solve (1) such as

min|| F(x)||5 subjecttox € B. 2

Our work internally reformulates the CNS model as an MCP. One choice would be to
solve the Karush-Kuhn-Tucker conditions of (2) as an MCP. This is essentially a Gauss-
Newton approach (involving a function VF(x)” F(x)) to the problem and appears to
be computationally less effective than the following Newton approach. The particular
MCP that our implementation uses, is defined by the following functions and
bounds:

-y l u
e RS EV R N

Let B := {z € R'|L < z < U). If ¥ € 9" solves CNS(F, B), then (%, 0) solves
MCP(G, B). Furthermore, if (X, ¥) solves MCP(G, B), then ¥ solves CNS(F, B). These
implications follow directly from the definitions of the MCP and CNS. The implemen-
tation of the CNS solver reuses the memory, time, error, and output packages from the
GAMS/MCP interface. However, the problem-specific interface routines were modified
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to construct (3) and the Jacobian of G from the GAMS provided routines for
CNS(F, B).

3.5. AMPL

New syntax for expressing complementarity relationships has been added to the AMPL
modeling language [19]. In order to test this syntax, the PATH solver has been hooked up to
AMPL [23] using the AMPL library routines described in [24]. These routines allow casy
implementation of the PATH problem-specific routines outlined in Section 2.2. The AMPL
interface routines exploit the fact that a function evaluation may have already been carried
out (thus providing partial derivative information) when a call to the Jacobian evaluator is
made. We have updated the PATH code to allow for efficiencies to be exploited when this
occurs (see the parameters to jacobian_evaluation in Section 2.2).

4, Enhancements

During the reconstruction of the PATH implementation, robustness issues were once again
addressed. Utilizing experience gained from solving practical problems, three areas were
targeted for improvement. These areas, the lincar model, pathsearch, and restarts, are the
subject of subsequent subsections.

When the PATH implementation was rewritten, the names of several options were
changed. We give a list of the user-available options along with their defaults and meaning
in Tables 6 and 7.

Tuble 6. PATH options.

Option Default Explanation

convergence_tolerance le-6 Stopping criterion

crash_iteration_limit 50 Maximum iterations allowed in crash

crash-method pnewton pnewton or none

crash_minimum_dimension 1 Minimum problem dimension to perform crash

crash_nbchange_limit 1 Number of changes to the basis allowed

cumulative_iteration_limit 10000 Maximum minor iterations allowed

lemke_start automatic Frequency of lemke starts (automatic, first, always)

major_iteration_limit 500 Maximum major iterations allowed

minor_iteration_limit 1000 Maximum minor iterations allowed in each major iteration

nms yes Allow line/path searching, watchdoging, and non-monotone
descent

nms_initial reference_factor 20 Controls size of initial reference value

nms_memory_size 10 Number of reference values kept

nms_mstep_frequency 10 Frequency at which m steps are performed

nms_searchtype path Search type to use (path or line)
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Tuble 7. PATH options (cont).

Option Default Explanation

output yes Turn output on or off. If output is turned off, selected parts
can be turned back on

output_crash_iterations yes Output information on crash iterations

output_crash_iterations_frequency 1 Frequency at which crash iteration log is printed

output_errors yes Output error messages

output_linear_model no Output linear model each major iteration

output_major_iterations yes Output information on major iterations

output_major_iterations_frequency 1 Frequency at which major iteration log is printed

output_minor_iterations yes Output information on minor iterations

output_minor_iterations_frequency 500 Frequency at which minor iteration log is printed

output_options no Output all options and their values

output_warnings no Output warning messages

proximal_perturbation 0 Initial perturbation

restart _limit 3 Maximum number of restarts (0-3)

time_limit 3600 Maximum number of seconds algorithm is allowed to run

In particular, PATH can emulate Lemke’s method [8, 29] for LCP with the following
options:

crash_method none;
major_iteration_limit 1;
lemke_start first;

nms no;

If instead, PATH is to imitate the Josephy Newton method [28] for NCP with an Armijo
style linesearch on the normal map residual, then the options to use are:

crash_method none;

lemke_start always;
nms_initial_reference_factor 1;
nms_memory size 1;
nms_mstep_frequency 1;
nms_searchtype line;

Note thatnms_memory_size 1andnms_initial reference_factor 1 turnoff the non-
monotone linesearch, while nms_mstep_frequency 1 turns off watchdoging. nms_sear-
chtype line forces PATH to search the line segment between the initial point and the
solution to the linear model, as opposed to the default pathsearch (see Section 4.3).

4.1. Basis package

The core PATH code has been recoded in an object-oriented fashion as well. One key
feature of the new design is the notion of a basis package. PATH requires a basis package
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to provide certain functionality expressed via the following functions:

Basis_Factor(). Factor the given basis matrix.

Basis_Solve(). Use the computed factors to solve a linear system of equations.
Basis_Replace(). Replace the indicated column of the basis matrix.
Basis_SingularVariable(). Tell whether the indicated variable is linearly dependent.

Currently, two interchangeable basis packages have been implemented. The choice
of which package to use is done at link time without making any modifications to the
code PATH code. One package uses a FORTRAN version of LUSOL [25] (based on a
Markovitz factorization and Bartels-Golub updates). These routines are a key component
of the MINOS [31] nonlinear programming package. The second is a dense matrix imple-
mentation, written in C that uses the Fletcher-Matthews [22] updating procedure. A freely
distributed version of the PATH library contains the dense factorization. A library without
any factorization software is also available. In this case, the user can obtain source code
for MINOS from Stanford University and incorporate the appropriate object code into the
library.

A future basis object for the MATLAB implementation will use mexCallMATLAB() to
invoke the MATLAB LU routine, along with an update procedure provided via the Schur-
Complement described in [18].

4.2. The linear model

Let M e W™, geN, and B=[l, u] be given. (z, w, v) solves the linear mixed comple-
mentarity problem defined by M, g, and B if and only if it satisfies the following constrained
system of equations:

Mz—w+v+qg=0 4)
wi(z=D=0 5)
vi(u—2)=0 (6)

z€B, wed,, ved, @)

where x +00 = oo forall x € %t and 0-0o = 0 by convention. A triple, (Z, W, ), satisfying
Eqgs. (5)-(7) is called a complementary triple.

The objective of the linear model solver is to construct a path from a given complementary
triple (Z, W, v) to a solution (Z, w, ¥). The algorithm used to solve the linear problem is
identical to that given in [10]; however, artificial variables are incorporated into the model.
The augmented model is then:

Mz—w+v+a+Q—-0r+q=0 ®
wliz-=D=0 9)

viu—2)=0 (10)

zeB, wed|,, ved, a=0, 1el[01] (1
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where r is the residual, ¢ is the path parameter, and a is a vector of artificial variables. The
residual is scaled in the code to improve numerical stability.

The addition of artificial variables enables us to construct an initial invertible basis con-
sistent with the given starting point even under rank deficiency. The procedure consists
of two parts: constructing an initial guess as to the basis and then recovering from rank
deficiency to obtain an invertible basis. The crash technique gives a good approximation to
the active set. The first phase of the algorithm uses this information to construct a basis by
partitioning the variables into three sets:

.W={ie{l,...,n} | z; =1 and w; > 0}
{ief{l,...,n)| 2 =u; and 9; > 0}
={1,....,n\WUV

Since (z, w, v) is a complementary triple, ZNWNV =@and ZUWUV ={1,...,n}.
Using the above guess, we can recover an invertible basis consistent with the starting
point using the following procedure:

1. Let A = (7).
2. While M7, does not exist:

(a) Choose k € Z such that Mz ; is a linearly dependent column of M7 ;.
(b) If z; = I, then W = W U {k} and Z = Z\{k}.

() IfZx = ug, then V =V U {k}and Z = Z\{k}.

(d) Otherwise, A = AU {k} and Z = Z\{k}.

The technique relies upon the factorization to tell the linearly dependent columns of Mz 7.
LUSOL [25] and our dense factorization provide this information (see Section4.1). Some of
the variables may be nonbasic, but not at their bounds. For such variables, the corresponding
artificial will be basic. The above procedure is guaranteed to terminate because Z is a finite
set and we remove one element from it each iteration.

The invertible basis constructed is then:

H=[M'vZ _I"W I"V I'vA]

To demonstrate that an inverse exists, we rearrange the rows and columns to obtain the
following matrix, which is easily shown to be invertible because M, is known to exist:

—Iw.w My, 7
Iyy My 7

Isa Myz

Mz 7

>
Il

We use a modified version of EXPAND [26] to perform the ratio test. Variables are
prioritized as follows:
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1. t leaving at its upper bound.
2. Any artificial variable.
3. Any z, w, or v variable.

If a choice as to the leaving variable can be made while maintaining numerical stability and
sparsity, we choose the variable with the highest priority (lowest number above).

When an artificial variable leaves the basis and a z-type variable enters, we have the
choice of either increasing or decreasing that entering variable because it is nonbasic but
not at a bound. The determination is made such that ¢ increases and stability is preserved.

If the code is forced to use a ray start at each iteration (Lemke_start always), then the
code carries out Lemke’s method, which is known [8] not to cycle. However, by default,
we use a regular start to guarantee that the generated path emanates from the current
iterate. Under appropriate conditions, this guarantees a decrease in the nonlinear residual.
However, it is then possible for the pivot sequence in the linear model to cycle. To prevent
this undesirable outcome, PATH 2.9 uses a minor iteration limit. In PATH 3.0, we attempt
to detect the formation of a cycle with the heuristic that if a variable enters the basis more
than a given number of times, we are cycling. If this occurs, we terminate the linear solver
at the largest value of ¢ and return to the nonlinear pathsearch code.

Another heuristic is added when the linear code terminates on a ray. The returned point
in this case is not the base of the ray. We move a slight distance up the ray and return this
new point. If we fail to solve the linear subproblem five times in a row, a Lemke ray start
will be performed in an attempt to solve the linear subproblem. Computational experience
has shown this to be an effective heuristic and generally results in solving the linear model.
Using a Lemke ray start is not the default mode, since typically many more pivots are
required.

The resulting linear solver as modified above is robust and has the desired property that
we start from (z, w, v) and construct a path to a solution. This path is used by the nonlinear
code for the implementation of pathsearching.

4.3. Pathsearching

An interpolating pathsearch that preserves stability replaces the pathsearch found in PATH
2.9. Instead of only using breakpoints, as outlined in [10], we allow points between the
breakpoints to be used.

The EXPAND rules enforce a minimum stepsize. Therefore, some steps, and the first in
particular, can be quite small. The breakpoint method has the undesirable property that a
very small step may be taken in the backtrack. Therefore, we implemented a pathsearch
that performs interpolation. We determine the section of the path where we want to find
a point. We stably construct the two endpoints and interpolate between them to find the
desired point.

Stability is achieved by using checkpoints, pivots where the basis matrix was refactor-
ized and the basic variable values recomputed. At such a checkpoint, we know the basic
variables, can reconstruct the basis matrix, factorize that matrix, and compute exactly the
same basic variable values found during the original solve. Then we can perform the pivot
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sequence in order from the checkpoint. Once we have determined the two desired end-
points, we go to the appropriate checkpoint and regenerate the path followed to the desired
endpoint, obtaining the exact values computed by the linear solve for those points. Careful
bookkeeping minimizes the number of factorizations performed.

We note that difficulties can arise because ¢ is not guaranteed to be monotonically in-
creasing. In fact, it can decrease. To overcome this difficulty, we select a subsequence of
the path over which ¢ is monotonically increasing. We use this as the path over which we
perform our nonlinear pathsearch.

In contrast, PATH 2.9 carried out backtracking by performing the sequence of pivots
in reverse. This technique can generate additional numerical rounding error, leading on
occasion to a failure in the backtracking procedure. The interpolating pathsearch removes
these errors, is more stable, and furthermore checks a more varied sequence of iterates along
the path.

4.4. Restarts

The PATH code attempts to fully utilize the resources provided by the user to solve the
problem. PATH 3.0 is much more aggressive in its determination that a stationary point of
the residual of the normal map has been encountered. When we determine that no progress
is being made, we restart the problem from the user-supplied initial point with a different
set of parameters. The three sets of parameter choices used during restarts are given in
Table 8.

These restarts give us the flexibility to change the algorithm in the hopes that the modified
algorithm leads to a solution. The ordering and nature of the restarts were determined by
empirical evidence based on tests performed on real-world problems.

This technique can be contrasted with that used PATH 2.9, in which significant efforts
were made in an attempt to move away from a stationary point by modifying algorithm
parameters within a major iteration and only restarting if these modifications failed to make

Tuble 8. Restart definitions.

Restart number Parameter values

1 crash_method none
nms_initial_reference_factor 2
proximal_perturbation 1e-2*initial_residual

2 crash_method none
proximal_perturbation O

3 crash_method pnewton
crash_nbchange limit 10
nms_initial_reference_factor 2

nms_searchtype line
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Table 9. Step type codes.

Code Meaning

B A backtracking search was performed from the current iterate to the Newton point in order to obtain
sufficient decrease in the merit function

The step was accepted because the distance between the current iterate and the Newton point was small
Initial information concerning the problem is displayed

The step was accepted because the merit function value is smaller than the nonmonotone reference value
A step that satisfies both the distance and merit function tests

A restart was carried out

£®02g2 "~ C

A watchdog step was performed in which we returned to the last point encountered with a better merit
function value than the nonmonotone reference value (M, O, or B step), regenerated the Newton
point, and performed a backtracking search

progress. In some cases, the heuristics used were successful. More often they simply
used resources that could have been better spent by restarting. We believe that finding a
stationary point and restarting, as done in PATH 3.0, is a significantly better strategy than
the ad-hoc heuristics of PATH 2.9.

At each iteration of the algorithm, several different step types can be taken. In order to
help the PATH 3.0 user, we have added a code letter indicating the step type to the log file.
Table 9 explains the meaning of each code letter.

5. Computational results

In this section, we compare the results obtained from PATH 2.9 and PATH 3.0 using their
standard default options on the problems comprising MCPLIB [11]. We do not compare
PATH 3.0 to other codes since this was carried out in [3]. However, the results of [3] seem
to indicate that PATH was the most robust and efficient code at that time. The problems are
available online (as GAMS files) as documented in [11], along with some recent additions.
The computations were carried out on a Sun UltraSparc 300 MHz processor with 256
MB RAM. We report the numbers of successes (Suc), failures (Fail), function evaluations
(F), and total time (Time) in seconds used by each algorithm on a given problem in the
accompanying tables. The times reported are rounded to the nearest 1/10 s, resulting in
several problems having solution times 0of 0.0 s. The size of the first instance of each problem
is also given in these tables; note that several of the problems are modified within the GAMS
code to include more variables or equations on subsequent runs. The termination criterion
for both codes is identical, requiring the norm of the residual in the normal map to be less
than 107°. We do not report results for GAMSLIB [6], since both algorithms solve all of
the problems in the suite on defaults. The results displayed in Tables 10 and 11 indicate
that PATH 3.0 is significantly more robust than PATH 2.9. We believe the main reasons for
improved robustness are increased numerical accuracy (see comments in Section 4.3) and
more aggressive restart procedures (see remarks in Section 4.4).
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Table 10. Comparison of PATH 3.0 to PATH 2.9.

PATH 3.0 PATH 2.9
Problem Size Suc (Fail) F Time Suc (Fail) F Time
asean9a 10199 1(0) 4 29 1(0) 4 24
badfree 5 1(0) 4 0.0 0() 4080 0.9
bert_oc 5000 4(0) 16 1.9 4(0) 16 1.5
bertsekas 15 6 (0) 79 0.0 6 (0) 94 0.1
billups 1 003 557 0.1 0(3) 13584 1.8
bishop 1645 1(0) 43 51.3 1(0) 40 15.5
box 44 355 (6) 7875 104 351 (10) 31298 43.6
bratu 5625 1(0) 48 18.8 1(0) 48 18.1
choi 13 1(0) 5 0.5 1(0) 5 04
colvdual 20 4(0) 91 0.1 4(0) 57 0.2
colvnlp 15 6 (0) 44 0.0 6 (0) 43 0.0
cycle 1 1(0) 5 0.0 1(0) 60 0.0
degen 2 1(0) 7 0.0 1(0) 2 0.0
denmark 2093 40 (0) 1556 532.3 36 (4) 1504 836.1
duopoly 63 1(0) 340 0.9 0(1) 575 24
ehl k40 41 2(1) 2346 25.1 2(1) 6194 60.0
ehl k60 61 3(0) 1009 19.9 3(0) 108 75
ehl k80 81 3(0) 449 19.9 3(0) 99 11.9
ehl _kost 101 30 36 44 3(0) 36 4.6
electric 158 1(0) 578 13 1(0) 297 1.2
eppa 1269 8 (0) 45 11.9 8 (0) 45 13.4
eta2100 296 1(0) 16 04 1(0) 30 0.6
explep 16 1(0) 6 0.0 1(0) 8 0.0
forcebsm 184 1(0) 11 0.1 1(0) 11 0.1
forcedsa 186 1(0) 11 0.1 1(0) 11 0.1
freebert 15 7(0) 63 0.0 7(0) 73 0.1
gafni 5 3(0) 15 0.0 3(0) 13 0.0
games 16 23(2) 1970 5.6 22 (3) 9205 319
hanskoop 14 10 (0) 128 0.1 10 (0) 146 0.1
hanson 487 2 (0) 231 1.6 2 (0) 118 4.7
hydroc06 29 1(0) 7 0.0 1(0) 8 0.0
hydroc20 99 1(0) 10 0.1 1(0) 11 0.1
Jjel 6 2 (0) 11 0.0 2 (0) 11 0.0
jmu 2253 1(0) 38 159 1(0) 40 14.0
josephy 4 8 (0) 96 0.0 8 (0) 87 0.1
kojshin 4 8 (0) 132 0.0 8 (0) 54 0.1
lincont 419 1(0) 15 13 1(0) 16 1.3
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Tuble 11. Comparison of PATH 3.0 to PATH 2.9.

PATH 3.0 PATH 2.9

Problem Size Suc (Fail) F Time Suc (Fail) F Time

mathinum 3 6 (0) 59 0.0 6 (0) 60 0.1
mathisum 4 7(0) 512 0.1 7(0) 73 0.1
methan08 31 1(0) 5 0.0 1(0) 5 0.0
multi-v 48 30 48 0.2 2 (1) 1581 32
nash 10 4(0) 24 0.0 4(0) 24 0.1
ne-hard 3 1(0) 37 0.0 0(1) 4 0.0
obstacle 2500 8 (0) 104 8.7 8(0) 104 75
olg 249 1(0) 1396 10.5 0(1) 2574 16.3
opt_cont 288 1(0) 6 0.1 1(0) 6 0.1
opt_cont127 4096 1(0) 6 1.7 1(0) 6 1.2
opt_cont255 8192 1(0) 6 3.7 1(0) 6 2.6
opt_cont31 1024 1(0) 6 03 1(0) 6 0.2
opt_cont511 16384 1(0) 6 8.3 1(0) 6 52
pgvonl05 105 3D 181 1.8 3(1) 323 2.8
pgvonl06 106 3(3) 4447 22.6 1(5) 5763 38.7
pies 42 1(0) 15 0.0 1(0) 13 0.0
powell 16 6 (0) 57 0.1 5(1) 6561 4.7
powell_mep 8 6 (0) 94 0.1 6 (0) 51 0.1
qp 4 1(0) 3 0.0 1(0) 2 0.0
romer 214 0(1) 325 1.9 0(1) 142 41
scarfanum 13 4 (0) 30 0.0 4(0) 33 0.1
scarfasum 14 4 (0) 21 0.0 4(0) 23 0.0
scarfbnum 39 2 (0) 47 0.1 2 (0) 49 0.1
scarfbsum 40 2 (0) 128 0.7 1(1) 216 2.3
shubik 30 48 (0) 6241 42 40 (8) 13064 119
simple-ex 17 0 732 0.6 0(1) 370 0.7
simple-red 13 1(0) 11 0.0 1(0) 11 0.0
sppe 27 3(0) 27 0.0 3(0) 29 0.0
tinloi 146 63 (1) 1638 122 56 (8) 9632 77.2
tobin 42 4 (0) 41 0.1 4(0) 44 0.1
tradel2 600 2 (0) 26 3.0 2 (0) 30 39
trafelas 2376 2 (0) 141 16.9 2 (0) 146 15.2
uruguay 2281 7(0) 27 796.0 7(0) 27 14773
Total 712 (19) 34344 15686 679 (52) 109015 2694.1
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The CPU times in the tables show that in general, the increase in robustness is not due to
more resources being expended, but by using the given resources more effectively. In gen-
eral, PATH 3.0 takes about the same time as PATH 2.9, with some substantial improvements
in CPU time on several problems. Because of the significant differences between the two
codes, PATH 3.0 is sometimes slower than PATH 2.9. In some of these cases, PATH 2.9
exits prematurely because of numerical problems, i.e., the basis matrix becomes singular
while backtracking. At other times, the extra basis factorizations performed by PATH 3.0
to determine an initial feasible basis and to backtrack stably account for the discrepancy.
We also note that the aggressive restarts in PATH 3.0 can cause increased time because
we restart the problem from the user-supplied starting point while PATH 2.9 may succeed
quickly with one of its ad-hoc heuristics.

We firmly believe that computational times are the best indication of the efficiency of
the code. However, we have also included the number of function evaluations in the tables.
For most of the problems the costs associated with linear algebra dominate the costs of
function evaluations. Of particular note in this class is the hanson problem, which due to
our backtracking procedure takes more function evaluations, but spends less time on linear
algebra leading to a faster computation. Our more careful backtracking procedure, while
increasing robustness of the code, can lead to more function evaluations being performed. In
particular, on the ehl_k* problems, in which function evaluations dominate linear algebra
costs, we perform significantly more function evaluations than PATH 2.9. However, in
summary we point out that PATH 3.0 is more robust, takes less time, and performs fewer
function evaluations when we average over the entire test set.

6. Conclusion

We have described a redesign of the PATH solver that facilitates easier interfacing to a
variety of computing environments and shown how such interfacing has been effected. The
redesign has also improved robustness of the code, without a corresponding increase in
computational resources used. This paper has carefully described the major enhancements
to the implementation and provided some numerical justification of improved robustness.

References

1. S.C.Billups, “Algorithms for complementarity problems and generalized equations,” Ph.D. Thesis, University
of Wisconsin-Madison, Madison, Wisconsin, 1995.

2. S.C.Billups, “Improving the robustness of complementarity solvers using proximal perturbations,” UCD/CCM
Report No. 96, University of Colorado at Denver, Denver, Colorado, 1996.

3. S.C. Billups, S.P. Dirkse, and M.C. Ferris, “A comparison of large scale mixed complementarity problem
solvers,” Computational Optimization and Applications, vol. 7, pp. 3-25, 1997.

4. S.C. Billups and M.C. Ferris, “QPCOMP: A quadratic program based solver for mixed complementarity
problems,” Mathematical Programming, vol. 76, pp. 533-562, 1997.

5. C. Bischof, A. Carle, P. Khademi, A. Mauer, and P. Hovland, “ADIFOR 2.0 user’s guide,” Mathematics and
Computer Science Division Report ANL/MCS-TM-192, Argonne National Laboratory, Argonne, IL, 1995.

6. A.Brooke, D. Kendrick, and A. Meeraus, GAMS: A User’s Guide, The Scientific Press: South San Francisco,
CA, 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



226 FERRIS AND MUNSON

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Chunhui Chen and O.L. Mangasarian, “A class of smoothing functions for nonlinear and mixed complemen-
tarity problems,” Computational Optimization and Applications, vol. 5, pp. 97-138, 1996.

R.W. Cottle and G.B. Dantzig, “Complementary pivot theory of mathematical programming,” Linear Algebra
and Its Applications, vol. 1, pp. 103125, 1968.

. J. Czyzyk, M.P. Mesnier, and J.J. Moré, “The network-enabled optimization server,” Preprint MCS-P615-

0996, Argonne National Laboratory, Argonne, Illinois, 1996.

S.P. Dirkse, “Robust solution of mixed complementarity problems,” Ph.D. Thesis, Computer Sciences De-
partment, University of Wisconsin, Madison, Wisconsin, 1994. Available from ftp://ftp.cs.wisc.edu/math-
prog/tech-reports/.

S.P. Dirkse and M.C. Ferris, “MCPLIB: A collection of nonlinear mixed complementarity problems,” Opti-
mization Methods and Software, vol. 5, pp. 319-345, 1995.

S.P. Dirkse and M.C. Ferris, “The PATH solver: A non-monotone stabilization scheme for mixed comple-
mentarity problems,” Optimization Methods and Software, vol. 5, pp. 123-156, 1995.

S.P. Dirkse and M.C. Ferris, “A pathsearch damped Newton method for computing general equilibria,” Annals
of Operations Research, 1996.

S.P. Dirkse and M.C. Ferris, “Crash techniques for large-scale complementarity problems,” in Complemen-
tarity and Variational Problems: State of the Art, M.C. Ferris and J.S. Pang (Eds.), SIAM Publications:
Philadelphia, PA, 1997.

S.P. Dirkse and M.C. Ferris, “Modeling and solution environments for MPEC: GAMS & MATLAB,” in
Reformulation—Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, M. Fukushima and
L. Qi (Eds.), Kluwer Academic Publishers, 1998, pp. 127-148, forthcoming.

S.P. Dirkse, M.C. Ferris, P.V. Preckel, and T. Rutherford, “The GAMS callable program library for varia-
tional and complementarity solvers,” Mathematical Programming Technical Report 94-07, Computer Sciences
Department, University of Wisconsin, Madison, Wisconsin, 1994.

A. Drud, “CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems,” Mathematical
Programming, vol. 31, pp. 153-191, 1985.

S.K. Eldersveld and M. A. Saunders, “A block-LU update for large-scale linear programming,” SIAM Journal
on Matrix Analysis and Applications, vol. 13, pp. 191-201, 1992.

M.C. Ferris, R. Fourer, and D.M. Gay, “Expressing complementarity problems and communicating them to
solvers,” Mathematical Programming Technical Report 98-02, Computer Sciences Department, University of
Wisconsin, Madison, Wisconsin, 1998.

M.C. Ferris and S. Lucidi, “Nonmonotone stabilization methods for nonlinear equations,” Journal of Opti-
mization Theory and Applications, vol. 81, pp. 53-71, 1994.

M.C. Ferris, M.P. Mesnier, and J. Moré, “NEOS and condor: Solving nonlinear optimization problems over the
Internet,” Mathematical Programming Technical Report 96-08, Computer Sciences Department, University of
Wisconsin, Madison, Wisconsin, 1996 (revised 1998). Also available as ANL/MCS-P708-0398, Mathematics
and Computer Science Division, Argonne National Laboratory.

R. Fletcher and S.P.J. Matthews, “Stable modifications of explicit LU factors for simplex updates,” Mathe-
matical Programming, vol. 30, pp. 267-284, 1984.

R. Fourer, D.M. Gay, and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming,
Duxbury Press, 1993.

D.M. Gay, “Hooking your solver to AMPL,” Technical Report, Bell Laboratories, Murray Hill, NJ, 1997.
(revised 1994, 1997).

P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright, “Maintaining LU factors of a general sparse matrix,”
Linear Algebra and Its Applications, vol. 88/89, pp. 239-270, 1987.

PE. Gill, W. Murray, M.A. Saunders, and M.H. Wright, “A practical anti-cycling procedure for linearly
constrained optimization,” Mathematical Programming, vol. 45, pp. 437-474, 1989.

A. Griewank, D. Juedes, and J. Utke, “ADOL-C: A package for the automatic differentiation of algorithms
written in C/C++,” ACM Transactions on Mathematical Software, 1996.

N.H. Josephy, “Newton’s method for generalized equations,” Technical Summary Report 1965, Mathematics
Research Center, University of Wisconsin, Madison, Wisconsin, 1979.

C.E.Lemke and J.T. Howson, “Equilibrium points of bimatrix games,” SIAM Journal on Applied Mathematics,
vol. 12, pp. 413423, 1964.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INTERFACES TO PATH 3.0 227

30.

31.

32.

33.

34.

35.

36.

37.

M.I. Litzkow, M. Livny, and M.W. Mutka, “Condor: A hunter of idle workstations,” in Proceedings of the
8th International Conference on Distributed Computing Systems, June 1988, pp. 104-111.

B.A. Murtagh and M.A. Saunders, “MINOS 5.0 user’s guide,” Technical Report SOL 83.20, Stanford Uni-
versity, Stanford, CA, 1983.

D. Ralph, “Global convergence of damped Newton’s method for nonsmooth equations, via the path search,”
Mathematics of Operations Research, vol. 19, pp. 352-389, 1994.

S.M. Robinson, “Normal maps induced by linear transformations,” Mathematics of Operations Research,
vol. 17, pp. 691-714, 1992.

S.M. Robinson, “Newton’s method for a class of nonsmooth functions,” Set Valued Analysis, vol. 2, pp. 291—
305, 1994.

T.F. Rutherford, “MILES: A mixed inequality and nonlinear equation solver,” Working Paper, Department of
Economics, University of Colorado, Boulder, 1993.

T.F. Rutherford, “Extensions of GAMS for complementarity problems arising in applied economic analysis,”
Journal of Economic Dynamics and Control, vol. 19, pp. 1299-1324, 1995.

T.F. Rutherford, “Applied general equilibrium modeling with MPSGE as a GAMS subsystem: An overview
of the modeling framework and syntax,” Computational Economics, 1998, forthcoming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



