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Abstract. We outline a new approach for radiosurgery treatment planning, based on solving a
series of optimization problems. We consider a specific treatment planning problem for a specialized
device known as the gamma knife, which provides an advanced stereotactic approach to the treatment
of tumors, vascular malformations, and pain disorders within the head. The sequence of optimization
problems involves nonlinear and mixed integer programs whose solution is required in a given planning
time (typically less than 30 minutes). This paper outlines several modeling decisions that result in
more efficient and robust solutions. Furthermore, it outlines a new approach for determining starting
points for the nonlinear programs, based on a skeletonization of the target volume. Treatment plans
generated for real patient data show the efficiency of the approach.
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1. Introduction. Radiation therapy is the treatment of cancer with ionizing
radiation. This radiation, in the form of X-rays and gamma rays, damages the DNA
of the cells in the area being treated, interfering with their ability to divide and grow.
Cancerous cells are unable to repair this damage, and thus their growth is curtailed
and the tumor shrinks. Healthy cells may also be damaged by the radiation, but they
are more able to repair the damage and return to normal function. Radiation therapy
may be used to treat solid tumors, such as cancers of the skin, brain, and breast.
It can attack cancer cells both on the surface of the body and deep within. It can
be used as the sole form of treatment, or in conjunction with surgery (to shrink the
tumor before surgery, or to kill remaining cancer cells after surgery) or chemotherapy.

Devices for delivering the radiation allow a significant amount of control over
the characteristics of the radiation. Treatment plans, which specify the shapes of
the applied radiation beams, times of exposure, etc., should be designed in a way
that delivers a specified dose to the tumor while avoiding an excessive dose to the
surrounding healthy tissue and, in particular, to any important nearby organs. The
full potential of these devices to deliver optimal treatment plans has yet to be realized,
due to the complexity of the treatment design process. This paper describes how to
use advanced modeling techniques and state-of-the-art optimization algorithms for
the design of treatment plans that fully exploit the capabilities of this new generation
of technology.
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Fig. 1.1. Gamma knife treatment unit.

Specifically, we consider treatment planning for a specialized device known as the
gamma knife, which provides an advanced stereotactic approach to the treatment of
tumors, vascular malformations, and pain disorders within the head [7]; see Figure 1.1.
Inside a shielded treatment unit, beams from 201 cobalt-60 radioactive sources are
focused so that they intersect at a certain point in space, producing an ellipsoidal
region of high radiation dose referred to as a shot. A typical treatment consists of
a number of shots, of possibly different sizes and different durations, centered at
different locations in the tumor, whose cumulative effect is to deliver a certain dose
to the treatment area while minimizing the effect on surrounding tissue.

Treatment goals can vary from one neurosurgeon to the next. Therefore, a treat-
ment planning tool must be able to accommodate several different requirements.
Three typical such requirements are homogeneity, conformity, and avoidance. Ho-
mogeneity requires that the complete target volume must be covered by a dose that
has intensity at least β% of the maximum delivered dosage. The conformity require-
ment minimizes the dose to the nontarget volume. Avoidance requirements limit the
amount of dosage that is delivered to certain critical structures near to the target
area. There are standard rules established by the American Medical Association that
determine minimum homogeneity and conformity requirements.

The motivation for this problem, and the approaches that form the basis of this
work have appeared elsewhere [5, 6, 14]. The key contributions of this paper are as
follows:

1. The description and implementation of a heuristic approach to generate a
good starting point for the nonlinear programs used to model the treatment
planning approach (see section 3). The approach is based on skeletonization
ideas from computational graphics, is augmented using various optimization
subproblems, and leads to improved speed and quality of solutions (see sec-
tion 4).

2. Some practically motivated changes to the underlying models to improve ro-
bustness of the solution process and quality of the resulting treatment plan.
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In particular, several nonlinear programs have been replaced by a single (easy
to solve) mixed integer program, some “hard constraints” have been remod-
eled using inexact penalization, and least squares optimization has been used
for parameter estimation (see section 2).

3. Tuning of the model parameters to improve solution speed and robustness
(see section 4).

The resulting tool provides solutions to the problems that are currently under
study at the University of Maryland Medical School. The work described here has
enabled the simple prototype to be enhanced to the state in which it is usable without
the intervention of an optimization expert, as a mechanism for robustly improving the
operation of a complex medical system.

2. Models and solution process. The first step in building a treatment plan-
ning tool is to model the dose delivered to the patient by a given shot that is centered
at a given location. A nonlinear least squares model for this was developed in [5].
The total dose delivered to a voxel (i, j, k) from a given set of shots can be calculated
as

Dose(i, j, k) =
∑

(s,w)∈S×W

ts,wDw(xs, ys, zs, i, j, k),(2.1)

where S ∈ {1, 2, . . . , n} denotes the set of n shots considered in the optimization,
w ∈ W denotes the discrete width of a shot, ts,w is the time for which each shot (s, w)
is exposed, and Dw(xs, ys, zs, i, j, k) is the dose delivered to the voxel (i, j, k) by the
shot of size w that is centered at (xs, ys, zs):

Dw(xs, ys, zs, i, j, k)

=
2

∑

p=1

λp

⎛

⎝1 − erf

⎛

⎝

√

(i− xs)2 + µy
p(j − ys)2 + µz

p(k − zs)2 − rp

σp

⎞

⎠

⎞

⎠.

The notation erf (x) represents the integral of the standard normal distribution from
−∞ to x. We fit the ten parameters λp, µy

p, µz
p, rp, and σp to the measured data

via least squares, with different values for each shot width (see [5] for details). These
values were then fixed at their computed values, and the expression for dose given in
(2.1) was used as the core of the optimization models described in the remainder of
this paper

2.1. Basic model and formulation. The basic optimization problem is to
determine a set of coordinates (xs, ys, zs), a discrete set of collimator sizes w, and ra-
diation exposure times ts,w. The main models used in the treatment planning process
are nonlinear and mixed integer programs, defined over a (grid) subset G of the voxels
in the target T .

At the core of the model lie the requirements for homogeneity, conformity, and
avoidance. Since these requirements are conflicting, a variety of techniques can be
used to balance their relative imposition. It is easy to specify homogeneity in the
models simply by imposing lower and upper bounds on the dose delivered to voxels in
the target T and minimizing the dose outside the target. Similar bounding techniques
can be used for avoidance requirements. Typically, however, the imposition of rigid
bounds leads to plans that are overly homogeneous and not conformal enough; that
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is, they provide too much dose outside the target. To overcome this problem, the
notion of “underdose” was suggested in [5]:

UnderDose(i, j, k) := max{0, θ −Dose(i, j, k)}.(2.2)

Informally, underdose measures how much the delivered dose is below the prescribed
dose θ on the target voxels. Our basic model attempts to minimize the sum of the
underdose on G subject to constraints on conformity, homogeneity, and avoidance.

To this point, our discussion has omitted the fact that we can use only a certain
number of size/location combinations in the treatment plan. Choosing the particu-
lar shot size at each location is a discrete optimization problem that is treated by
approximating the step function

H(t) =

⎧

⎨

⎩

1 if t > 0,

0 if t = 0

by a nonlinear function,

H(t) ≈Hα(t) :=
2 arctan(αt)

π
.

For increasing values of α, Hα becomes a closer approximation to the step function
H for t ≥0. This process is typically called smoothing.

The set of shot sizes for a given number of shots n is chosen by imposing the
constraint

n =
∑

(s,w)∈S×W

Hα(ts,w).(2.3)

This states that the total number of size/location combinations to be used is n.
The basic model attempts to minimize the underdose to the target, subject to

(2.3) and a constraint that the conformity of the plan exceed a certain (specified)
value:

min
∑

(i,j,k)∈G

UnderDose(i, j, k),

subject to Dose(i, j, k) =
∑

(s,w)∈S×W

ts,wDw(xs, ys, zs, i, j, k),

θ ≤UnderDose(i, j, k) + Dose(i, j, k),

0 ≤UnderDose(i, j, k),

0 ≤Dose(i, j, k) ≤1 ∀(i, j, k) ∈ G,

C
NG
N ≤

∑

(i,j,k)∈G Dose(i, j, k)
∑

(s,w)∈S×W D̄wts,w
,

n =
∑

(s,w)∈{1,... ,n}×W

Hα(ts,w),

0 ≤ts,w ≤ t̄.

(2.4)

The constraints involving UnderDose coupled with the objective function enforce the
definition given in (2.2).
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C is an input parameter that specifies the conformity—it is multiplied by NG/N to
account for the fact that the number of target voxels in the grid NG is typically smaller
than the total number of voxels N in the target. In practice, for solution performance,
the constraint involving C is rearranged as a linear constraint by rationalizing the
denominator. The conformity index value C must be given in advance. We describe
how to estimate the value of C and the data D̄w for a specific tumor in section 2.2.

This model is essentially the same as described in [5], except that an upper bound
has been applied to the exposure times. While this upper bound was motivated by
application-specific considerations, it also helps increase solution robustness.

The mechanism for updating both G and α is described in section 2.3.

2.2. Conformity estimation. The conformity of the plan is harder to deal
with since it involves voxels outside of the target, of which there may be many. Fur-
thermore, a reasonable conformity for a given patient plan is very hard to estimate a
priori since it depends critically on the number of shots allowed and how the volume
of the target interacts with the volumes of the allowable shots.

The conformity index C is an estimate of the ratio of the dose delivered to the
target divided by the total dose delivered to the patient. The latter quantity is
estimated by summing the (measured) dose delivered (D̄w) by a shot of size w for
length ts,w to a “phantom.” Thus C is calculated by the following expression:

C =

∑

(i,j,k)∈T Dose(i, j, k)
∑

(s,w)∈S×W D̄wts,w
.

Note that there are standard rules established by various professional and advisory
groups that specify acceptable conformity requirements. In previous work [5], we
attempted to estimate C by minimizing the total dose to the target, subject to hard
constraints on the amount of dose delivered at each voxel in the target. However,
instead of enforcing these hard constraints, we now propose the following optimization
model as a mechanism for determining C:

min
∑

(s,w)∈S×W

D̄wts,w,

subject to Dose(i, j, k) =
∑

(s,w)∈S×W

ts,wDw(xs, ys, zs, i, j, k),

θ ≤UnderDose(i, j, k) + Dose(i, j, k),

0 ≤UnderDose(i, j, k),

0 ≤Dose(i, j, k) ≤1 ∀(i, j, k) ∈ T ,
∑

(i,j,k)∈T

UnderDose(i, j, k) ≤NPU ,

n =
∑

(s,w)∈{1,... ,n}×W

Hα(ts,w),

0 ≤ts,w ≤ t̄.

(2.5)

The crucial constraint is the one involving both N , the number of voxels in
the target, and PU , a user-supplied estimate of the “average percentage” underdose
allowable on the target. By increasing the value of PU , the user is able to relax the
homogeneity requirement, thereby reducing the total dose delivered to the patient.
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Table 2.1
Comparison of conformity estimation models.

Old conformity model New conformity model

Patient C Obj.val. time C Obj.val. time

Patient 5 0.296 28.89 106.1 0.296 25.68 77.4

(0.007) (13.93) (32.9) (0.005) (12.93) (17.3)

Patient 6 0.246 17.81 397.0 0.247 14.89 358.3

(0.011) (14.54) (90.5) (0.009) (13.21) (56.2)

Patient 8 0.323 3.33 195.2 0.323 2.86 167.6

(0.007) (2.73) (60.8) (0.003) (1.79) (56.3)

(The model from [5] forced the underdose to be zero at every voxel in the target.)
Notice that reducing the total dose delivered to the patient typically increases C.
Thus, C is essentially a monotone function of PU . The upper bound on exposure
time t̄ is typically chosen as a large fraction of the maximum dose delivered to T
(here assumed to be 1) for the purposes of improving solver performance.

Table 2.1 indicates the motivation for this change. For a variety of patients, the
estimate of C is essentially the same, but it has smaller standard deviation (indicated
in parentheses) and smaller computing times. (For each of the patients, the starting
point for the conformity problem was randomly perturbed by up to two voxels in
each coordinate direction to generate the sample. The variance is calculated over a
set of 30 runs.) Furthermore, it seems clear that the final objective values arising from
the subsequent solves are better if these solves are seeded with the new conformity
estimation model solutions.

2.3. Solution process. A series of the following five optimization problems are
solved to determine the treatment plan. The reason the basic model in section 2.1
is solved iteratively (steps 2, 3, and 4) is an effort to reduce the total time required
to find the solution. Our experience shows that combining those three steps into
one increases the time to converge at least three-fold, which is often not clinically
acceptable.

1. Conformity estimation. In order to avoid calculating the dose delivered out-
side of the target, we first solve an optimization problem on the target to
estimate an “ideal” conformity for the particular patient for a given number
of shots; details can be found in section 2.2. The conformity estimate C is
passed to the basic model as an input parameter.

2. Coarse grid estimate. Given the estimate of conformity C, we then specify
a series of optimization problems whose purpose is to minimize the total
underdose on the target for the given conformity. In order to reduce the
computational time required to determine the plan, we first solve (2.4) on a
coarse grid subset of the target voxels. We have found it beneficial to use
in the model one or two more shot locations than the number requested by
the user, that is, S := {1, . . . , n+ 2}, and allow the optimization not only to
choose useful sizes but also to discard the extraneous shot locations.

3. Refined grid estimate. To keep the number of voxels in the optimization as
small as possible, we add to the coarse grid only those voxels on a finer grid
for which the homogeneity (bound) constraints are violated. This procedure



RADIOSURGERY TREATMENT PLANNING 927

improves the quality of the plan without greatly increasing the execution
time.
Note that it is possible for the solution from a previous optimization in this
sequence to suggest that multiple shots be centered at the same location (i.e.,
for a given s there are several nonzero ts,w). If, in addition, there are other
locations s′ that are not used at all in the solution at hand, we shift as many
of the multiple shots as possible to these unused locations. This maintains
the objective value of the current solution while giving any subsequent solves
the ability to move the different size shots independently. In our automatic
procedure we shift the largest value of ts,w to the unused location.

4. Shot reduction problem. In the solution steps given above, we use a small
value of α, typically 6, to impose the constraint (2.3) in an approximate
manner. In the fourth solve, we increase the value of α to 100 in an attempt
to force the planning system to choose which size/location pairs to use. At
the end of this solve, there may still exist some size/location pairs that have
very small exposure times t. Also note that our solution technique does not
guarantee that the shots are centered at locations within the target.

5. Fixed location model. The computed solution may have more shots used
than the user requested and furthermore may not be implementable on the
gamma knife since the coordinate locations cannot be keyed into the machine.
Our approach to refining the optimization solution in order to generate im-
plementable coordinates for the shot locations is to round the shot location
values and then fix them. Once these locations are fixed, the problem be-
comes linear in the intensity values t. We reoptimize these values and force
the user-requested number of size/location pairs precisely, using a mixed in-
teger program. Further details can be found in section 2.4.

Note that the starting point for each of the models is the solution point of the
previous model. Details on how to generate an effective starting point for the first
model are given in section 3. All the optimization models are written in the GAMS
[3] modeling language and solved using CONOPT [4] or CPLEX [10].

2.4. Fixed location model. In order to implement the solution on the gamma
knife, we round the location values from the fourth solve and fix them at x̄s, ȳs, and
z̄s, respectively. The values of Dw(x̄s, ȳs, z̄s, i, j, k) can then be calculated at each
location (i, j, k) as data. The final optimization involves the following mixed integer
linear optimization problem:

min
∑

(i,j,k)∈G

UnderDose(i, j, k),

subject to Dose(i, j, k) =
∑

(s,w)∈S×W

ts,wDw(x̄s, ȳs, z̄s, i, j, k),

θ ≤UnderDose(i, j, k) + Dose(i, j, k),

0 ≤UnderDose(i, j, k),

0 ≤Dose(i, j, k) ≤1 ∀(i, j, k) ∈ G,

C
NG
N

∑

(s,w)∈S×W

D̄wts,w ≤
∑

(i,j,k)∈G

Dose(i, j, k),

0 ≤ts,w ≤ψs,w t̄,

(2.6)
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∑

(s,w)∈S×W

ψs,w ≤n,

ψs,w ∈ {0, 1}.

This model was adapted from the work described in [6]. The key observation
is the use of the binary variable ψs,w to indicate whether a shot of size w is used
at location s. The penultimate constraint in the model ensures that no more than n
shots are used, while the upper bound on t ensures that no exposure time occurs if the
corresponding shot is not used. In previous work [5], we had used increasing values
of α coupled with the removal of small shots in a nonlinear programming approach.
The current scheme is guaranteed to outperform this.

It may, of course, be possible to extend this model to include more locations,
but this was not deemed necessary for our work. Furthermore, it could be argued
that the basic model should use integer variables to enforce the discrete size choices.
Our investigations found such approaches to be impractical and not as robust as the
scheme outlined above.

3. Starting point generation. A good starting point is very important for
nonlinear programs, especially if the problem is not convex. This section will ex-
plore some techniques for finding an initial starting solution for our solution process.
The main focus is to find a set of good shot locations and their corresponding sizes.
We propose a shot location and size determination (SLSD) process based on three-
dimensional (3D) medial axis transformation. Our results show that it takes no more
than 6 seconds to produce a good starting solution for all the 3D data considered in
our research.

Our targets are collections of 3D voxels. For the large scale problems of interest,
the data manipulation and optimization solution times are much larger than allowable
(typically 20–40 minutes is allowed for planning), and we must resort to data com-
pression. One technique used extensively in computer vision and pattern recognition
is the notion of a skeleton, a series of connected lines providing a simple representation
of the object at hand [1, 8, 11, 15, 18]. Skeletons have been used by physicians and
scientists to explore virtual human body organs with noninvasive techniques [9, 17].
The term skeleton was proposed in [1] to describe the axis of symmetry, based on
the physical analogy of grassfire propagation, namely, the locus of centers of maximal
disks (balls) contained in a two- (three-) dimensional shape.

Some applications require that the original object be reconstructed from the com-
pact representation, and hence the normal measure of goodness is the error between
the original and reconstructed object. However, in our case, we will just use the skele-
ton to quickly generate good starting shot locations for the nonlinear program. Thus
we adapt techniques from the literature to achieve these goals.

Our process occurs in three stages. First we generate the skeleton, then we place
shots and choose their sizes along the skeleton to maximize a measure of our objective.
After this, we choose the initial exposure times using a simple linear program. Finally,
we apply the five-stage optimization process outlined in section 2 to improve upon
the starting points found.

3.1. Skeleton generation. In this section, we introduce a 3D skeleton algo-
rithm that follows procedures similar to those of [17]. The first step in the skeleton
generation is to compute the contour map containing distance information from each
voxel to a nearest target boundary. The ideal distance metric is Euclidean, but this
is too time-consuming to implement in a 3D environment.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 1 2 3 4 4 4 4 3 2 1 0 0 0 0 
0 0 0 0 0 1 2 3 4 5 4 3 2 1 0 0 0 0 
0 0 0 0 0 0 1 2 3 4 4 3 2 1 0 0 0 0 
0 0 0 0 0 0 1 2 3 4 3 2 1 0 0 0 0 0 
0 0 0 0 0 1 2 3 4 4 3 2 1 0 0 0 0 0 
0 0 0 0 1 2 3 4 3 3 2 1 0 0 0 0 0 0 
0 0 0 0 1 2 3 3 2 2 2 1 0 0 0 0 0 0 
0 0 0 1 2 2 2 2 1 1 1 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Fig. 3.1. A contour map on a two-dimensional example.

To describe our simpler scheme, we first introduce some terminology.
Definition 3.1. Considering a voxel i as a 3D box, an adjacent voxel j is called

an F-neighbor of i if j shares a face with i, an E-neighbor of i if j shares an edge with
i, and a V-neighbor of i if j shares a vertex with i.

Our procedure is as follows:
1. Assign 0 to the nontarget area, and let v = 0.
2. Assign v+1 to any voxel that is unassigned and has an F-neighbor with value

v.
3. Increment v by 1 and repeat until all voxels in the target area are assigned.

An example of a two-dimensional (2D) contour map generated through this procedure
is shown in Figure 3.1.

Note that if the maximum height in the contour map is less than 2, we terminate
the skeleton generation process.

Extracting an initial skeleton. Based on the contour map, there are several known
skeleton extraction methods in the literature [17]: boundary peeling (also called thin-
ning) [12], distance coding (distance transformation) [13], and polygon-based Voronoi
methods [2]. Because it is simple and fast, we use the distance transformation method
to generate a skeleton. In our terminology, this means that we define a skeleton point
as a voxel whose contour map value is greater than or equal to those of its E-neighbors.

Refinement for connectivity of a thin skeleton. We say that two skeleton points
are connected if they are V-neighbors. Unfortunately, not all the skeleton points
generated will be connected, and thus we use a two-stage process to connect the
pieces of the skeleton together.

For example, Figure 3.2(a) shows a raw skeleton with several disconnected com-
ponents. We use two algorithms to join all the disconnected components. The first
algorithm is a directional search algorithm. The second is the shortest path algorithm.
After these refinements, we have a connected skeleton as seen in Figure 3.2(b).

We first use depth-first search to label each skeleton point as belonging to a
particular component of the skeleton. The first connection phase is a steepest ascent
technique. Consider the contour map as a function f . We calculate an approximate
gradient ∇f using coordinatewise central divided differences. Thus, for each voxel
(i, j, k) we use the values of f at each of its F-neighbors to generate a 3D vector

∇f(i, j, k) := (sgn(f(i + 1, j, k) − f(i− 1, j, k)),

sgn(f(i, j + 1, k) − f(i, j − 1, k)),

sgn(f(i, j, k + 1) − f(i, j, k − 1)))
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a. Before refinement
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Fig. 3.2. An example of skeleton refinement.

and store these in a divided difference table. Given the voxel (i, j, k), we evaluate f at
the V-neighbor (i, j, k) + ∇f(i, j, k) and accept the move if f does not decrease. We
terminate the process if either f decreases or we move to a voxel in a different piece of
the skeleton, thus connecting (i, j, k) to this piece. Including the paths generated in
this fashion in the skeleton typically connects pieces that are close but not currently
connected.

The directional search algorithm, while joining many of the disconnected pieces
of the skeleton along ridges of the contour map, may fail in cases where the value of
the contour map decreases in the gap between two disconnected pieces. Therefore,
the second connection phase uses a shortest path algorithm to connect the skeleton
(instead of using the saddle point method discussed in [17]).

Let K be the set of all skeletal points, divided into d disconnected components. In
order to reduce the search space for the shortest path algorithm, we generate a cloud of
voxels C in the target volume, each of which are local maxima among their F-neighbors.
Note that C contains K by definition and can be thought of heuristically as a cloud
of points encircling the skeleton. We will only join the disconnected components of K
using points in C.

Let each voxel in C be a node. An arc (i, j) ∈ A ⊆ C×C is defined if voxels i and
j are V-neighbors.

We choose an arbitrary voxel in an arbitrary component as the source node s.
A representative node is chosen arbitrarily from each of the remaining components
and joined to a dummy node t that will be the destination. The distance cij between
voxels in a connected cluster is assigned a value of 0, whereas other V-neighbors of
a given voxel are at distance 1. We attempt to send d − 1 units of flow from s to t.
We also add an arc from s to t directly with a high cost to allow for the fact that
it may not be possible to join every component through C. If this is the case, it will
be signified by flow along these final arcs. The complete formulation of our problem
follows:

min
∑

(i,j)∈A

cijxij ,

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(d− 1) if i = s,

−(d− 1) if i = t,

0 otherwise,

0 ≤xij ∀(i, j) ∈ A.
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Typically, this problem is solved very quickly by standard linear programming algo-
rithms, even though specialized network flow algorithms could be applied.

3.2. Shot placement. At this stage, we recall that our goal is to determine
where to place shots and how large to make them initially; the skeleton generation is
a data reduction technique to facilitate this goal. We restrict our attention to points
on the skeleton. This is reasonable, since the dose delivered (2.1) looks ellipsoidal in
nature, and hence being centrally located within the target (that is, on the skeleton)
is preferable.

Our approach moves along the skeleton evaluating whether the current point is a
good location at which to place a shot. There are two special types of skeleton points,
an end point and a cross point, that help determine the shot size and the location;
see Figure 3.3.

(a) an end point (b) an end point (c) a cross point

Fig. 3.3. Examples of end points and a cross point.

We define an end point and a cross point as follows.
Definition 3.2. A voxel is an end point if
1. it is in the skeleton,
2. it has only one V-neighbor in the skeleton.

A voxel is a cross point if
1. it is in the skeleton,
2. it has at least three V-neighbors,
3. it is a local maximum in the contour map.

These points are respectively the start (end point) and finish (cross point) points
for our heuristic.

Let K be a set of skeletal points in the target volume. The first phase of the meth-
ods determines all end points in the current skeleton. Given an end point (x, y, z) ∈ K,
we carry out the following steps to generate a stack for the end point:

1. Calculate a merit value at the current location. Save the location information,
the best shot size, and the merit value on a stack.

2. Find all V-neighbors of the current point, in the skeleton, that are not in
the stack. If there is exactly one neighbor, make the neighbor the current
location and repeat these two steps. Otherwise, the neighbor is a cross point
or an end point, and we terminate this process.

If the length of the stack is less than 3, then we discard these points from the
skeleton. Otherwise, we choose the shot location and size determined by the smallest
merit value on the stack. This shot will cover a subset of the voxels in the target;
these voxels are removed from the target at this stage.

We then move to the next end point and repeat the above process. Once all
end points have been processed, we attempt to generate a new skeleton based on the
remaining (uncovered) voxels in the target. We then repeat the whole process with
the new skeleton.
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The key to this approach is the merit function. Ideally, we would like to place
shots that cover the entire region, without overdosing within (or outside) of the target.
Overdosing occurs outside the target if we choose a shot size that is too large for the
current location, and hence the shot protrudes from the target. Overdosing also occurs
within the target if we place two shots too close together for their chosen sizes.

Thus, if we label height as the approximate Euclidean distance from the current
point to the target boundary, spread as the minimum distance between the current
location and the end point at which we started, and w as the shot size, we would
like to ensure that all three of these measures are as close as possible. Therefore, we
choose an objective function that is a weighted sum of squared differences between
these three quantities:

1. Φsh(x, y, z) := (spread(x, y, z) − height(x, y, z))2,
2. Φsw(x, y, z, w) := (spread(x, y, z) − w)2,
3. Φhw(x, y, z, w) := (height(x, y, z) − w)2.

The first function ensures that we pack the target volume as well as possible; that
is, the current spread between shots should be close to the distance to the closest
target boundary. The second function is used to choose a helmet size that fits the
skeleton best for the current location. The third function favors a location that is the
appropriate distance from the target boundary for the current shot size.

Our objective function Φ is defined as a linear combination (with weights λ) of
these penalty functions and a fourth (w̄ − w)2, which is designed to favor large shot
sizes. Note that w̄ is the maximum shot width at hand, typically 18mm. The weights
can be adjusted based on a user’s preference. In practice we use 1/3 for the first three
objective weights, and 1/2 for the fourth.

3.3. Modifying the number of shots used. Often, the application expert
knows based upon experience how many shots will be needed to treat a specific tumor.
The planning tool accepts this information as input. However, the SLSD procedure
uses only target information, and it might suggest using fewer or more shots.

If the number of shots generated by SLSD is too large, the first n + 2 shots are
used as the starting point. We allow the nonlinear program to adjust the locations
further and remove the least useful shots during the solution process.

If the number of shot locations obtained from the SLSD procedure is lower than
the requested number, we add extra shot locations using the following (SemiRand)
heuristic. The key idea is to spread out the shot center locations with appropriate
shot sizes over the target area.

We assume that we are given ρ, an estimate of the conformity that we require
from any shot. In practice, we choose this value as 0.2. We then generate k different
shot/size combinations as follows. First, a random location s is generated from the
target area that is not covered by the current set of shots. Second, a random shot
size w for the specific location is generated within the set of different shots available
W. For each shot/size combination we calculate the fraction f(s, w) of the dose that
hits the target by taking the ratio of the number of voxels that it hits in the target
to the total number of voxels in a shot of the given size.

We decide the location and size (s, w) to use as follows. If max f(s, w) ≤ρ, then
we choose the combination that maximizes f(s, w). Otherwise, amongst all those
combinations that are acceptable (i.e., f(s, w) ≥ρ), we choose the largest one (i.e.,
the one that maximizes w among these).

Note that the SemiRand scheme can be used in cases where the SLSD procedure
fails (when a 3D volume of the target cannot be defined) and also as an alternative
scheme for locating starting points. In practice we use k = 5.
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Fig. 4.1. Computational results on a 2D example; axes represent pixel labeling.

4. Computational results. In this section, we demonstrate how to use the
techniques outlined above on 2D testing problems as well as real patient data.

4.1. Examples on 2D problems. We start with some simple 2D examples that
show the types of skeletons that are produced and portray the resulting optimization
solutions.

Figure 4.1(a) depicts a particular target (tumor) area for our problem as white
space. This tumor is approximately 3 inches square. The shape is not convex: It has
an indentation that makes it difficult for a normal optimization model to obtain an
acceptable plan. Figure 4.1(b) shows a thin line skeleton generated from the image.
The skeleton generation process takes less than 1 second on a Pentium III 800MHz
workstation. We then apply the SLSD process to obtain the starting solution for
the nonlinear programming (NLP) model as shown in Figure 4.1(c). Eight shots of
radiation are used for this example: one 4 mm, two 8 mm, and five 14 mm width
shots. We use 0.9 as the initial exposure times in the model. The solution covers the
target area well. We solve the conformity estimation optimization model using the
CONOPT2 interface with the starting solution, finding an optimal solution of 8 shots
in 61 seconds of execution time. Figure 4.1(d) shows the resulting plot obtained using
the MATLAB image toolbox. The circles are the starting solution, and the stars
are the optimal solution from CONOPT. They are almost identical in shot center
locations. The SLSD process outperforms a random starting solution. Given 8 shots
to use, the NLP model using a random starting solution finds an optimal solution in
1122 seconds.
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Fig. 4.2. 2D examples: a rectangular target (a),(b) and a small target (c),(d).

We show two more results on other examples in Figure 4.2. Figure 4.2(a) is a
rectangular target for which three shots are used. The optimization model finds the
solution of two 4mm and one 14mm shots, depicted in Figure 4.2(b). The total time to
produce the solution is about 15 seconds. Another example is given in Figure 4.2(c)–
(d). This is a small tumor (less than 1 inch square) for which three shots are again
used. The SLSD model takes 1.5 seconds to generate the starting solution. The NLP
model finds an optimal solution of two 4mm and one 8mm shots in 6 seconds.

4.2. Application to real patient data. We have tested our techniques on ten
targets arising from real patient cases. The ten targets are radically different in size
and complexity. The tumor volumes range from 28 voxels to 36088 voxels. Since
our problems are not convex, the choice of parameters in their solution can also have
dramatic effects. In this section, we demonstrate how to choose good parameters for
the NLP models. Some further description of the medical implications of these results
is given in [14].

We generate good initial shot center locations and sizes by running SLSD. This
is a starting solution for the NLP model with an exception of shot exposure times.
These times ts,w are estimated using the following simple linear program:

min
∑

(i,j,k)∈G

UnderDose(i, j, k),

subject to Dose(i, j, k) =
∑

(s,w)∈S×W

ts,wDw(x̄s, ȳs, z̄s, i, j, k),

θ ≤UnderDose(i, j, k) + Dose(i, j, k),

(4.1)
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0 ≤UnderDose(i, j, k),

0 ≤Dose(i, j, k) ≤1 ∀(i, j, k) ∈ G,
t ≤ts,w ≤ t̄.

Note that we fix the locations of the shots at the points suggested by SLSD and only
update the exposure times. Furthermore, we ensure that every size shot has positive
weight in an initial solution by enforcing a lower bound (typically 0.1) on the exposure
lengths.

The procedure for varying α (controlling the enforcement of the discrete choices)
can have a dramatic effect on solution quality and times. We generated solutions for
a variety of patients under a number of different choices of α. These solutions were
analyzed by an application expert. Based on his feedback, we suggest using initial
values of α between 4 and 8.

Table 4.1
Average optimal objective value and solution times in seconds for different tumors.

Patient Objective Time

(#voxels) Random SemiRand SLSD Random SemiRand SLSD

1 2.17 0.88 NA 0.3 0.3 NA

(28) (0.86) (0.29) NA (0.05) (0.03) NA

2 14.70 8.21 6.64 32 30 26

(2144) (6.90) (4.68) (2.61) (6) (9) (9)

3 27.53 19.22 14.43 89 67 52

(3279) (19.07) (8.87) (14.99) (25) (16) (9)

4 16.55 12.89 9.85 97 94 84

(3229) (4.45) (6.70) (4.88) (18) (22) (19)

5 34.87 34.53 23.85 153 128 77

(4006) (16.36) (17.26) (13.84) (40) (30) (17)

6 33.32 28.49 15.00 556 513 355

(6940) (17.25) (13.09) (13.22) (103) (100) (52)

7 35.45 29.97 31.03 590 460 343

(10061) (12.63) (11.16) (13.65) (228) (100) (75)

8 9.31 3.22 2.78 887 240 168

(22124) (2.73) (2.80) (1.72) (157) (68) (56)

9 45.05 35.18 31.05 874 629 498

(24839) (18.10) (7.11) (10.25) (425) (166) (99)

10 18.55 11.57 8.59 3568 937 695

(36088) (11.20) (11.83) (6.71) (589) (108) (79)

Table 4.1 shows average objective values of three different starting solution gen-
eration techniques: Random, SemiRand, and SLSD. The objective value represents
the total average underdose of the target when the solution is applied. The numbers
in parentheses are the standard deviations from a batch of 50 perturbed runs. (In
each run, the set of initial solution locations (x, y, z) were perturbed voxel by voxel
by a distance of no more than two voxels.) We compare the techniques based on
the final objective values and the run times. By fixing α = 6, 50 perturbed runs
were made for each patient-method pair. In each run, we generated initial locations
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Fig. 4.3. A dose-volume histogram for patient 6.

randomly within the target for the random scheme, while location perturbation was
used for SemiRand and SLSD. The tumor was so small for Patient 1 that SLSD failed
to generate a skeleton (maximum height in the contour map was less than 2).

Using standard statistical tests, the pairwise p-value [16] between Random and
SemiRand was 0.013, between Random and SLSD was 0.0006, and between SemiRand
and SLSD was 0.078. This leads to the conclusion that these results are significantly
different at the 90% confidence level.

Table 4.1 also shows average run times of the entire model for the seven different
patients. Although a gain of speed using SLSD depends on the shape and size of the
tumor, the table shows that the model execution time can be substantially reduced
using SLSD over the other two techniques regardless of the size of tumor. Again, these
results are significantly different at the 90% confidence level. The pairwise p-value
between Random and SemiRand was 0.017, between Random and SLSD was 0.0006,
and between SemiRand and SLSD was 0.063.

To conclude this section, we show a dose-volume histogram relating various plans
that were generated for patient 6 (see Figure 4.3). The histogram depicts the fraction
of the volume that receives a particular dose for both the skull and the target volumes.
The curves on the right depict information related to the target, while on the left they
refer to the skull. On the target, the curves that extend furthest to the right receive
more dose. Since the target curves can be moved to the right by just delivering
more dose to the patient’s skull, the lines to the left show that the fraction of the
skull receiving a particular dosage is essentially unchanged. The figure compares the
three techniques outlined here, along with the actual plan used on the patient case.
Clearly, all of the automatic plans are better than the neurosurgeon’s plan, and the
SLSD approach appears preferable to the other two automatic plans in quality.

5. Conclusion and future directions. We have used a variety of optimization
techniques in this paper to develop an approach for solving a planning problem for
medical treatment. While our approach has been tailored to the specific application,
we believe the methods and approaches used here can be effectively adapted to many
other problem classes.
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The work described in this paper was motivated by feedback received from an
initial prototype use of our planning tool at the University of Maryland Medical
School. The key features that needed improvement were the speed and robustness
of the process. This paper has addressed both issues by using a variety of different
optimization models and computational techniques. In particular, the speed of solving
the sequence of nonlinear programming models has been substantially reduced by
using the skeleton-based starting point generation technique. Statistically, we have
shown that SLSD outperforms two other heuristics for generating starting points.
Furthermore, the use of an improved conformity estimation model, coupled with a
“clean-up” mixed integer programming model, ensures that the solutions generated
are clinically acceptable and conform to the input specifications of the user. The
modified tool is now in use at the hospital without intervention from any of the
authors.

Our future work involves predicting the number of shots that can be used for a
particular patient.
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