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Abstract Affine variational inequalities (AVI) are an important problem class that
subsumes systemsof linear equations, linear complementarity problems andoptimality
conditions for quadratic programs. This paper describes PathAVI, a structure-
preserving pivotal approach, that can efficiently process (solve or determine infeasible)
large-scale sparse instances of the problem with theoretical guarantees and at high
accuracy. PathAVI implements a strategy known to process models with good the-
oretical properties without reducing the problem to specialized forms, since such
reductions may destroy sparsity in the models and can lead to very long computational
times. We demonstrate formally that PathAVI implicitly follows the theoretically
sound iteration paths, and can be implemented in a large scale setting using existing
sparse linear algebra and linear programming techniques without employing a reduc-
tion. We also extend the class of problems that PathAVI can process. The paper
illustrates the effectiveness of our approach by comparison to the Path solver used on
a complementarity reformulation of the AVI in the context of applications in friction
contact andNash Equilibria. PathAVI is a general purpose solver, and freely available
under the same conditions as Path.
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1 Introduction

In this paper, we present PathAVI, a structure-preserving pivotal method for affine
variational inequalities (AVIs) in R

n . An AVI(C, q, M) is defined as follows: given
a polyhedral convex set C , find z ∈ C such that

〈Mz + q, y − z〉 ≥ 0, ∀y ∈ C,

where M ∈ R
n×n , q ∈ R

n and 〈·, ·〉 is the usual Euclidean inner product. An AVI
is a linear generalized equations [24] and we refer to [15] for results on existence,
uniqueness, and stability theory for such systems.

PathAVI tries to solve an AVI(C, q, M) by computing a zero of the normal
map [25] associated with the AVI. The normal map MC : R

n → R
n is defined

as follows:

MC (x) := M(πC (x)) + q + x − πC (x),

with πC (·) denoting the Euclidean projector onto the set C . One can easily see that
MC (x∗) = 0 if andonly if z∗ = πC (x∗)where x∗ = z∗− (Mz∗ + q) is a solution to the
AVI(C, q, M). To compute a zero of MC (x), our method employs the complementary
pivoting method [13,20] with a ray start: the piecewise-linear (PL) map GC : R

n ×
R+ → R

n is defined as
GC (x, t) := MC (x) − tr,

with r ∈ R
n denoting a covering vector and t an auxiliary variable. A path defined as

G−1
C (0) is followed through complementary pivoting. The algorithm terminates when

either t becomes zero (a solution to the AVI is found) or a secondary ray is generated.
Under some additional assumptions this latter outcome can be interpreted in terms of
the feasibility of the AVI.

The main challenge in applying the complementary pivoting method lies in the
starting phase. For good theoretical properties, a ray start is required, and it is well-
defined at an extreme point. However, whenC contains lines there is no extreme point.
To tackle this case, the previous approach [6] performs a reduction, transforming the
given AVI(C, q, M) to a reduced AVI(C̃, q̃, M̃) to eliminate lines in C so that an
extreme point is found in C̃ , and it solves the reduced AVI. A similar approach
of factoring out lines in C is used in [25, Proposition 4.1] to show a Lipschitzian
homeomorphism of the normal map MC .

A critical disadvantage of solving the reducedAVI(C̃, q̃, M̃) is that wemay lose the
original structure in C and M . The matrix M̃ is constructed from a Schur complement
computation and the polyhedral constraints defining C̃ are computed by multiplying
with orthonormal matrices. In particular, if the original AVI is sparse, there is no
guarantee that the resulting reduced AVI would enjoy the same property. We provide
an instance where this happens in Sect. 6.2. In sharp contrast, PathAVI does not
require any reduction at all. Therefore, our method is able to take advantage of a
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A structure-preserving pivotal method for affine… 95

sparse structure, whereas themethod in [6] often needs to perform dense linear algebra
computations.

To perform a ray start in the case where there is no extreme point, PathAVI finds
an implicit extreme point which generalizes the notion of an extreme point when
the underlying feasible region contains lines. Roughly speaking, if we project an
implicit extreme point of C on the subset where all lines are removed, we obtain an
extreme point. We show that there is an implicit extreme point satisfying the sufficient
conditions for a ray start. We explain how phase 1 of the simplex method can be used
to find such a point.

We show that PathAVI can process an AVI(C, q, M) whenever M is an L-matrix
with respect to the recession cone of C [6, Definition 4.2]. We also exhibit two new
classes of AVI where PathAVI finds a solution. The first one stems from the study
of friction contact problems from an AVI perspective, and the second one can be seen
as a generalization of a known existence result for LCP for copositive matrices. The
conditions for the results to hold involve the whole problem data (C, q, M), whereas
the previous results in [6] involve only (C, M).

A widely used method for solving an AVI is the Path solver [9], which is consid-
ered one of the most robust and efficient solvers for mixed complementarity problems
(MCPs). It is well known [11,15] that an AVI can be reformulated as a linear MCP,
and Path uses this approach when it solves anAVI. However, theMCP reformulation
does not exploit the polyhedral structure of the set C , in that complementary pivoting
of Path is done over a different PL-manifold from PathAVI’s. We compare theo-
retical properties of the two formulations, and present computational results showing
improved performance of PathAVI.

This paper is organized as follows. In Sect. 2, we briefly describe how the com-
plementary pivoting method on a PL-manifold computes a zero of the normal map
associated with a given AVI. Section 3 presents our main theoretical results. Firstly,
we discuss sufficient conditions for a ray start, define the notion of an implicit extreme
point, and prove the existence of such a point satisfying the conditions for a ray start.
Secondly, we show that PathAVI can process L-matrices and introduce new types of
AVIs processable by PathAVI. In Sect. 4, we present the computational procedure to
start PathAVI. Section 5 introduces theMCP reformulation of the AVI and analyzes
worst-case performance of the two formulations. We present computational results in
Sect. 6 and Sect. 7 concludes this paper.

Aword about our notation is in order. Let S be a convex set inR
n . The lineality space

of S is denoted by lin S. The symbol ri S denotes the relative interior of S. The affine
hull of S is denoted by aff S. By par S, we mean the subspace parallel to aff S such
that aff S = s + par S for each s ∈ S. The identity matrix in R

n is denoted by In and
the zero vector is 0n . When ordered index sets are used as subscripts on a matrix, they
define a submatrix: for ordered index sets α ⊂ {1, . . . ,m} and β ⊂ {1, . . . , n} Mαβ

denotes a submatrix of M consisting of rows and columns of M in the order of α and
β, respectively. When matrices are used as subscripts on a matrix, they define another
matrix: for matrices Q and Q̄ having appropriate dimensions MQQ̄ denotes QT MQ̄.
For an AVI(C, q, M), C is assumed to be the set {z ∈ R

n | Az − b ∈ K , l ≤ z ≤ u}
with l j , u j ∈ R ∪ {−∞,∞}, bi ∈ R, Ai• = 0 for i = 1, . . . ,m and j = 1, . . . , n,
and the set K is a Cartesian product of R+, {0}, or R− to accommodate constraints
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96 Y. Kim et al.

of the form ≥, =, or ≤, respectively. For a closed convex cone K , the dual cone of
K is denoted by K D := {y | 〈y, k〉 ≥ 0,∀k ∈ K }. For the rest of this paper, Q and
Q̄ denote orthonormal basis matrices for the lineality space of C and its orthogonal
complement, respectively.

2 Background

In this section, we briefly describe how to compute a zero of the normalmap associated
with a givenAVI(C, q, M) using the complementary pivoting method with a ray start.
We also introduce some concepts related to processability of AVIs. The reader is
referred to [6,13,20,25] for more details.

The basic procedure of the complementary pivoting method to compute a zero
of the normal map associated with an AVI(C, q, M) is as follows: (i) compute an
initial solution (x0, t0) such that GC (x0, t0) = 0, and the point (x0, t0) lies on a
ray, called a starting ray, consisting of points (x(t), t) with GC (x(t), t) = 0 and
πC (x(t)) = πC (x0) for all t ≥ t0; then (ii) starting from (x0, t0) follow a path
G−1

C (0) = {(x, t) ∈ R
n × R+ | GC (x, t) = 0} using the complementary pivoting

method until t becomes zero or a secondary ray is generated. As wewill see, PathAVI
generates a starting ray at an implicit extreme point of C , i.e., πC (x0) is an implicit
extreme point.

Computationally, finding an initial solution (x0, t0) amounts to computing a com-
plementary basic solution having z = πC (x0) for the following system of equations:

Mz + q − AT λ − w + v = 0,

Az − b = s,
(1)

with complementarity between variables

K � s ⊥ λ ∈ K D,

0 ≤ z − l ⊥ w ≥ 0,

0 ≤ u − z ⊥ v ≥ 0.

(2)

The complementary basic solution satisfies the sufficient conditions for a ray start as
defined in Sect. 3. Then by adding −tr with r ∈ ri (NC (z)) to the first equation in (1)
and pivoting in the t variable, we generate an almost complementary feasible basis
and start complementary pivoting.

Geometrically, the map GC (x, t) is defined over a PL(n+1)-manifoldMC , where
the definition of a manifold follows from [13, Section 4]. The manifold MC consists
of a pair (Rn × R+, {σi × R+ | i ∈ I }) such that each σi is a set formed by σi =
Fi + NFi , where Fi is from a collection of the nonempty faces {Fi | i ∈ I } of C , and
NFi is a normal cone having constant value on ri Fi . The manifoldMC is constructed
from the normal manifold NC consisting of a pair (Rn, {σi | i ∈ I }) by doing a
Cartesian product each σi with R+. Note that the collection of the sets {σi | i ∈ I } is
a subdivision of R

n . Consequently, {σi × R+ | i ∈ I } is a subdivision of R
n × R+.

The k-dimensional faces of the σi × R+ are called the k-cells of MC . Similarly, the
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A structure-preserving pivotal method for affine… 97

k-dimensional faces of the σi are called the k-cells of NC . The map GC coincides
with some affine transformation on each (n + 1)-cell σi × R+ as the normal map MC

does on each n-cell σi [25, Proposition 2.5]. Note that the starting ray (x(t), t) for
t ≥ t0 > 0 lies in the interior to some (n+1)-cell σi ×R+ ofMC , where (x0, t0) is a
regular point. We call a point inMC a regular point if it doesn’t lie in any cell σ ×τ of
MC with dim(GC (σ × τ)) < n [13, Section 8]. Under lexicographic pivoting, each
complementary pivoting generates each piece of the 1-manifold G−1(0) such that it
starts from a boundary of a (n + 1)-cell of MC (except for the first piece containing
the starting ray) and passes through the interior of that cell until it reaches a (different)
boundary. If this does not occur, then we say that a secondary ray is generated. The
set of (n + 1)-cells the 1-manifold passes through never repeats [13, Lemma 15.8].
As there is a finite number of (n + 1)-cells ofMC , either t reaches zero (equivalently
we find a solution to the AVI(C, q, M)) or a secondary ray is generated [13, Lemma
15.13].

Processability is tied to the conditions under which a secondary ray occurs. As
with the LCPs, the answer to this question involves specific matrix classes that we
now define.

Definition 1 (Definition 4.1 [6]) Let K be a closed convex cone. A matrix M is said
to be copositivewith respect to K if 〈x, Mx〉 ≥ 0 for all x ∈ K . If furthermore it holds
that for all x ∈ K 〈x, Mx〉 = 0 implies (M + MT )x = 0, then M is copositive-plus
with respect to K .

Definition 2 Let K be a closed convex cone. A matrix M is said to be semimono-
tone with respect to K if for every q ∈ ri (K D), the solution set of the generalized
complementarity problem

z ∈ K , Mz + q ∈ K D, zT (Mz + q) = 0 (3)

is contained in lin K .

Remark 1 This definition is consistent with the existing semimonotone property in the
LCP litterature, as given in [7, Definition 3.9.1]. In this case K = R

n+ and lin K = {0}.
Then condition (3) is equivalent to 0 being the solution set of LCP(q, M) for all q > 0,
which by Theorem 3.9.3 in [7] is equivalent to the standard definition of M being
semimonotone.

Definition 3 (Definition 4.2 [6]) Let K be a closed convex cone. A matrix M is said
to be an L-matrix with respect to K if both

(a) M is semimonotone with respect to K
(b) For any z = 0 satisfying

z ∈ K , Mz ∈ K D, zT Mz = 0,

there exists z′ = 0 such that z′ is contained in every face of K containing z and
−MT z′ is contained in every face of K D containing Mz.
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98 Y. Kim et al.

Lemma 1 (Lemma 4.5 [6]) If a matrix M is copositive-plus with respect to a closed
convex cone K , then it is an L-matrix with respect to K .

The main existing result on the processability using a path following method is the
following.

Theorem 1 (Theorem 4.4 [6]) Suppose that C is a polyhedral convex set, and M is
an L-matrix with respect to rec C which is invertible on the lineality space of C. Then
exactly one of the following occurs:

• The method of [6] solves the AVI(C, q, M).
• The following system has no solution

Mz + q ∈ (rec C)D.

3 Theoretical results

In this section, we show that an implementation of PathAVI in the original space
enjoys the same properties as Theorem 1. We first identify sufficient conditions to
allow a ray start. We define an implicit extreme point, which is a generalization of
an extreme point when the lineality space is nontrivial, and show that there exists an
implicit extreme point satisfying these sufficient conditions. A computational method
for finding such an implicit extreme point is described in Sect. 4. Our conditions
generalize those required for existing pivotal methods [6,9,20] for LCP, MCP, and
AVI.

PathAVI can process L-matrices with respect to the recession cone of the feasible
set of the AVI. To this end, we show that a 1-manifold [the path G−1

C (0)] generated
by PathAVI with a ray start at an implicit extreme point corresponds to a 1-manifold
generated by the same pivotalmethodwith a ray start at an extreme point in the reduced
space. The reduced space is formed by projecting out the lineality space. This one-
to-one correspondence is derived from the structural correspondence of the faces and
the normal cones between the original space and the reduced one. Then by applying
the existing processability result to the 1-manifold in the reduced space, we obtain the
desired result.

3.1 Sufficient conditions for a ray start and processability of PATHAVI

We first identify sufficient conditions to perform a ray start at a point.

Proposition 1 Let an AVI(C, q, M) be given. If the following conditions are satisfied
at a point z̄ ∈ C with z̄ + lin C being a face of C, then we can perform a ray start at
z̄.

• Mz̄ + q ∈ aff (NC (z̄)).
• Every point in the interior of the (n+1)-cell ((z̄+lin C)+NC (z̄))×R+ is regular.
(See Sect. 2 for the definition of a regular point.)
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• There exists a complementary basis at z̄ such that aff (NC (z̄)) is spanned by
columns of the basic variables in (λ,w, v).

Proof Pick a vector r ∈ ri (NC (z̄)). Let (z, λ,w, v, s) be the complementary basic
solution to (1) and (2) corresponding to the given complementary basis. Note that z =
z̄, thus s is feasible. Therefore, only basic variables in (λ,w, v) might be infeasible.
The first and third conditions say that we have Mz + q − AT λ − w + v = 0. By
the third condition, for each t ≥ 0 we have a unique (λ(t), w(t), v(t)) satisfying
Mz+q − AT λ(t)−w(t)+v(t)− tr = 0. As r ∈ ri (NC (z̄)), there exists t0 ≥ 0 such
that for all t ≥ t0 wehaveMz+q−AT λ(t)−w(t)+v(t)−tr = 0 and (λ(t), w(t), v(t))
are feasible variables. Then for all t ≥ t0 (x(t), t)with x(t) := z̄−AT λ(t)−w(t)+v(t)
lies in the cell ((z̄ + lin C) + NC (z̄)) × R+ with πC (x(t)) = z̄ and GC (x(t), t) = 0.
By the second condition, the ray (x(t), t) is generated at a regular point. By pivoting
the t variable into the complementary basis, we see that we can perform a ray start at
z̄. ��

Note that the sufficient conditions are satisfied at an extreme point. If z is an extreme
point, then aff (NC (z)) ≡ R

n thus the first condition is trivially satisfied. Each extreme
point has a corresponding basic feasible solution (BFS) to Ax − b = s [23, Section
3.4], and with that BFS we can construct a complementary basis satisfying the third
condition as shown in Proposition 10 later in this paper. The second condition is also
satisfied as proved in Proposition 4. As the existing pivotal methods [6,9,20] for LCP,
MCP, and AVI perform a ray start at an extreme point, we see that the sufficient
conditions generalize the existing result.

We now define an implicit extreme point, which is a generalization of an extreme
point when the lineality space is nontrivial.

Definition 4 Let C be a convex set in R
n . A point z ∈ C is called an implicit extreme

point of C if z = λz1 + (1 − λ)z2 for any z1, z2 ∈ C and λ ∈ (0, 1) implies that
z − z1 ∈ lin C and z − z2 ∈ lin C .

Note that if the lineality space ofC is trivial, that is, lin C = {0}, then the definition
of an implicit extreme point coincides with definition of an extreme point.

In the following four propositions, we provide some properties of implicit extreme
points, which are generalization of the ones enjoyed by extreme points. They are
used as a tool for showing the existence of an implicit extreme point satisfying the
sufficient conditions and for structural analysis later in this section.We start with faces
consisting of only implicit extreme points. This generalizes 0-dimensional faces that
are equivalent to extreme points. As the proof is elementary, we omit it.

Proposition 2 Let C be a nonempty convex set inR
n and � = dim(lin C). Then every

point in an �-dimensional face of C is an implicit extreme point of C. Also, for each
implicit extreme point z of C we have F = z + lin C is an �-dimensional face of C.

We next prove that the affine hull of the normal cone to C at an implicit extreme
point is the orthogonal complement of the lineality space of C . This generalizes the
fact that the normal cone to C at an extreme point is full-dimensional.
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100 Y. Kim et al.

Proposition 3 A point z ∈ C is an implicit extreme point of a nonempty polyhedral
convex set C in R

n if and only if aff (NC (z)) = (lin C)⊥.

Proof (only-if) Suppose that z is an implicit extreme point of C . Using Proposition 2,
F = z + lin C is a face of C . We then have par F = lin C . By [25, Proposition 2.1],
par F = (aff NF )⊥, where NF represents the normal cone having the same value
for all ẑ ∈ ri F , i.e., NC (ẑ1) = NF = NC (ẑ2) for all ẑ1, ẑ2 ∈ ri F . As z ∈ ri F , it
follows that aff (NC (z)) = (lin C)⊥.

(if) Suppose that z ∈ C and aff (NC (z)) = (lin C)⊥. Pick a face F of C such that
z ∈ ri F . Such a face exists by [27, Theorem 18.2]. Then NC (z) = NF , where NF is
the normal cone having constant value on ri F . As par F = (aff NF )⊥, we then have
par F = lin C and F = z + lin C . By Proposition 2, z is an implicit extreme point
of C . ��

Next we show that the second condition in Proposition 1 is satisfied at an implicit
extreme point. Note that in the proposition below we show dim(MC (σ )) = n, which
implies that dim(GC (σ × R+)) = n.

Proposition 4 Let z be an implicit extreme point of a nonempty polyhedral convex
set C in R

n and σ be the cell ((z + lin C) + NC (z)) in the normal manifold of C.
Then for an AVI(C, q, M) with M invertible on the lineality space of C, we have
dim(MC (σ )) = n.

Proof By [25, Proposition 2.5], MC coincides with some affine transformation Aσ on
σ . In the basis Z = (Q Q̄), we can represent the matrix Aσ (·) − Aσ (z) as follows:

[
QTMQ 0
Q̄TMQ I

]
.

As QT MQ is invertible, thematrix Aσ (·)−Aσ (z) is invertible. As σ is n-dimensional,
the result follows. ��

Finally, let us consider a �-dimensional face F with � = dim(lin C) (hence con-
sisting of only implicit extreme points by Proposition 2). Then there exists an implicit
extreme point z ∈ F such that Mz + q ∈ aff (NC (z)). This generalizes the fact that
at each extreme point z̄ we have Mz̄ + q ∈ aff (NC (z̄)) = R

n .

Proposition 5 Let an AVI(C, q, M) problem be given and z ∈ C be an implicit
extreme point of C. Assume that M is invertible on the lineality space of C. Then there
exists ẑ ∈ z + lin C such that Mẑ + q ∈ aff (NC (ẑ)).

Proof For any implicit extreme point ẑ of C , Mẑ + q ∈ aff (NC (ẑ)) if and only if
πlin C (Mẑ + q) = 0 by Proposition 3. By the assumption, MQQ is invertible. Set

ẑ = z + Qy where y = −M−1
QQ(QTq + MQQ̄ Q̄

T z) − QT z.
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A structure-preserving pivotal method for affine… 101

Then ẑ ∈ z + lin C thus ẑ is an implicit extreme point of C by Proposition 2, and

QT (Mẑ + q) = QT
(
M
[
Q Q̄

] [QT

Q̄T

]
ẑ + q

)
,

= MQQ

(
QT ẑ

)
+ MQQ̄

(
Q̄T ẑ

)
+ QTq,

= MQQ

(
QT z + y

)
+ MQQ̄

(
Q̄T z

)
+ QTq,

= 0.

It follows that πlin C (Mẑ + q) = 0. ��
By Propositions 4 and 5, there exists an implicit extreme point satisfying the first

two sufficient conditions for a ray start. We postpone checking the third condition to
Sect. 4 as it requires a constructive proof. For the rest of this section, we assume that
we have an implicit extreme point satisfying the sufficient conditions.

We now turn our attention to the processability of PathAVI. Assume that we
perform a ray start at an implicit extreme point and generate a 1-manifold in the
original space R

n . Our basic idea of deriving processability is that this 1-manifold
corresponds to a 1-manifold generated by the same pivotal method with a ray start
at an extreme point defined in the reduced space having possibly smaller dimension.
We can then apply the existing processability result [6, Theorem 4.4]. To establish
the correspondence, we prove that there is a one-to-one correspondence between the
faces, the normal cones, and the full-dimensional cells of the original space and reduced
space.

Proposition 6 Let C be a nonempty polyhedral convex set in R
n and C̃ be the set

C̃ = Q̄T C = {z̃ | z̃ = Q̄T z for some z ∈ C} defined in R
n−� where � = dim(lin C).

Then the followings hold.

(a) z is an implicit extreme point of C if and only if z̃ = Q̄T z is an extreme point of
C̃.

(b) F is a face of C if and only if F̃ = Q̄T F is a face of C̃.
(c) v ∈ NC (z) if and only if v = Q̄ṽ for some ṽ ∈ NC̃ (z̃) where z̃ = Q̄T z.
(d) σ is an n-cell of the normal manifold NC of C if and only if σ̃ = Q̄T σ is an

(n − �)-cell of the normal manifoldNC̃ .

Proof We prove in sequence. (a) (only-if) Let z be an implicit extreme point of C . Set
z̃ = Q̄T z. We prove by contradiction. Suppose that ∃z̃1, z̃2 ∈ C̃ and λ ∈ (0, 1) such
that z̃ = λz̃1+(1−λ)z̃2 with z̃ = z̃i for i = 1, 2.Bydefinition of C̃ , we have z1, z2 ∈ C
such that z̃i = Q̄T zi for i = 1, 2. AsC = lin C⊕((lin C)⊥ ∩C) [27, 65] and Q̄T z =
Q̄T (λz1+(1−λ)z2), there exists a ∈ lin C such that z = λ(a+ z1)+(1−λ)(a+ z2).
As Q̄T (z − (a + zi )) = z̃ − z̃i = 0, we have z − (a + zi ) /∈ lin C for i = 1, 2, which
contradicts our assumption that z is an implicit extreme point of C .

(if) Using similar proof technique, we can show that for an extreme point z̃ ∈ C̃ , z
is an implicit extreme point of C when z̃ = Q̄T z.

123

Author's personal copy



102 Y. Kim et al.

(b) (only-if) Let F be a face of C . Set F̃ = Q̄T F . Clearly, F̃ is a convex subset
of C̃ . Let z̃1, z̃2 ∈ C̃ and λ ∈ (0, 1) satisfying λz̃1 + (1 − λ)z̃2 ∈ F̃ . From C =
lin C ⊕ ((lin C)⊥ ∩C), we have Q̄z̃i ∈ C for i = 1, 2. Then Q̄(λz̃1 + (1−λ)z̃2) ∈ F
so that Q̄z̃1 ∈ F and Q̄z̃2 ∈ F . This shows that z̃i ∈ F̃ for i = 1, 2.

(if) Let F̃ = Q̄T F be a face of C̃ . By the definition of F̃ , F is a convex subset of
C . Let z1, z2 ∈ C and λ ∈ (0, 1) such that λz1 + (1 − λ)z2 ∈ F . We have Q̄T zi ∈ C̃
for i = 1, 2 and Q̄T (λz1 + (1 − λ)z2) ∈ F̃ . Thus, Q̄T zi ∈ F̃ , hence zi ∈ F + lin C
for i = 1, 2. Therefore, zi ∈ F for i = 1, 2.

(c) For a vector v ∈ R
n , we represent components of v in lin C and (lin C)⊥ in the

basis
[
Q Q̄

]
by vQ and vQ̄ , respectively, so that v = QvQ + Q̄vQ̄ . If either z /∈ C

or z̃ /∈ C̃ , then we have nothing to prove. Therefore, we assume that z ∈ C and z̃ ∈ C̃
in the proof. (only-if) Let v ∈ NC (z). By the definition of the normal cone, for each
a ∈ lin C we have 〈v, (z + a) − z〉 ≤ 0 and 〈v, (z − a) − z〉 ≤ 0. Thus, 〈v, a〉 = 0
for all a ∈ lin C . Whence NC (z) ⊂ (lin C)⊥ so that vQ = 0 and v = Q̄vQ̄ . We then
have

0 ≥ 〈v, y − z〉, ∀y ∈ C

=
〈
Q̄vQ̄, QyQ + Q̄yQ̄ − (QzQ + Q̄zQ̄)

〉

=
〈
Q̄vQ̄, Q̄(yQ̄ − zQ̄)

〉
= 〈vQ̄, yQ̄ − zQ̄〉

By setting ṽ = vQ̄ , v = Q̄ṽ and ṽ ∈ NC̃ (z̃).

(if) Let ṽ ∈ NC̃ (z̃) and set v = Q̄ṽ.We have z̃ = Q̄T z if and only if z ∈ lin C+ Q̄z̃.
Let z ∈ lin C + Q̄z̃. Then

〈v, y − z〉 =
〈
ṽ, yQ̄ − zQ̄

〉
≤ 0, y ∈ C

and the result follows.
(d) The conclusion follows from (b), (c), and the definition of the full-dimensional

cells of the normal manifold. ��
A similar result holds for the 1-manifold G−1

C (0).

Proposition 7 Let an AVI(C, q, M) problem be given. Suppose that the matrix M is
invertible on the lineality space of C, and GC (x∗, t∗) = 0 with r ∈ NC (πC (x0)) for
some x0 ∈ R

n. Then the PL function G̃C̃ (x̃, t) := M̃πC̃ (x̃)+ q̃ + x̃ −πC̃ (x̃)− tr̃ has
value zero at (x̃∗, t∗), where

x̃∗ = Q̄T x∗

Z = [Q Q̄
]
,

M̃ =
(
ZT MZ/MQQ

)
= MQ̄Q̄ − MQ̄QM

−1
QQMQQ̄,

C̃ = Q̄T C, x̃0 = Q̄T x0, q̃ = (Q̄T − MQ̄QM
−1
QQQ

T )q,

r̃ = Q̄T r ∈ NC̃

(
πC̃ (x̃0)

)
.
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Conversely, if G̃C̃ (x̃∗, t∗) = 0 then GC (x∗, t∗) = 0 with x∗ = Q̄x̃∗ + Qy∗ and

y∗ = −M−1
QQ

(
MQQ̄πC̃ (x̃∗) + QTq

)
.

Proof Let (x∗, t∗) satisfying GC (x∗, t∗) = 0 with r ∈ NC (πC (x0)) for some x0 be
given. Then

MπC (x∗) + q + x∗ − πC (x∗) − t∗r = 0,

(⇒)

[
QT

Q̄T

]
M
[
Q Q̄

] [QT

Q̄T

]
πC (x∗) +

[
QT

Q̄T

]
(q + x∗ − πC (x∗) − t∗r) = 0,

(⇒)

[
MQQ MQQ̄
MQ̄Q MQ̄Q̄

] [
QTπC (x∗)
Q̄TπC (x∗)

]
+
[

QTq
Q̄T (q + x∗ − πC (x∗) − t∗r)

]
= 0,

(⇒) M̃ Q̄TπC (x∗) + q̃ + Q̄T (x∗ − πC (x∗)) − t∗r̃ = 0,

using QTπC (x∗) = −M−1
QQ(MQQ̄ Q̄

TπC (x∗) + QTq),

(⇒) M̃πC̃ (x̃∗) + q̃ + x̃∗ − πC̃ (x̃∗) − t∗r̃ = 0.

The second (⇒) holds because NC (z) ⊂ (lin C)⊥,∀z ∈ C as shown in the proof of
Proposition 6(c). The last (⇒) holds because Q̄TπC (x) = πQ̄T C (Q̄T x) by [5, Lemma

2.1]. Also, r̃ ∈ NC̃ (πC̃ (x̃0)) by Proposition 6(d).
Conversely, let G̃C̃ (x̃∗, t∗) = 0. Set x∗ = Q̄x̃∗ + Qy∗ with y∗ as specified in the

proposition. Then
πC (x∗) = πC∩(lin C)⊥(x∗) + πlin C (x∗)

= Q̄πC̃ (x̃∗) + Qy∗.

Therefore, QTπC (x∗) = y∗. By the definition of y∗, all the converse directions also
hold. ��

Note that the AVI(C̃, q̃, M̃) with C̃, q̃ , and M̃ as in Proposition 7 is the same
problem obtained by applying the stage 1 reduction [6, 49] to the AVI(C, q, M).
Also, G̃C̃ is the PL function defined on the (n − dim(lin C) + 1)-manifoldMC̃ of C̃
to find a zero of the normal map associated with the AVI(C̃, q̃, M̃).

An implication of Proposition 7 is that if GC (x + θΔx, t + θΔt) = 0 with (x +
θΔx, t + θΔt) ∈ σ ×R+ for all θ ∈ [0, ν] with ν > 0 (possibly ν = ∞) and σ ×R+
is an (n+1)-cell ofMC , then we have G̃C̃ (x̃+θΔx̃, t+θΔt) = 0 with (x̃+θΔx̃, t+
θΔt) ∈ σ̃ × R+ for all θ ∈ [0, ν], where σ̃ = Q̄T σ and Δx̃ = Q̄TΔx . The converse
also holds by settingΔx = Q̄Δx̃+QΔywithΔy = −M−1

QQMQQ̄Hσ̃ Δx̃ , where Hσ̃ is

an orthogonal projector onto par F̃ with σ̃ = F̃+NF̃ [25, see the proof of Proposition
2.5]. Therefore, the projection of each piece of G−1

C (0) ontoMC̃ corresponds to each
piece of G̃−1

C̃
(0) and vice versa. As a consequence, if G−1

C (0) contains a ray, i.e., there
exists (Δx,Δt) = 0 with ν = ∞ on some (n + 1)-cell σ × R+ of MC , and the
corresponding value (Δx̃,Δt) is not zero, then the corresponding piece of G̃−1

C̃
(0) is
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also a ray. The following proposition shows that whenever there is a ray in G−1
C (0)

with Δx = 0, then we have Δx̃ = 0 so that the corresponding piece of G̃−1
C̃

(0) is also
a ray. Note that the converse automatically holds as Δx = 0 for each Δx̃ = 0.

Proposition 8 For an AVI(C, q, M), suppose that PathAVI generates G−1
C (0) with

a ray start at an implicit extreme point. For each ray in G−1
C (0) in the direction of

(Δx,Δt) = 0, ifΔx = 0 thenΔx̃ := Q̄TΔx is a ray in G̃−1
C̃

(0) that is nonzero under
the assumption that either 0 is a regular value or we perform lexicographic pivoting.

Proof Let z be an implicit extreme point at which PathAVI performs a ray start.
By construction, Δx̃ = 0 if and only if Δx ∈ lin C . For the starting ray we have
Δx ∈ NC (z) so that Δx /∈ lin C by Proposition 3. Thus, Δx̃ = 0.

We now assume that there is a ray inG−1
C (0) other than the starting ray. Suppose that

Δx ∈ lin C . We proceed by contradiction. Let us assume that the ray is generated at
the (k+1)th iteration of complementary pivoting, and that it starts from (xk+1, tk+1).
We know that (xk+1, tk+1) ∈ (σ k+1×R+)∩(σ k ×R+), where σ k ×R+ is the (n+1)-
cell ofMC PathAVI passes through at the kth complementary pivoting iteration. As
lin C ⊂ lin σ for each (n + 1)-cell σ × R+ ofMC , xk+1 + θΔx ∈ σ k for all θ ≥ 0.
This contradicts the fact that G−1

C (0) is a 1-manifold neat inMC [13, Theorem 9.1 or
Lemma 15.5], that is, G−1(0) ∩ (σ k × R+) must be expressed as an intersection of
σ k × R+ with a line. Therefore, Δx /∈ lin C and the result follows. ��

From Lemma 5 (in the Appendix), if M is semimonotone with respect to rec C
and invertible on lin C , we have Δt = 0 whenever PathAVI generates a ray in the
direction of (Δx,Δt).Matrix classes having the propertyΔt = 0 include the L-matrix
class and the new matrix classes defined in Sect. 3.2. Therefore, whenever PathAVI
generates a ray in G−1

C (0) for those classes of matrices the corresponding piece in
G̃−1

C̃
(0) is also a ray by Proposition 8.

Equipped with Propositions 6–8, we now show that PathAVI can process L-
matrices. In contrast to [6], we do not resort to a reduction to show the result.

Theorem 2 Suppose that C is a polyhedral convex set, and M is an L-matrix with
respect to rec C which is invertible on the lineality space of C. Then exactly one of
the following occurs:

• PathAVI solves the AVI(C, q, M).
• The following system has no solution

Mz + q ∈ (rec C)D.

Proof By Propositions 6–7, for a 1-manifold G−1
C (0) generated by PathAVI there

corresponds to a 1-manifold G̃−1
C̃

(0) in the reduced space generated by the same

pivotal method with a ray start at an extreme point of C̃ with M̃ an L-matrix with
respect to rec C̃ . If there is a secondary ray in G−1

C (0), then so is in G̃−1
C̃

(0) by
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Proposition 8. Therefore, there exists directions (Δx̃,Δz̃,Δλ̃,Δs̃,Δt) in the reduced
space satisfying

Δx̃ − Δz̃ = −M̃Δz̃ + r̃Δt

AA •Δz̃ = 0

A ¯A •Δz̃ − Δs̃ ¯A = 0

Δx̃ − Δz̃ = −AT
A •Δλ̃A ,

(4)

where we have included bound constraints in the matrix A for clarity, and A and ¯A
denote the active and inactive sets, respectively. We then apply Theorem 1 to (4) to
get the desired result. ��

3.2 Additional processability results

Let us now extend the classes of AVIs that PathAVI is able to process. The results
in Lemmas 2, 3 consider the structure of the whole AVI, not only M and C . As stated
in the paragraph following Proposition 7, a 1-manifold generated inMC corresponds
to another one in MC̃ . Hence, in the following we denote by AVI(C̃, q̃, M̃) the AVI
corresponding to AVI(C, q, M) with the lineality space projected out as explained
in Proposition 7. If M is invertible on lin C , the results can then be applied to the
original AVI by noticing that the projections of the directions of the rays on G−1

C (0)
are solution to the system of equations (4) in the reduced space.

In Sect. 6.1, we present a friction contact problem where Theorem 2 cannot be
applied but the following lemma is appropriate.

Lemma 2 Consider an AVI(C̃, q̃, M̃)with lin C̃ = {0}. Suppose that M̃ is semimono-
tone with respect to rec C̃ and that for any solution z = 0 of the problem

z ∈ rec C̃, M̃z ∈ (rec C̃)
D
, zT M̃z = 0, (5)

it holds that
zT
(
M̃z′ + q̃

)
≥ 0, ∀z′ ∈ C̃ . (6)

Then PathAVI solves the AVI(C̃, q̃, M̃).

Proof The pivotal method used in PathAVI fails if an unbounded ray is generated at
some iterate (xk, tk), k > 0. Now suppose that the method generates an unbounded
ray. From Lemma 5, we know that Δt = 0, and Δz = 0 is a solution to (5). This
means that for any point xk+1 on the ray, we have G̃C̃ (xk+1, tk) = 0, implying that

〈
Δz, G̃C̃ (xk+1, tk)

〉
= 〈Δz, M̃zk+1 + q̃〉 + 〈Δz, xk+1 − zk+1〉 + 〈Δz,−tkr〉 = 0.

The first term is non-negative by our assumption, as well as the second one by the

normal cone definition. The third one is strictly positive since −tkr ∈ int (rec C̃)
D
.

Hence, we reached a contradiction. ��
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An additional property on M̃ allows easier checking of condition (6) of Lemma 2.

Corollary 1 If for any solution z of (5) we have 〈z′, M̃T z〉 ≥ 0, for all z′ ∈ C̃, then
the condition (6) reduces to zT q̃ ≥ 0 whenever z is a solution to (5).

We introduce an additional problem class PathAVI can process.

Lemma 3 Consider an AVI(C̃, q̃, M̃) with lin C̃ = {0}. Suppose that C̃ is a proper
cone, M̃ is copositive with respect to C̃ and that the following implication holds:

z ∈ rec C̃, M̃z ∈ (rec C̃)
D
, zT M̃z = 0 ⇒ zT q̃ ≥ 0. (7)

Then the AVI(C̃, q̃, M̃) has a solution and PathAVI finds it.

Proof Recall from [6, Lemma 4.3], that a copositive matrix is also semimonotone.
This implies that Δt = 0 and that Δz = 0 satisfies the left-hand side of (7). Now
let us suppose that at the current iterate xk , there exists an unbounded ray. Letting
zk+1 = zk + θΔz and computing the inner product 〈zk+1, G̃C̃ (xk+1, tk)〉 yields

0 =
〈
zk+1, G̃C̃ (xk+1, tk)

〉
= 〈zk+1, M̃zk+1〉 + 〈zk+1, q̃〉 + 〈zk+1, xk+1 − zk+1〉

+〈zk+1,−tkr〉.

Note that since C̃ is pointed, 〈zk+1, xk+1 − zk+1〉 ≥ 0 by the definition of the normal
cone. The first term is quadratic in θ while the second and third are linear in θ .
Therefore, if 〈Δz, M̃Δz〉 > 0, then 〈zk+1, G̃C̃ (xk+1, tk)〉 > 0 for θ large enough and
we reach a contradiction. We are left with the case 〈Δz, M̃Δz〉 = 0:

0 = 〈zk, q̃〉 − 〈zk, tkr〉 + 〈zk+1, xk+1 − zk+1〉
+〈zk+1, M̃zk+1〉 + θ(〈Δz, q̃〉 + 〈Δz,−tkr〉).

The sum multiplied by θ is positive since −tkr ∈ int (rec C̃)
D
. Now the first two

terms are constant and the third and fourth ones are nonnegative. Whence for θ large
enough, 〈zk+1, G̃C̃ (xk+1, tk)〉 is positive, which concludes the proof. ��
Remark 2 Lemma 3 was already known for the LCP case (that is C̃ = R

n+): the
existence of a solution is given in [7, Theorem 3.8.6]. Here we are able to provide a
constructive proof for an AVI(C̃, q̃, M̃) over a proper cone.

Let us present an AVI(C, q, M) that satisfies the conditions of Lemma 3 where M

is not an L-matrix. Suppose that C ⊆ R
n+1+ is a polyhedral solid cone, M =

(
In 0
1Tn 0

)
,

with 1n the vector of ones of size n and q = (0n, 1)T . The solution set of the system
x ∈ C ,Mx = 0 and xT Mx = 0 is {(0n, α)T ,α ≥ 0}. Note that if x = (0n, α)T ,α > 0,
then Mx = 0 and xT Mx = 0. However, for any nonzero vector x ′ = (x ′T

1 , α′)T in C ,
−MT x ′ = (−Inx ′T

1 −α′1T , 0)T /∈ CD . Therefore, condition (b) of the L-matrix fails
to hold. On the other hand, we can readily check that M is copositive with respect to
C and that for any x = (0n, α)T , α ≥ 0, xT q = α ≥ 0, so that Lemma 3 can be used.
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4 Computing an implicit extreme point for a ray start

In this section, we describe how to compute an implicit extreme point satisfying the
sufficient conditions for a ray start and the complementary basis associated with it so
that we can start complementary pivoting at that implicit extreme point. The overall
procedure is as follows: (i) we first compute an initial basic feasible solution using a
linear programming (LP) solver, i.e., CPLEX or GUROBI; (ii) as the initial solution
might not be an implicit extreme point, wemay perform additional pivoting to move to
an implicit extreme point; (iii) using the basis information associated with the implicit
extreme point, we then construct a complementary system of equations such that a
unique solution to that system of equations is an implicit extreme point satisfying the
sufficient conditions for a ray start. The use of the existing LP solver, which has a
fast sparse linear algebra engine and pivoting method, as well as the use of sparse
linear algebra engine for complementary pivoting enables PathAVI to fully exploit
the sparse representation of the given AVI. This makes our method efficient for large-
scale AVI problems as illustrated by the examples in Sect. 6.2. More details on the
overall computational procedure are given in the Appendix as Algorithm 2.

We start with an introduction to some terminology and notational conventions
for describing a basic solution of an LP problem. We follow notation used in [4].
Suppose that we run an LP solver over the following problem: minimize cT z subject
to Az − b ∈ K and l ≤ z ≤ u. Without loss of generality, we assume that we have
eliminated all fixed variables. For each solution z obtained from the LP solver, we
have four index sets, B, Nl , Nu , and N f r , for variables and two index sets, A and

¯A , for constraints described by A and b1. Table 1 lists the properties of the index
sets and the solution z. In Table 1, if lB ≤ zB ≤ uB , we say that z is a basic feasible
solution. Otherwise, we say that z is a basic solution. Note that we have |A | = |B| in
Table 1 as the basis matrix B is invertible. Hence, the submatrix AA B of B is square
and invertible.

We first describe how to compute an implicit extreme point of C . For a given
AVI(C, q, M), we formulate and solve the following LP problem using an LP solver:

minimize 0T z,

subject to Az − b ∈ K ,

l ≤ z ≤ u.

(LP)

We put zero objective coefficients in the (LP) so that the (LP) returns whenever it
finds a basic feasible solution. If we have an intuition about where to start complemen-
tary pivoting, then we could try to solve the (LP) with different objective coefficients.

Assuming that the (LP) is feasible, a basic feasible solution z0 from the LP solver
with the corresponding index sets is an extreme point if N f r = ∅. When N f r = ∅,
z0 might not be an implicit extreme point. In this case, we move from z0 to an implicit
extreme point by doing additional pivoting in a way that forces as many nonbasic free
variables to become basic variables. Algorithm 1 in the Appendix describes the piv-

1 These index sets can be obtained using CPXgetbase() for CPLEX, for example.
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Table 1 Index sets and a basis matrix describing a basic solution z of an LP problem. Assume that
z ∈ R

n , A ∈ R
m×n , and b ∈ R

m

B ∪ Nl ∪ Nu ∪ N f r = {1, . . . , n} and B, Nl , Nu , and N f r are mutually exclusive.

B := a set of basic variables indices

Nl := a set of nonbasic variables indices at their finite lower bounds

Nu := a set of nonbasic variables indices at their finite upper bounds

N f r := a set of nonbasic free variables indices

A ∪ ¯A = {1, . . . ,m} with A ∩ ¯A = ∅

A := a set of active constraints indices, i.e., AA •z = bA
¯A := a set of inactive constraints indices

B =
[
AA B 0
A ¯A B ±I ¯A

]
is an invertible basis matrix where I ¯A is an identity matrix of size | ¯A | × | ¯A |

zB = A−1
A B

(
bA − AA N zN

)
, zNl = lNl , zNu = uNu , zN f r = 0, N = Nl ∪ Nu ∪ N f r

oting procedure. After applying Algorithm 1, for each j ∈ N f r and d j = A−1
A B AA , j

if there exists k such that d j
k = 0, then the basic variable corresponding to the kth

position in B is a free variable. Otherwise, the variable z j must have been pivoted in
by Algorithm 1. Also, note that Algorithm 1 doesn’t change the properties described
in Table 1. Using Algorithm 1, we obtain the following result.

Proposition 9 Suppose thatwe have appliedAlgorithm 1. Then the newpoint, denoted
by z̄0, constructed from z0 through Algorithm 1 is an implicit extreme point of C. We
have dim(lin C) = |N f r | and the following set of vectors is a basis for the lineality
space of C:

⋃
j∈N f r

{v j }, v
j
k =

⎧⎪⎪⎨
⎪⎪⎩

(A−1
A B AA , j )k if k ∈ B,

0 if k ∈ Nl ∪ Nu,

0 if k ∈ N f r , k = j,
1 if k = j.

Proof Clearly, z̄0 ∈ C as we do a ratio test to move the point. We first show that
lin C = |N f r | and {v j } j∈N f r is a basis for the lineality space of C . For each j ∈ N f r ,

if v
j
k = 0 for k ∈ B, then we have lk = −∞ and uk = ∞ as discussed in the

previous paragraph. It follows that z̄0 +λv j ∈ C for all λ ∈ R. By [27, Theorem 8.3],
v j ∈ rec C ∩ (− rec C). Thus v j ∈ lin C . By construction of v j , we see that v j ’s
are linearly independent. This implies that dim(lin C) ≥ |N f r |. As dim(NC (z̄0)) ≥
|B| + |Nl | + |Nu | and NC (z̄0) ⊂ (lin C)⊥ as shown in Proposition 6(d), it follows
that dim(lin C) = |N f r | and {v j } j∈N f r is a basis for the lineality space of C .

We now prove that z̄0 is an implicit extreme point of C . Suppose that z̄0 = λz1 +
(1 − λ)z2 for some z1, z2 ∈ C and λ ∈ (0, 1). Define dk = ∑ j∈N f r

(−zkjv
j ) and set

z̃k = zk +dk for k = 1, 2.We then have z̃kj = 0 for j ∈ N f r and z̃k ∈ C as dk ∈ lin C

for k = 1, 2. As z̄0 = λz1 + (1−λ)z2, z̄0 = λz̃1 + (1−λ)z̃2 − (λd1 + (1−λ)d2). We
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haveλd1+(1−λ)d2 =∑ j∈N f r

(
−(λz1j + (1 − λ)z2j )v

j
)
. As z̄0N f r

= z̃1N f r
= z̃2N f r

=
0, v j

j = 1, and v
j
h = 0 for h ∈ N f r , h = j , we see thatλd1+(1−λ)d2 = 0. Therefore,

z̄0 = λz̃1 + (1 − λ)z̃2. It follows that z̄0 = z̃1 = z̃2. Thus, z̄0 − zk = dk ∈ lin C for
k = 1, 2, which implies that z̄0 is an implicit extreme point of C . ��

Using the implicit extreme point z̄0 ofC and the index sets (B, Nl , Nu, N f r ,A , ¯A )

associatedwith it, we construct an initial complementary basis and compute an implicit
extreme point satisfying the sufficient conditions for a ray start from that comple-
mentary basis. To prove the invertibility of our initial complementary basis, we first
introduce the following technical result derived from [21, Lemma 3.6].

Corollary 2 Suppose that we have index sets (B, Nl , Nu, N f r ,A , ¯A ) associated
with an AVI(C, q, M)with a nonempty N f r . Then Z is invertible if and only if W̃ T M̃W̃
is invertible, where

Z =
⎡
⎢⎣

MBB MBN f r −AT
A B

MN f r B MN f r N f r −AT
A N f r

AA B AA N f r 0A

⎤
⎥⎦ , M̃ =

[
MBB MBN f r

MN f r B MN f r N f r

]
,

W̃ =
[−A−1

A B AA N f r

IN f r

]
.

Proof As AA B is square and invertible, ker
[
AA B AA N f r

] = im W̃ . The result
follows from [21, Lemma 3.6]. ��

Weare now ready to present our initial complementary basis and an implicit extreme
point satisfying the sufficient conditions for a ray start.

Proposition 10 For a given AVI(C, q, M), suppose that we have an implicit extreme
point z̄0 and the index sets (B, Nl , Nu, N f r ,A , ¯A ) associated with z̄0. Then the
matrix on the left-hand side of the following system of equations is invertible if and
only if M is invertible on the lineality space of C. Also z = (zB, zN f r , z̄

0
Nl

, z̄0Nu
) in a

solution to the system of equations satisfies z ∈ z̄0+ lin C, i.e., z is an implicit extreme
point of C by Proposition 2 in Sect. 3, and Mz + q ∈ aff (NC (z)).

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

MBB MBN f r −AT
A B 0 0 0

MNl B MNl N f r −AT
A Nl

−INl 0 0
MNuB MNuN f r −AT

A Nu
0 INu 0

MN f r B MN f r N f r −AT
A N f r

0 0 0

AA B AA N f r 0 0 0 0
A ¯A B A ¯A N f r

0 0 0 −I ¯A

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

zB
zN f r

λA
wNl

vNu

s ¯A

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−qB − MBN z̄0N−qNl − MNl N z̄
0
N−qNu − MNuN z̄
0
N−qN f r − MN f r N z̄
0
N

bA − AA N z̄
0
N

b ¯A − A ¯A N z̄
0
N

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Proof The matrix on the left-hand side of the system of equations is invertible if
and only if the matrix Z defined in Corollary 8 is invertible. This is because of the
identity submatrices of it, −INl , INu , and −I ¯A . The columns of the matrix W =
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(−A−1
A B AA N f r IN f r 0Nl 0Nu )

T form a basis of the lineality space of C . Note

that WT MW = W̃ T M̃W̃ where W̃ and M̃ are the matrices defined in Corollary 8.
Therefore, the matrix is invertible if and only if M is invertible on the lineality space
of C .

We now show that the z constructed from the solution to the linear system satisfies
z ∈ z̄0 + lin C . The fifth equation gives us

zB = −A−1
A B AA N f r zN f r + A−1

A B

(
bA − AA N z̄

0
N

)
.

If zN f r = 0, then zB = z̄0B and z = z̄0. For zN f r = 0, we have z = z̄0 + WzN f r .
As W is a basis for the lineality space of C , it follows that z ∈ z̄0 + lin C . Since z̄0 is
an implicit extreme point, z enjoys the same property by Proposition 2.

Finally, from the first four equations of the given system, we see that Mz + q ∈
aff (NC (z)). ��

5 Worst-case performance comparison: AVI versus MCP reformulation

In this section, we introduce the MCP reformulation of an AVI and analyze worst-
case performance of the two formulations in Sects. 5.1 and 5.2, respectively. We
assume that both problems are solved using the same complementary pivotingmethod.
Computational results comparing the two formulations are presented in Sect. 6, and
demonstrate the effectiveness ofworking on the originalmanifoldMC (seeTables 2–4;
Fig. 3).

5.1 MCP reformulation

A linear MCP is defined as follows: for an affine function F(z) = Mz + q and a box
constraint B1 :=∏n

j=1[l j , u j ], z is a solution to theMCP(B1, q, M) ifMz+q = w−v

with z ∈ B1, w, v ∈ R
n+, (z − l)Tw = 0, and (u − z)T v = 0.

It is well known [10, 4] that anAVI(C, q, M) can be reformulated as anMCP(B1×
B2, q̃, M̃), where

B1 =
n∏
j=1

[l j , u j ], B2 = {λ ∈ R
m | λ ∈ K D},

M̃ =
[
M −AT

A 0

]
, q̃ =

[
q

−b

]
.

(MCP-reform)

By Facchinei and Pang [15, Proposition 1.2.1], z∗ is a solution to theAVI(C, q, M) if
and only if there exists λ∗ such that (z∗, λ∗) is a solution to theMCP(B1 × B2, q̃, M̃).
Therefore, we can solve an AVI(C, q, M) by solving itsMCP(B1 × B2, q̃, M̃) refor-
mulation and vice versa. The solver Path [9], one of the most efficient MCP solvers,
uses thisMCP reformulation when it processes an AVI.
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Although the two formulations are equivalent, they do not share the same theoretical
properties. This is mainly because they look at different feasible regions and recession
cones, which also results in different PL manifolds on which the complementary
pivoting is performed. For theMCP(B1 × B2, q̃, M̃) reformulation, a PL (n+m+1)-
manifoldMB1×B2 is builtwhere the full-dimensional cells are defined by the nonempty
faces and the normal cones of the set B1 × B2, which doesn’t consider the polyhedral
constraints Az − b ∈ K . For the AVI(C, q, M) formulation, a PL (n + 1)-manifold
MC is constructed based on the nonempty faces and normal cones ofC , which includes
the polyhedral constraints Az − b ∈ K explicitly.

5.2 Worst-case performance analysis

In the worst case, the complementary pivoting method ends up going through all the
full-dimensional cells of the underlying PL manifold. As each iteration of the com-
plementary pivoting method corresponds to the traversal of one full-dimensional cell
assuming nondegeneracy or lexicographic pivoting, the maximum number of itera-
tions is the total number of the full-dimensional cells, which is finite but could be
exponential in the number of constraints. Therefore, we compare worst-case perfor-
mance of the two formulations by counting the number of the full-dimensional cells
of the PL manifold that each formulation generates.

By construction, the number of the full-dimensional cells is equivalent to the number
of the nonempty faces of the polyhedral convex set being considered [25, 6]. Thus,
we count the number of the nonempty faces of both B1 × B2 and C .

Let NNF(S) denote the number of the nonempty faces of a polyhedral convex set
S. To count the number of the nonempty faces, we start with building blocks defining
a polyhedral convex set: intervals [l, u] in R and linear constraints aT z − b ∈ K . For
a closed interval [l, u] in R, the number of the nonempty faces is as follows:

NNF([l, u]) =
⎧⎨
⎩
1 if − ∞ = l < u = ∞ or − ∞ < l = u < ∞,

2 if − ∞ = l < u < ∞ or − ∞ < l < u = ∞,

3 if − ∞ < l < u < ∞.

(8)

For a halfspace or a hyperplane defined by a linear constraint aT z − b ∈ K where
a = 0 and b ∈ R, the number of the nonempty faces is as follows:

NNF({z ∈ R
n | aT z − b ∈ K }) =

{
2 if K = R+ or K = R−,

1 if K = {0}. (9)

Based on (8) and (9), we can compute an upper bound on the number of the
nonempty faces of a polyhedral convex set.

Lemma 4 Let C be a polyhedral convex set defined by C = {z ∈ R
n | Az − b ∈

K , l ≤ z ≤ u}. Then

NNF(C) ≤
n∏
j=1

NNF([l j , u j ]) ×
m∏
i=1

NNF
(
{z ∈ R

n | AT
i•z − bi ∈ Ki }

)
, (10)
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where the symbol
∏

j denotes multiplication over indexed terms in this case.

Proof Let C j = {z ∈ R
n | z j ∈ [l j , u j ]} for j = 1, . . . , n and Cn+i = {z ∈

R
n | AT

i,:z − bi ∈ Ki } for i = 1, . . . ,m. Then C = ∩n+m
i=1 Ci . By [26, Corollary

4.2.15], F is a face of C if and only if F = ∩n+m
i=1 Fi where Fi is a face of Ci for

i = 1, . . . , n + m. The result follows. ��
In Lemma 4, there could be a large gap between NNF(C) and its upper bound.

The upper bound counts all the possible combinations of the faces of each constraint
regardless of their feasibility.WhenC has only box constraints, i.e.,C = {z ∈ R

n | l ≤
z ≤ u}, then equality holds in (10). But, in other cases, the upper bound could be much
larger thanNNF(C) as not every combination corresponds to a nonempty face ofC . For
example, if C = {z ∈ R

2 | z1 + z2 ≥ −1,−z1 + z2 ≥ −1, z1 − z2 ≥ −1,−z1 − z2 ≥
−1,−1 ≤ z1, z2 ≤ 1}, we have NNF(C) = 9. However, the upper bound is 144. It
turns out that there are many infeasible combinations, i.e., all the combinations having
z1 = −1 and z2 = 1.

Using Lemma 4, we prove that the maximum number of cells for theAVI(C, q, M)

manifold is smaller or equal to the cells in theMCP(B1 × B2, q̃, M̃) manifold.

Proposition 11 Let an AVI(C, q, M) formulation and its MCP(B1× B2, q̃, M̃) refor-
mulation defined in (MCP-reform) be given. Then the number of the full-dimensional
cells of the PL (n + 1)-manifold MC is less than or equal to the number of the
full-dimensional cells of the PL (n + m + 1)-manifold MB1×B2 .

Proof By [26, Proposition 4.2.12],NNF(B1×B2) = NNF(B1)×NNF(B2). By apply-
ing the same proposition, we have NNF(B1) =∏n

j=1NNF([l j , u j ]) andNNF(B2) =∏m
i=1 NNF([lλi , uλ

i ])where lλi and uλ
i are lower and upper bounds on λi variable. Using

(8) and (9), we see that
∏m

i=1 NNF({z ∈ R
n | AT

i•z−bi ∈ Ki }) = Πm
i=1NNF([lλi , uλ

i ]).
By Lemma 4, the result follows. ��

Based on Proposition 11, we expect that PathAVI will take fewer iterations than
Path, which solves the MCP reformulation, since in the worst case both may visit
every cell in themanifold. This is confirmed by the computational results in Sects. 6.3–
6.5.

6 Computational results

In this section, we present computational results of PathAVI highlighting its compu-
tational benefits of preserving the problem structure and its robustness and efficiency
compared to Path version 4.7 [9,17], an established solver for AVIs which uses the
MCP reformulation. The majority of the examples are based on friction contact mod-
els, which we briefly describe in Sect. 6.1. Section 6.2 shows improved performance
of PathAVI using the original AVI formulation containing nontrivial lineality space
over its equivalent reduced form that does not contain lines. Sections 6.3–6.5 compare
performance of PathAVI and Path over friction contact problems, compact sets,
and Nash equilibrium problems, respectively and demonstrate the advantages of the
stronger theory associated with PathAVI.
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All experiments were performed on a Linux machine with Intel Xeon(R) E7-4850
2.00GHz processor and 256GB of memory. Path and PathAVI were compiled was
compiled using GNU gcc version 4.4.7 and its interfaces were linked to GAMS.
All problem instances were written in GAMS using the EMP syntax for variational
inequalities [16]. We set the time limit to 1 hour and major/minor iteration limits to
20 and 105, respectively.

6.1 Friction contact problem

Coulomb or dry friction is a ubiquitous phenomenon when mechanical systems inter-
act via contact with each other. Consider a mechanical system with ndof degrees of
freedom, nd bodies and nc contacts. The number of degrees of freedom depends on
the type of system we consider, i.e., if we have rigid bodies, ndof = 6nd . However, if
we have deformable bodies, then this number is typically larger and depends on the
modeling used for the bodies. For each two bodies in contact at a single point, we
denote by u(k) := (u(k)

n , u(k)
t )T ∈ R+ × R

2 the relative (or local) velocity between
them and the reaction force is given by r (k) = (r (k)

n , r (k)
t ). One of the numerous ways

(see [2] for a list of them) to model the dynamics of a system with Coulomb friction
is:

−u(k)
n ∈ NR+(r (k)

n ) k = 1, . . . , nc and Mv = Hr + f

−u(k)
t ∈ N

r (k)
n μ(k)D

(r (k)
t ) u = HT v + w,

(11)

with M ∈ R
ndof×ndof , H ∈ R

ndof×3nc , R
3nc � r := [r (1)

n , r (1)
t , . . . , r (nc)

n , r (nc)
t ]T

and R
3nc � u := [u(1)

n , u(1)
t , . . . , u(nc)

n , u(nc)
t ]T , see Fig. 1 for an example. It is shown

in [18] that (11) is equivalent to the following complementarity problem over a second
order cone:

0 ∈
⎛
⎝ M −H 0
HT 0 E
H̄T 0 E

⎞
⎠
⎛
⎝v

r
y

⎞
⎠+

⎛
⎝− f

w

w̄

⎞
⎠+ NX

⎛
⎝v

r
y

⎞
⎠ X := R

ndof × K × K , (12)

where K := ∏nc
k=1 Kμk and Kμk := {(t, t x) | t ∈ R+, x ∈ μk D}, D being the unit

disk in R
2. If we split H as [H1,n, H1,t , . . . , Hi,n, Hi,t , . . . , Hnc,n, Hnc,t ]with Hk,n ∈

R
ndof , Hk,t ∈ R

ndof×2, then H̄ := [0n, H1,t , . . . , 0n, Hk,t , . . . , 0n, Hnc,t ]. Similarly,
letting (wk,n, wk,t ) ∈ R × R

2 we have w = [w1,n, w1,t , . . . , wnc,n, wnc,t ] and w̄ :=
[0, w1,t , . . . , 0, wnc,t ]. Finally, the diagonal matrix E ∈ R

3nc×3nc is based on the
vector (1, 0, 0)T repeated nc times. The variable y := [y1,n, y1,t , . . . , ync,n, ync,t ]T
with (yk,n, yk,t ) ∈ R × R

2, is introduced to ensure that the modified local velocity
u+Ey belongs to K D . Since the cone K is not polyhedral, we need to approximate K
to get an AVI from (12). Then, we have to solve a sequence of AVIs until one of the
solutions also satisfies (12) up to the specified tolerance. Computationally, the most
demanding step is the solution of the first AVI in the sequence. Furthermore, we focus
here on the case where it makes sense to perform a ray start. Hence, we solve the AVI
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(a) (b) (c)

Fig. 1 Nonzero patterns of the matrices M (size: 1452 × 1452, nnz: 11, 330), H (size: 1452 × 363, nnz:
1747) and W := HT M−1H (size: 363 × 363, nnz: 56, 770)

that would correspond to the first iteration and with an “anisotropic” approximation
of K . For each contact we construct a finitely representable polyhedral approximation
Dk

p of the disk μk D. Then, the cone K is approximated by Kp := ∏
k K

k
p, with

Kk
p := {(t, t x) | t ∈ R+, x ∈ Dk

p}. Finally, with a slight abuse of notation, we
redefine X := R

ndof × Kp × Kp and refer to (12) as an AVI. It can be verified that
PathAVI processes the AVI (12) if w ∈ (ker H ∩ K )D by applying Lemma 2. It
is noteworthy that this condition is exactly the one given in [19] for the existence
of solution to the complementarity problem over a second order cone (12). If we
solely rely on the L-matrix property, we need to assume that ker H = {0}, which
fails in many instances, for example when a 4-legged chair is in contact with flat
ground.

6.2 Computational benefits of preserving the problem structure

The problem data (M, H, f, w) for the following numerical results were obtained
from simulations of deformable bodies with the LMGC90 [12] software and using a
solver from Siconos [3]. In the following, we focus on a simple example where two
deformable cubes are on top of another. During the simulation, the number of contacts
varies between 80 and 120. The shape of M and H is given in Fig. 1.

It is noteworthy that if we have to remove the lineality space, that is to compute
W , then the sparse structure of the problem is destroyed (see Fig. 1c): the number
of nonzero elements is increased by a factor of five. It is expected that the linear
algebra computations will be more expensive in the reduced space formulation than
in the original one because of this large increase of nonzero entries. This has been
verified on instances that have the same kind of structure as the matrices depicted in
Fig. 1.

Both problems are AVIs, but as shown on Fig. 2, PathAVIworking in the original
space is always faster andmost of the time is at least twice as fast as PathAVIworking
in the reduced space. The time in the reduced space does not even take into account
the transformation of the problem data, that is the computation of the W matrix.
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Fig. 2 Comparison in terms of speed between the resolution in the original space and the reduced one. The
number of iteration was the same for all the 209 instances

6.3 Multibody friction contact problems

When the bodies are rigid, it is common in the contact mechanic community to elim-
inate the velocity v. The problem is formulated in a reduced space Kp × Kp (defined
in Sect. 6.1) and the AVI is

0 ∈
(
W E
W̄ E

)(
r
y

)
+
(

ω

ω̄

)
+ NKp×Kp

(
r
y

)
, (13)

where W := HT M−1H and W̄ := H̄ T M−1H , ω := w + HT M−1 f and ω̄ :=
w̄ + H̄ T M−1 f . The lineality space is then trivial in this formulation.

We present computational results using the problem data (W , μ and q) from the
FCLIB collection2 [1], which aims at providing challenging instances of the friction
contact problem. Let us highlight a few facts based on the data presented in Table 2:

– PathAVI can solve all the instances with the linear algebra package UMF-
PACK [8] (“pathavi/UMFPACK”) and is generally faster than Path.

– Some problems are numerically challenging and the behavior of the solver changes
with the linear algebra routines. Specifically, on those problems using LUSOL
(“pathavi/default”) leads to 20 failures. That can be reduced by using the block-LU
updates [14] (“pathavi/LUSOL-blu”). These errors are caused by some numerical
issues in the linear algebra package. This illustrates the importance of being able
to change the linear algebra engine in PathAVI.

– Path is unable to perform a ray start in many instances (whenever kerW is not
trivial); in these cases, PathAVI significantly outperforms Path (with or without
the crash method).

Let us explain the failure types: “Solver error” means that the first basis matrix
could not be factorized, despite the use of artificial variables to overcome the rank

2 The collection of problem can be freely downloaded by visiting http://fclib.gforge.inria.fr.
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Table 2 Statistics for 4579 friction contact problems of the form (13)

Solver/profile # Failed Failure type

Solver error Stalled Time Iteration

pathavi/UMFPACK 0 0 0 0 0

pathavi/default 20 0 0 0 20

pathavi/LUSOL-blu 3 0 0 0 3

path/default 2060 535 1525 0 0

path/no crash 108 99 0 8 1

Fig. 3 Time comparison between Path and PathAVI (color figure online)

deficiency. “Stalled” means that a solver tried various strategies but failed to find a
solution at the requested accuracy and consequently gave up. Note that this never
occurred with PathAVI on this set of problems. “Time” (or “Iteration”) signals that
the time (or iteration) limit has been reached. The convergence tolerance is set to a
low value:

√
N × 10−9, where N is the number of contacts. This value is lower than

the default tolerance of Path (that is already considered quite demanding).
The default behavior of Path (“path/default”) leads to many failures: the crash

method is inappropriate for such models. However, even without the crash procedure
(“path/no crash”), Path still fails at a higher rate than PathAVI.

We further compare Path and PathAVI on their default settings on the subset of
problems solved by both. The results are presented in Fig. 3 in terms of time ratios.
First note that PathAVI is faster than Path in the majority of cases, and that it usually
finds a solution in less than half the time of Path. The spike on the right plot, when
Path finds the solution faster than PathAVI, is explained by the fact that the crash
procedure in Path performed well in those instances (<10% of the examples).

6.4 AVIs over compact sets

One strong implication of Theorem 2 is that when C is compact (so that rec C = {0})
PathAVI can process anAVI(C, q, M) with arbitrary M and q. In contrast, this does
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Table 3 Performance of PathAVI and Path over compact sets

Name (#constrs, #vars) [nnz(A), nnz(M)] Number of iterations Elapsed time (s)

PathAVI Path PathAVI Path

CVXQP1_M (500, 1000) (2495, 999) 3119 Fail 0.459 Fail

CVXQP2_M (250, 1000) (1746, 999) 33,835 Fail 2.827 Fail

CVXQP3_M (750, 1000) (3244, 999) 360 3603 0.105 1.992

CONT-050 (2401, 2597) (14,597, 6407) 11 382 2.753 272.429

CONT-100 (9801, 10,197) (59,197, 98,875) 3 Fail 174.267 Fail

not hold for the MCP reformulation as the underlying feasible region [B1 × B2] of
it may not be compact although C is compact. This is because whenever the AVI
contains polyhedral constraints the associated λ variables in the MCP reformulation
are only constrained to lie in the unbounded set B2.We construct fiveAVI instances by
taking compact feasible regions from [22] having finite lower and upper bounds and
by randomly generating M and q such that the resultant AVI has an M with negative
eigenvalues.

Table 3 presents some computational results. As expected,PathAVI is able to solve
all the instances, whereas Path fails to solve three of them. Also, on the two problem
instances where both solvers are able to solve, PathAVI shows 10–30 times fewer
iterations, and a similarly decreased elapsed time. These properties hold for a wide
selection of instances and the above table is just provided for expository purposes.

6.5 Nash equilibrium problems

Another application of AVIs is to Nash equilibrium problems. In a Nash equilibrium
problem, there are multiple agents each of which minimizing its own objective func-
tion, and each agent’s objective function not only depends on the agent’s decision
but also other agents’ decisions. For example, a typical Nash equilibrium problem
computes a solution satisfying

x∗
i ∈ argmin

xi∈Xi

hi
(
xi , x

∗−i

)
, for i = 1, . . . , N , (NEP)

where we note that each i th agent’s objective function hi takes its own decision,
denoted by xi , and other agents’ decisions, denoted by x−i .

We generated six instances of Nash equilibrium problems, where each Xi is a
polyhedral convex set and hi is continuously differentiable in x and convex quadratic
in xi for each fixed x−i . Specifically, hi takes the following form:

hi (xi , x−i ) = 1

2
xTi Qi xi + xTi Q−i x−i + cTi xi + dTi x−i ,

where Qi is symmetric positive definite.

123

Author's personal copy



118 Y. Kim et al.

Table 4 Performance of PathAVI and Path over the NEPs

Name (#constrs, #vars) [nnz(A), nnz(M)]

(a) Statistics of the NEPs

vimod1 ( 554, 1138) (4744, 22,577)

vimod2 ( 910, 1723) (7935, 46,137)

vimod3 (1101, 2226) (9117, 67,634)

vimod4 ( 870, 1828) (62,056, 154,332)

vimod5 (1327, 2586) (133,527, 274,004)

vimod6 (2210, 4359) (207,408, 417,810)

Name Number of iterations Elapsed time (s)

PathAVI Path PathAVI/ PathAVI Path PathAVI/
UMFPACK UMFPACK

(b) # Iterations and elapsed time of PathAVI and Path on the NEPs

vimod1 367 2087 367 0.372 4.129 0.437

vimod2 319 3570 319 1.098 24.134 0.645

vimod3 590 4278 590 3.208 60.553 1.639

vimod4 1343 6146 1343 127.194 66.427 18.319

vimod5 2167 2768 2167 327.970 325.558 40.285

vimod6 3522 4222 3522 2341.193 1841.642 109.960

In this case, x is a solution to (NEP) if and only if it is a solution to theAVI(C, q, M)

where Mx+q = (∇xi hi (x))
N
i=1 andC = ΠN

i=1Xi . The number of agents ranges from
10 to 300.

Table 4 presents performance of PathAVI and Path over the NEPs. The number
of iterations of PathAVI is up to 11 times fewer than Path. Elapsed time shows
similar results except for the last three instances. In those instances, LUSOL has a
great difficulty in computing PathAVI’s intermediate basis matrices. If we change
the linear algebra engine to UMFPACK, the computation time significantly reduces.
Regarding Path’s performance on the last three instances, we would like to point
out that the proximal perturbation technique of Path, which solves a sequence of
perturbed MCPs by adding εk I with εk → 0 as k → ∞ to the matrix M̃ in (MCP-
reform), plays a significant role in its performance.Adding positive diagonals elements
changes the elimination sequence and makes linear algebra computations much faster
and more stable. When we turn off the proximal perturbation, Path either gets much
slower than PathAVI or fails to solve the instance.

7 Conclusions

We have presented PathAVI, a structure-preserving pivotal method for affine vari-
ational inequalities. Compared to existing methods, PathAVI can process an AVI
without applying any reduction or transformation to the problem data even if the
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underlying feasible region contains lines. PathAVI can process some newly gen-
erated problem classes from applications in friction contact as well as the existing
problem class (L-matrices [6]). A computational method for finding a point satisfying
sufficient conditions for a ray start is detailed. Through worst-case analysis, we have
shown that exploiting polyhedral structure for solving affine variational inequalities
is expected to show better performance than using a mixed complementarity prob-
lem reformulation. Computational results over friction contact and Nash equilibrium
problems illustrate that PathAVI compares favorably with Path both in terms of
robustness and efficiency.

Acknowledgements This work is supported in part by the Air Force Office of Scientific Research and
the Department of Energy. The authors are grateful to Steven Dirkse and Todd Munson for comments and
suggestions leading to improved computational performance.

Appendix

Lemma 5 (Theorem 4.4 [6]) Consider an AVI(C, q, M) with lin C = {0} and let M
be semimonotone with respect to rec C. Suppose that an unbounded ray occurs. Then
the value of the auxiliary variable t is constant on that ray and Δz, the variation in z,
is nonzero and satisfies

Δz ∈ rec C, MΔz ∈ (rec C)D, and ΔzT MΔz = 0. (14)

Proof The fact that t is constant and that Δz is a solution to (14) follows from the first
part of the proof of Theorem 4.4 in [6]. To see that the direction Δz is nonzero, we
proceed by contradiction: at the current iterate (xk, tk) we have

GC (xk, tk) = Mzk + q + xk − zk − tkr = 0. (15)

Let xk+1 belong to the unbounded ray and suppose that Δz = 0:

GC (xk+1, tk) = Mzk + q + xk+1 − zk − tkr = 0.

It immediately follows that xk+1 = xk . ��
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Algorithm 1 Pivoting to make as many nonbasic free variables as basic variables

Input: a basic feasible solution z0 and its index sets (B0, N0
l , N0

u , N0
f r ,A

0, ¯A 0)

Output: a basic feasible solution z̄0 and its index sets (B, Nl , Nu , N f r ,A , ¯A )

1: Set z̄0 ← z0.
2: Set (B, Nl , Nu , N f r ,A , ¯A ) ← (B0, N0

l , N0
u , N0

f r ,A
0, ¯A 0).

3: Set changed ← true.
4: while changed is true do
5: Set changed ← false.
6: for each j ∈ N f r do
7: Do a ratio test on the nonbasic column j over basic variables that are not free variables.
8: if the ratio is finite then
9: Pivot in the j th column into basis.
10: Update z̄0 and its index sets (B, Nl , Nu , N f r ,A , ¯A ). � |N f r | ← |N f r | − 1
11: Set changed ← true.
12: end if
13: end for
14: end while
15: return z̄0 and its index sets (B, Nl , Nu , N f r ,A , ¯A )

Algorithm 2 Overall computation procedure of PathAVI
Input: AVI(C, q, M)

Output: One of the following: emptiness of C , a solution z∗ to the AVI(C, q, M), or a secondary ray
1: Construct and solve the LP problem defined in (LP) using an LP solver.
2: if the LP solver determines that C is empty then
3: return C is empty
4: end if
5: Let z0 be the basic feasible solution returned by the LP solver.
6: Run Algorithm 1 with z0 and its index sets to compute an implicit extreme point z̄0.
7: Construct and solve the complementary system of equations defined in Proposition 10 using z̄0 and its

index sets.
8: if (z̄0, λ, w, v, s) is feasible then
9: Set z∗ ← z̄0.
10: return z∗.
11: else
12: Choose r ∈ ri (NC (z̄0)) by referring to the active constraint set at z̄0.
13: Augment a column (r, 0)T with a t variable to the complementary system of equations.
14: Compute an almost complementary feasible basis by pivoting in the t variable.
15: Do complementary pivoting until either we find a solution z∗ or a secondary ray is generated.
16: return z∗ if we have found a solution or a secondary ray otherwise.
17: end if
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