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An optimization framework for three-dimensional conformal radiation therapy is presented. In conformal
therapy, beams of radiation are applied to a patient from different directions, where the aperture through

which the beam is delivered from each direction is chosen to match the shape of the tumor, as viewed from that
direction. Wedge filters may be used to produce a gradient in beam intensity across the aperture. Given a set of
equispaced beam angles, a mixed-integer linear program can be solved to determine the most effective angles to
be used in a treatment plan, the weight (exposure time) to be used for each beam, and the type and orientation
of wedges to be used. Practical solution techniques for this problem are described; they include strengthening
of the formulation and solution of smaller approximate problems obtained by a reduced parametrization of the
treatment region. In addition, techniques for controlling the dose-volume histogram implicitly for various parts
of the treatment region using hot- and cold-spot control parameters are presented. Computational results are
given that show the effectiveness of the proposed approach on practical data sets.
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1. Introduction
Optimization of radiation therapy for cancer treat-
ment has become an active research topic in recent
years (Bortfeld et al. 1990, Bortfeld and Schlegel
1993, Bortfeld et al. 1994, Chen et al. 2002, Intensity
Modulated Radiation Therapy Collaborative Working
Group 2001, Jordan and Williams 1994, Tervo and
Kolmonen 2000, Webb 1998, Wu and Zhu 2001, Xiao
et al. 2003). Several survey articles cover the essential
elements of the problem; see Holder (2004), Lodwick
et al. (1998), Rosen et al. (1990), and Shepard et al.
(1999). Many types of cancer are treated by aim-
ing beams of ionizing radiation at the patient from
a number of different angles. The fundamental goal
is to apply a significant total dose of radiation to
the cancerous region (the tumor) while sparing from
excessive radiation the surrounding normal tissues
(especially sensitive structures near the tumor).

External-beam radiation treatments are typically
delivered using a linear accelerator with a multileaf

collimator (see Figure 2) housed in the head of the
treatment unit. The shape of the aperture through
which the beam passes can be varied by moving the
computer-controlled leaves of the collimator. In con-
formal radiation therapy, the beam is shaped at each
angle to match the shape of the tumor, as viewed
from that angle. We refer to this method of beam-
shape selection as the beam’s-eye view !BEV" technique.
Wedges can be placed in front of the beams to induce
a gradient across the radiation field to help treat can-
cers that lie near a curved patient surface, as is com-
mon in breast cancer. In addition to selecting beam
directions and weights, the dosimetrist must decide
whether it is appropriate to use a wedge, and if so,
which orientation to choose for the wedge. It may be
appropriate to use a combination of wedged and non-
wedged beams from a single direction.

As we show in this paper, optimization techniques
can be used to design these treatment plans automat-
ically. Although the conformal techniques described
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above are the current standard of care used in the
treatment of most patients, until recently automated
treatment planning systems have typically used naïve
optimization procedures. We focus on the conformal
approach because it requires little alteration to current
clinical practices, and therefore has a high probabil-
ity of rapid adoption. A more sophisticated treatment
planning approach known as intensity modulated
radiation therapy (IMRT) allows a number of differ-
ently shaped beams to be delivered from each direc-
tion, thereby allowing a high degree of flexibility in
modulating the intensity of the radiation delivered
from each beam angle. The approaches outlined in
this paper are also pertinent to IMRT, but will bene-
fit from the reduced number of aperture shapes that
are generated, for example, in the direct aperture opti-
mization (DAO) approach (Earl et al. 2003, Shepard
et al. 2002).

Our process consists of the following steps: deter-
mination of the beam’s-eye view from each given
angle; generation of the corresponding dose matrices;
development of optimization models for the beam
angles, beam weights, and wedge orientations; tech-
niques to improve the optimization formulation and
reduce the solution time; and techniques to control
the dose-volume histogram on organs. Data for the
model consist of the dose-distribution matrices for
beams from each angle, along with the dose require-
ments for different regions of the treatment space. The
dose matrix for a given radiation beam consists of the
radiation deposited by the beam into each of the small
three-dimension regions (“voxels”) into which the
treatment area is divided. Calculation of dose matri-
ces is described in Section 2.1. Three-dimensional
organ geometries are outlined by a physician on a
set of CT or MRI images. The physician labels some
of the voxels as PTV (for “planning target volume,”
the tumor region) and others as OAR (for “organ at
risk,” also known as a “sensitive structure” or a “crit-
ical structure”), and specifies the desired or required
dose for each region. In Section 2.2 we describe the
attenuation of radiation dose caused by wedges.

In Section 3, we present several formulations of the
treatment planning problem using linear program-
ming (LP) and mixed-integer linear programming
(MIP) approaches. In these optimization models, a
lower bound is typically specified for the dose to each
voxel in the target (PTV), while an upper bound is
used for voxels in the OAR and normal tissue. Since
sensitive structures often are located close to the PTV,
it is often difficult or impossible to determine a treat-
ment plan that satisfies the required bounds at every
voxel. Accordingly, these “hard” bounds are often
replaced by penalty terms in the objective, or by con-
straints that limit the fraction of the sensitive structure

that receives an unacceptably high dose. These impor-
tant formulation issues are discussed in Ehrgott and
Burjony (2001), Holder (2001, 2003), and Sonderman
and Abrahamson (1985).

Section 3.1 describes the problem in which the
gantry angles for the treatment plan are fixed, and the
task is merely to determine the beam weights for each
angle. In Section 3.2, we discuss the “angle-selection”
problem, in which the most effective angles (and their
weights) are determined from among a set of candi-
date angles. A MIP model is used here, with binary
variables indicating whether or not a particular angle
is used in the treatment. Treatments with fewer beams
can be delivered more rapidly, and hence are gener-
ally preferred. We consider treatment plans involving
wedges in Section 3.3, using an extension of the MIP
formulation for the angle-selection problem.

The quality of a treatment plan is typically specified
and evaluated using a dose-volume histogram (DVH),
a plot that shows what fraction of volume of a struc-
ture receives dosage in a given range. Optimization
techniques utilizing dose-volume restrictions (often
known as DVH constraints) are described in Langer
et al. (1990), Leong and Langer (1987), and Morrill
et al. (1990). The use of binary variables to enforce
such constraints has been investigated, e.g., in Ferris
et al. (2005) and Lee et al. (2000, 2003). In Sec-
tion 4, we demonstrate various techniques for DVH
control including techniques that depend on penal-
ization rather than on additional integer variables
in the formulation. We also demonstrate the useful-
ness of wedges in DVH control. In Section 5, we
describe several techniques for improving the for-
mulation and reducing the solution time without
degrading the solution quality for this model. In Sec-
tion 6 we present computational results for a complete
data set, showing the effectiveness of our three-phase
approach and the quality of the generated solutions.

2. Model Data Generation
2.1. Dose Matrices and Beam’s-Eye View
A multileaf collimator located inside the head of
the linear accelerator is used to shape the beam of
radiation generated by the linear accelerator (Goitein
et al. 1983, Webb 1997). For purposes of dose-matrix
calculation, the full aperture is divided into rectan-
gular subfields arranged in a regular M ×N pattern
(see Figure 1). Each subfield is called a pencil beam or
beamlet, and is identified by an index pair !i# j", where
i = 1#2# $ $ $ #M and j = 1#2# $ $ $ #N . In our examples,
the full aperture is square with sides of length 10 cm,
while M = 10 and N = 20. Therefore, each of the 200
pencil-beam apertures has dimension 1 cm × 0.5 cm.

The dose-distribution matrix for each pencil beam
from each angle is calculated via a Monte Carlo tech-
nique that simulates the track of a large number of
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Figure 1 Division of Aperture into Pencil Beams (Shaded Area
Represents One Beamlet)

individual radiation particles. A unit-intensity, non-
wedged beam is assumed for the purpose of these
calculations.

In conformal radiotherapy, the shape of the beam
from each angle corresponds to the BEV of the tumor.
We define the BEV to contain all beamlets for which
at least one voxel in the PTV receives a dose of at least
T% of the maximum dose delivered by that pencil
beam to any voxel, where T is a threshold parameter.
The choice of T is critical. If too small, the BEV overes-
timates the PTV, producing an aperture that irradiates
not only the target but also nearby normal tissue and
organs at risk. If too large, the BEV underestimates
the PTV, and the optimizer might not be able to find a
solution that delivers adequate radiation to all of the
PTV. The best value of T to use depends somewhat
on the shape of the tumor. We choose T to be the min-
imum value such that the resulting BEVs provide a
complete two-dimensional coverage of the PTV from
all beam angles considered in the problem. Values in
the range 10%–15% appear to be appropriate. A BEV
is shown in Figure 2.

(a) Beam’s-eye view in a given
angle

(b) Beam’s-eye view can be
produced using a multileaf
collimator

Figure 2 Beam’s-Eye View

Once the BEV from a particular angle is chosen,
we construct the dose matrix for the BEV aperture by
summing the dose matrices of all the pencil beams
that make up the BEV.

2.2. Wedges
As shown in Figure 3, a wedge (also called a “wedge
filter”) is a tapered metallic block with a thick side
(the heel) and a thin edge (the toe). When the wedge is
placed in front of the aperture, less radiation is trans-
mitted through the heel of the wedge than through
the toe. Figure 3 also shows an external 45# wedge,
so named because it produces isodose lines that are
oriented at approximately 45#. We assume that the
wedge can be oriented in four ways: with its heel
aligned with each of the four sides of the full rect-
angular aperture. We refer to these orientations as
“north,” “south,” “east,” and “west,” as indicated in
Figure 1.

Our models include a wedge-transmission factor %
that defines the reduction in dose caused by the
wedge. Wedges are characterized by %0 and %1, with
0 ≤ %0 < %1 ≤ 1 that indicate the smallest and largest
transmission factors for the wedge among all pencil
beams in the field. Specifically, %0 indicates the fac-
tor by which the dose is decreased for pencil beams
along the heel of the wedge, while %1 is the transmis-
sion factor along the opposite (thin) edge. When the
heel lies along the west edge, the transmission factor
for beamlet !i# j" is calculated as follows:

%west
ij = %0 +

j − 0$5
N

!%1 − %0"#

i= 1#2# $ $ $ #M# j = 1#2# $ $ $ #N $ (1)

When the heel of the wedge lies along the north edge,
the transmission factor is

%north
ij = %0 +

i− 0$5
M

!%1 − %0"#

i= 1#2# $ $ $ #M# j = 1#2# $ $ $ #N $ (2)

The shift of 0.5 is introduced in both formulae to
capture the transmission factor at the center of each
beamlet.

Two different wedge systems are used in clinical
practice. In the first system, four different wedges

Central ray

Toe Heel

(a) A wedge filter (b) An external wedge

Figure 3 Wedges
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with angles 15#, 30#, 45#, and 60# are available, and
the therapist is responsible for selecting one of these
wedges and inserting it with the correct orientation.
In the second system, a single 60# wedge (the universal
wedge) is permanently located on a motorized mount
located within the head of the treatment unit. This
wedge can be rotated to the desired orientation or
removed altogether, as required by the treatment plan.
By using the universal wedge appropriately, all plans
deliverable by the four-wedge system can be repro-
duced; see the appendix. We assume that the univer-
sal wedge is used. Note that the formulation assumes
that the wedge rotates and not the collimator.

3. Formulating the Optimization
Problems

3.1. Optimizing Beam Weights
We start with the simplest model, in which the
angles from which beams are to be delivered are pre-
selected, wedges are not used, and the apertures are
chosen as the beam’s-eye view from each angle. All
that remains is to determine the beam weights at each
angle.

We now introduce some notation. The set of beam
angles is denoted by !. We let " denote the set of
all voxels that comprise the PTV, # denote the voxels
in the OAR (typically this is a collection of organs,
# =# 1∪ · · ·∪#m), and $ be the voxels in the normal
tissue. We use & to denote the prescribed dose level
at each PTV voxel, and the hot-spot control parame-
ter ' defines a dose level for each voxel in the crit-
ical structure that we would prefer not to exceed.
The beam weight delivered from angle A is wA, and
the dose contribution to voxel !i# j# k" from a beam
of unit weight from angle A is denoted by %A# !i# j# k".
(It follows that a beam of weight wA produces a
dose of wA%A# !i# j# k" in voxel !i# j# k".) We obtain the
total dose D!i# j# k" to voxel !i# j# k" by summing the
contributions from all angles A ∈ ! and use %A#(

(and D() to denote submatrices consisting of the ele-
ments %A# !i# j# k" (and D!i# j# k") for all !i# j# k" in a given
voxel set (.

The beam weights wA, for A ∈ !, are nonnegative
and are the unknowns in the optimization problem.
The general form of this problem is:

min
w

f !D("

s.t. D( =
∑

A∈!
wA%A#(# (=" ∪# ∪$ #

wA ≥ 0# ∀A ∈!$

(3)

The choice of objective function f !D(" in (3)
depends on the specific goal of the treatment plan-
ner. In general, the objective function measures the

mismatch between the prescription and the delivered
dose. For voxels in the PTV region " , there may be
terms that penalize any difference between the deliv-
ered dose and the prescribed dose. For the voxels in
each OAR # p (p= 1# $ $ $ #m), there may be terms that
penalize the amount of dose in excess of 'p&, the
desired upper bound on the dose to voxels in # p. (For
simplicity of exposition, we consider only a single
OAR.) The objective often includes terms that penal-
ize any dose to voxels in the normal region $ .

The L1-norm (sum of absolute values) and squared
L2 norm (sum of squares; see Cormack and Quinto
1990), are both used to penalize differences between
delivered and desired doses in the objective f !D(".
Two possible definitions of f based on these
norms are

f !D(" = )t

*D" −&e"*1
!"! +)s

*!D# −'&e# "+*1
!# !

+)n

*D$ *1
!$ ! # (4)

f !D(" = )t

*D" −&e"*22
!"! +)s

*!D# −'&e# "+*22
!# !

+)n

*D$ *22
!$ ! $ (5)

The notation !·"+ *= max!·#0" in the second term
defines the overdose to voxels in the OAR, while e"
is the vector whose components are all 1 and whose
dimension is the same as the cardinality of " (simi-
larly for e# ). The parameters )t , )s , and )n are non-
negative weighting factors applied to the objective
terms for the PTV, OAR, and normal voxels, respec-
tively, while !"!, !# !, and !$ ! denote the number of
voxels in these respective regions.

An objective function based on L+-norm terms (6)
allows effective penalization of hot spots in the OAR
and of cold spots in the PTV. We define such a func-
tion by

)t*!D"−&e""*++)s*!D# −'&e# "+*++)n*D$ *+$ (6)

Combinations of these objective functions can be used
to achieve specific treatment goals, as described later.

Problems of the form (3) in which f is defined
by (4) or (6) can be formulated as linear programs
using standard techniques. For example, the term
)s*!D# − '&e# "+*1/!# ! in (4) can be modeled by
introducing a vector V# into the formulation, along
with the constraints V# ≥ D# − '&e# and V# ≥ 0,
and including the term !)s/!# !"eT#V# in the objective.
Problems in which f is defined by (5) can be formu-
lated as convex quadratic programs.

The treatment planner’s goals are often case-
specific. For example, the planner may wish to keep
the maximum dose violation on the PTV low, and also
to control the integral dose violation on the OAR and
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the normal tissue. These goals can be met by defin-
ing the objective to be a weighted sum of the relevant
terms. For the given example, we might obtain the
following definition of f !D(" in (3):

)t*D"−&e"*++)#

*!D# −'&e# "+*1
!# ! +)n

*D$ *1
!$ ! $ (7)

In practice, voxels in the PTV that receive a dose
within specified limits may be acceptable as a treat-
ment plan. Furthermore, voxels that receive below the
lower dose specification (cold spots) may be penal-
ized more severely than hot spots in the PTV. There-
fore, we consider the following definition of f :

f !D(" = )+
t *!D" − + U&e""+*+ +)−

t *!+ L&e" −D""+*+

+)s

*!D# −'&e# "+*1
!# ! +)n

*D$ *1
!$ ! $ (8)

In this objective, + L is the PTV cold-spot control
parameter. If the dosage delivered to a voxel in " falls
below + L&, a penalty term for the violation is added
to the objective. Likewise, a voxel in the PTV incurs a
penalty if the dose exceeds + U&.

All the models described in this paper can accom-
modate this separation of hot and cold spots. How-
ever, we simplify the exposition throughout by using
a combined objective function. Alternative objec-
tives have been discussed elsewhere. For example,
Pugachev and Xing (2001) and Shalev et al. (1991)
use score functions to evaluate and compare different
plans, while Hamacher and Küfer (2002) use a multi-
objective approach.

Building on the beam-weight optimization formu-
lations described above, we now consider extended
models in which beam angles and wedges are in-
cluded in the optimization problem.

3.2. Optimization Beam Angles
We now consider the problem of selecting a subset
of at most K beam angles from a candidate set !,
while simultaneously choosing optimal weights for
the selected beams. In this model, binary variables ,A,
A ∈ ! indicate whether or not angle A is selected to
be one of the treatment-beam orientations. The con-
straint wA ≤M,A (for some large M) ensures that wA

is nonzero only if ,A = 1. The resulting mixed pro-
gramming formulation is as follows:

min
w#,

f !D("

s.t. D( =
∑

A∈!
wA%A#(# (=" ∪# ∪$

0≤wA ≤M,A# ∀A ∈!#
∑

A∈!
,A ≤K# ,A ∈ -0#1.# ∀A ∈!$

(9)

Some theoretical considerations of optimizing beam
orientations are also discussed in Bortfeld and Schlegel
(1993). A treatment plan involving few beams (say,
three to five) generally is preferable to one of similar
quality that uses more beams because it requires less
time and effort to deliver. Furthermore, it has been
shown that, when many beams are used, (say ≥5),
beam orientation becomes less important in the over-
all optimization (Cho et al. 1999, Crooks et al. 2002,
Ehrgott and Johnston 2003, Soderstrom et al. 1995). In
many cited cases, the objective is to find a minimum
number of beams that satisfy the treatment goals.

Beam angles and weights can be selected either
sequentially or simultaneously. Most of the earlier
work in the literature uses sequential schemes (Chen
et al. 1992; Gokhale et al. 1994; Myrianthopoulos et al.
1992; Rowbottom et al. 1998, 1999), in which a certain
number of beam angles are decided first, and their
weights are subsequently determined. Rowbottom
et al. (2001) optimize both variables simultaneously.
To reduce the initial search space, a heuristic approach
removes some beam orientations a priori, while the
overall optimization problem is solved with the sim-
plex method and simulated annealing. Prior infor-
mation is included in the simultaneous optimization
scheme outlined in Pugachev and Xing (2002).

A different approach has been proposed by Hass
et al. (1998). They address a geometric formulation
of the coplanar beam-orientation problem by means
of a hybrid multi-objective genetic algorithm, which
attempts to replicate the approach of a (human) treat-
ment planner while reducing the amount of com-
putation required. When the approach is applied
without constraining the number of beams, the solu-
tion produces an indication of the minimum num-
ber of required beams. Webb (1989) applies simulated
annealing to a two-dimensional treatment-planning
problem. Three-dimensional problems using a sim-
ulated-annealing approach are described in Row-
bottom et al. (2001) and Webb (1991, 1992, 1997),
while column-generation approaches are discussed in
Preciado-Walters et al. (2004).

3.3. Optimizing Wedge Orientations
Several researchers have studied the treatment plan-
ning problem with wedges. Xing et al. (1998) optimize
the beam weights for an open field and two orthog-
onal wedged fields. Li et al. (1999) describe an algo-
rithm for selecting both wedge orientation and beam
weights, while Sherouse (1993) describes a mathemat-
ical basis for selection of wedge angle and orientation.
It is noted in Xing et al. (1997) that including wedge-
angle selection in the optimization makes for exces-
sive computation time. Design of treatment plans
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involving wedges are also discussed in Dai et al.
(2000).

We consider four possible wedge orientations at
each beam angle: “north,” “south,” “east,” and “west.”
At each angle A, we calculate dose matrices for the
beam’s-eye view aperture and for each of these four
wedge settings, along with the dose matrix for the
open beam, as used in the formulations above. We let
& denote the set of wedge settings; & contains five
elements in our case. Extending our previous nota-
tion, the dose contribution to voxel !i# j# k" from a
beam delivered from angle A with wedge setting F is
denoted by %A# F # !i# j# k", and we use %A# F #( to denote
the collection of doses for all !i# j# k" in some set (.
The weight assigned to a beam from angle A with
wedge setting F is denoted by wA# F .

To include wedges in the optimization problem,
we do not simply replace ! by ! × & in (9); there
are some additional considerations. First, in select-
ing beams, we do not wish to place a limit on the
total number of beams delivered, as in Section 3.2,
but rather on the total number of distinct angles used.
(In the clinical situation, changing the wedge orienta-
tion takes relatively little time.) It follows that a single
binary variable suffices for each angle A, so we can
state the MIP model that includes beam-orientation
selection as follows:

min
w#,

f !D("

s.t. D( =
∑

A∈!# F ∈&
wA# F%A# F #(# ( ∈" ∪# ∪$ #

0≤wA# F ≤M,A# ∀A ∈!# ∀ F ∈&#
∑

A∈!
,A ≤K# ,A ∈ -0#1.# ∀A ∈!$

(10)

A second consideration is that we do not wish to
deliver two beams from the same angle for two dia-
metrically opposite wedge settings. We can accom-
modate this restriction by introducing separate binary
variables /A# F for each angle A and orientation F . A
less-expensive approach is to postprocess the solution
whenever

-wA# south > 0 and wA#north > 0. or

-wA#west > 0 and wA#east > 0.#

for any A, to zero out one of the weights for each pair.
To illustrate the postprocessing technique, consider
the “west” and “east” wedge orientations. For beam-
let !i# j", i = 1#2# $ $ $ #M , j = 1#2# $ $ $ #N , the attenua-
tion factor when the west wedge is present is given
by (1). For the east wedge, we have

%east
ij = %0 +

N − j + 0$5
N

!%1 − %0"#

i= 1#2# $ $ $ #M# j = 1#2# $ $ $ #N $ (11)

Suppose now that we have a treatment plan in which,
for some A, the weight corresponding to the open
beam (no wedge) is wA#open ≥ 0, while the weights cor-
responding to the west and east beams are wA#west > 0
and wA#east > 0, respectively. Suppose for the moment
that wA#west ≥ wA#east. The contribution of these three
weights to the total intensity delivered by beamlet
!i# j" is then

wA#east

[

%0 +
N − j + 0$5

N
!%1 − %0"

]

+wA#west

[

%0 +
j − 0$5
N

!%1 − %0"

]

+wA#open#

which is equal to

!wA#west −wA#east"

[

%0 +
j − 0$5
N

!%1 − %0"

]

+ !wA#open +wA#east!%1 − %0""$

Hence, an identical dose could be delivered to each
voxel !i# j" by using weight wA#open+wA#east!%1−%0" for
the open beam, !wA#west −wA#east" for the west wedge,
and 0 for the east wedge. A similar result holds for
the case of wA#west ≤wA#east.
Note that if there are other constraints on the num-

ber of wedges being used, we need to replace (10) by
a formulation with additional binary variables /A# F .

3.4. Computing Tight Upper Bounds on the Beam
Weights

If the upper bound M on the beam weights wA# F is
too large (as is usually the case), the feasible set is
larger and the algorithm often takes longer to solve
the problem. A key preprocessing technique to over-
come this problem is to calculate a stringent bound
on the continuous decision variables (Nemhauser and
Wolsey 1988) that allows M to be chosen sufficiently
large to produce an optimal solution, but not larger
than necessary. We now describe a technique of this
type for problem (10).

Let 0A be the maximum dose deliverable to the
PTV by a beam angle A with a unit beam inten-
sity. Since the open beam delivers more radiation to a
voxel (per unit beam weight) than any wedged beam,
we have

0A *= max
F ∈&# !i# j# k"∈"

%A# F # !i# j# k" = max
!i# j# k"∈"

%A# !i# j# k"#

A= 1#2# $ $ $ # !!!# (12)

where, as before, %A# !i# j# k" denotes the dose delivered
to voxel !i# j# k" from a unit weight of the open beam
at angle A. Using the definition of %1 from Section 2.2,
we have for a given angle A that the maximum dose
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deliverable to a PTV voxel using wedge filters is

0A

(

wA#0 + %1
∑

F ∈&\-0.
wA# F

)

# (13)

where 0 ∈ & denotes the open beam. Suppose now
that we modify the model in (10) to include explicit
control of hot spots by introducing an upper bound u
on the dose allowed in any PTV voxel. We add the
constraint

D" ≤ ue" (14)

to (10). By combining (14) with (13), we deduce that

wA#0 + %1
∑

F ∈&\-0.
wA# F ≤

u

0A

# ∀A ∈!$

Accordingly, we can replace the constraint M,A ≥
wA# F in (10) by

wA#0 + %1
∑

F ∈&\-0.
wA# F ≤

(

u

0A

)

,A# ∀A ∈!# (15)

where ,A is the binary variable that indicates whether
or not the angle A is selected. Our problem becomes

min
w#,

f !D("

s.t. D( =
∑

A∈!# F ∈&
wA# F%A# F #(# ( ∈" ∪# ∪$ #

!u/0A",A ≥wA#0 + %1
∑

F ∈&\0
wA# F

K ≥
∑

A∈!
,A#

wA# F ≥ 0# ∀A ∈!# ∀ F ∈&#

,A ∈ -0#1.# ∀A ∈!# ∀ F ∈&$

(16)

Note that if we also impose an upper bound on dose
level to normal-tissue voxels, we can derive addi-
tional bounds on the beam weights using the same
approach.

4. Techniques for DVH Control
Dose-volume histograms (DVH) are a compact way
to represent dose-distribution information for subsets
of the treatment region. By placing simple constraints
on the shape of the DVH for a particular region, radi-
ation oncologists attempt to control the fundamental
aspects of the treatment plan. For instance, the oncol-
ogist is often willing to sacrifice some specified por-
tion of an OAR (such as the lung) in order to provide
an adequate probability of tumor control (especially
if the OAR lies near the tumor). This aim is realized
by requiring that at least a specified percentage of the
OAR must receive a dose less than a specified level.
DVH constraints are used to control uniformity of the

dose to the PTV, and to avoid cold spots. For exam-
ple, the planner may require all voxels in the PTV to
receive doses of between 95% and 107% of the pre-
scribed dose &.

Modelers usually are advised to update the weights
!)+

t #)
−
t #)s#)n" to achieve DVH control. However, as

pointed out in Dennis and Das (1997), understand-
ing the relationship between the ) values and their
intended consequences is far from straightforward.
Rather than focusing our tuning efforts on these
weights, we suggest manipulating other parameters
in the model; specifically, the PTV control parame-
ters + U and + L and the hot-spot control parameter '
in (8). We describe these techniques with reference to
the problem in (9).

There are three typical requirements for the radia-
tion treatment: homogeneity, conformity, and avoidance
(Ferris et al. 2003a, b). In our formulations, homo-
geneity is controlled by + L and + U , which define the
lower and upper bounds on the dose to PTV vox-
els (we have + L ≤ 1≤ + U ). The conformity constraints,
which require the dose to the normal tissue to be as
small as possible, can be implemented by increasing
the weight )n on the normal-tissue term in the objec-
tive. Avoidance constraints, which take the form of
DVH constraints on the OAR, are implemented via
the hot-spot control parameter '.

We show results for DVH control of a clinical
case (a pancreatic tumor) in most of the following
sections. This problem, which is illustrated in Fig-
ure 10, includes four critical structures (two kidneys,
the spinal cord, and the liver) in the vicinity of the
tumor. For illustrative purposes, we condense all the
OARs in some figures into a single OAR and graph
its dose distribution with a single line. Of course,
the techniques we present in this section can be used
to control doses to each organ individually, as we
demonstrate in Section 6.

4.1. Choice of Norms in the Objective Functions
We introduced different types of objective functions
in Section 3.1; see in particular (4), (5), (6), and (8).
One uses infinity norms to control hot and cold spots
in the treatment region, while L1-norm penalty terms
are useful for controlling the integral dose over a
region.

Here we illustrate the effectiveness of using both
types of terms in the objective by comparing results
obtained from an objective with only L1 terms with
results for an objective with both L1 and infinity-norm
terms. Specifically, we compare the function in (8)
(with )+

t = )−
t = )s = )n = 1) against a function in

which the infinity norms in the first two terms are
replaced by L1 norms, scaled by the cardinality of
the target set. We use + L = 0$95, + U = 1$07, ' = 0$2,
and K = 4 in this experiment. As might be expected,
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Figure 4 Cumulative Dose-Volume Histogram on the PTV

(8) has better control on the PTV as shown in Fig-
ure 4; the infinity norm yielded a stricter enforcement
of the constraints on the PTV. The two objective func-
tions can produce a similar solution if the values of
the )ts are chosen appropriately. However, our expe-
rience indicates that it is easier to choose an appro-
priate value of )t for the L+ penalty than it is to tune
this parameter for the L1 norm. (In the normal and
OAR regions, the difference in quality of the solu-
tions obtained from these two alternative objectives
was insignificant.)

4.2. DVH Control on the PTV
Here we consider the optimization problem (9) with
objective function f !D(" defined by (8). We aim to
attain homogeneity of the dose on " without sacri-
ficing too much quality in the dose profile for the
normal region and OAR. As discussed above, the key
parameters in (8) with respect to this goal are + U
and + L. In this experiment, we fix + U = 1$07, and try
the values 0.7, 0.8, 0.9, and 0.94 for the lower-bound
fraction + L. Figure 5 shows the DVH plots for the four
different values of + L, for the PTV, OAR, and nor-
mal regions. For each value, we find that 100% of the
PTV receives more than the desired lower bound + L;
we manage to avoid PTV cold spots completely in
this example. We might expect that larger values of
+ L (which confine the target dose to a tighter range)
would result in a less attractive solution in the OAR
and the normal tissue, but Figure 5 shows that the loss
of treatment quality is not significant. We conclude
that the use of + U and + L to implement homogeneity
constraints is effective.

4.3. DVH Control on the OAR
We show here that that the dose to the OAR can
be controlled by means of the parameter ' in (8),
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Figure 5 Cumulative DVH Control for Different Choices of
Parameter !L

assuming that the weights )t , )s , and )n have been
fixed appropriately. As shown in Figure 6, we set ' to
various values in the range 10#12. For '= 0$5, almost
all of the OAR receives dose less than 50% of the
prescribed target dose. Similar results hold for the
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Figure 6 Cumulative DVH Control for Different Values of Parameter "

values ' = 0$2 and ' = 0$1. (For ' = 0$1, about 20%
of the OAR receives more than 10% of the prescribed
dose, but only about 5% receives more than 20% of the
prescribed dose.) Better control of the dose to OAR
causes loss of treatment quality on the PTV and the

normal tissue, but Figure 6 shows that the degrada-
tion is not significant.

We note that if our goal is to control hot spots in the
OAR rather than the integral dose, we could replace
the term *!D# − '&e# "+*1 in the objective (8) by its
infinity-norm counterpart *!D# −'&e# "+*+.

The parameter ' can be updated on a per-organ
basis if the DVH requirement for a given OAR is
not satisfied. Furthermore, there can be some conflict
between the goals of controlling DVH on target and
nontarget regions, as the proximity of PTV to normal
regions and OAR makes it inevitable that some non-
target voxels will receive high doses. If the PTV dose
control is most important (as is usually the case), the
control parameters + L, + U , and ' should be chosen
with + U − + L small and ' as a fairly large (but smaller
than 1) fraction of the prescribed target dose &. How-
ever, if the OAR dose control is most important, a
smaller value of ' should be used in conjunction with
L1-norm penalties for the OAR terms in the objective.
In addition, a larger value of + U − + L is appropriate in
this case.

4.4. DVH Control via Wedges
In general, the use of wedges gives more flexibility
in achieving adequate coverage of the tumor while
sparing normal tissues. To show the effect of wedges,
we test our optimization models on a different set of
data from a prostate-cancer patient. Figure 7 shows
DVH graphs obtained for a treatment plan using
wedges (16) and one using no wedges (17). Conven-
tionally, four or six beams are usually used to treat
cases of this type. However, we use three beam angles
(K = 3) to emphasize the effect of wedges. Figure 7(a)
shows that a significant improvement on the OAR is
achieved by adding wedges. In Figure 7(b), we see
that there is also a slight improvement in the DVH
for the PTV, and little difference between the wedge
and no-wedge cases for the normal tissue.

5. Reducing the Solution Time
The problem (10) involves numerous variables (some
of them discrete) and a large amount of data, mostly
in the form of dose matrices. Therefore, the opti-
mization problem is time-consuming to construct and
solve. In this section, we describe a number of tech-
niques to reduce the solution time. First, we show
how normal-tissue voxels that are distant from the
PTV can be merged, thereby reducing the number of
variables without an appreciable change in solution
quality. Second, we describe a scheme for solving a
lower-resolution problem to identify the most promis-
ing beam angles, then consider only these angles in
solving the full-resolution problem.

We note that Legras et al. (1982) describe a multi-
phase approach in which linear programs are solved
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Figure 7 Cumulative DVH: Effect of Wedges in a Prostate Cancer Case
with Three Beam Angles

to determine the most promising beam angles, with a
refined solution being obtained from a final nonlinear
program. Our approach in Section 5.2 is different in
that each of our phases involves the solution of MIPs
in which the angles are selected explicitly. The phases
differ from each other in the reduced sets of voxels
that are used as the basis of the problem formulation.

5.1. Reducing Resolution in the Normal Tissue
Since the main focus of the planning problem is to
deliver enough dose to the PTV while avoiding organs
at risk, the dosage to normal regions that are some
distance away from the PTV need not be resolved to
high precision. It suffices to compute the dose only on
a representative subset of these normal-region voxels,
and use this subset to enforce constraints and to for-
mulate their contribution to the objective.

Given some parameter 3, we define a neighborhood
of the PTV as follows:

'3!"" *= -!i# j# k" ∈$ ! dist!!i# j# k"#""≤ 3.#

where dist!!i# j# k"#"" denotes the Euclidean distance
of the center of the voxel !i# j# k" to the PTV. We also
define a reduced version $1 of the normal region, con-
sisting only of the voxels !i# j# k" for which i, j , and k
are all even; that is:

$1 *= -!i# j# k" ∈$ ! imod2= jmod2= kmod2= 0.$

Finally, we include in the optimization problem only
those voxels that are close to the PTV, or that lie in an
OAR, or that lie in the reduced normal region; that is,

!i# j# k" ∈" ∪# ∪'3!""∪$1$

(see related work in Bahr et al. 1968 and Morrill et al.
1990). Since each of the voxels !i# j# k" ∈$1 effectively
represents itself and seven neighboring voxels, the
weights applied to the voxels !i# j# k" ∈$1 in the objec-
tive functions (4) and (5) should be increased corre-
spondingly. An appropriate replacement for the term
*D$ *1/!$ ! in (4) could then be

*%'3!""*1 + *%$1
*1!!$ \'3!""!/!$1!"
!$ ! $

5.2. A Three-Phase Approach
We now discuss our multiphase approach that “ramps
up” to the solution of the full problem via a sequence
of models. Essentially, the models are solved in
increasing order of difficulty, with the solution of one
model providing a good starting point for the next.
The models differ from each other in the selection of
voxels included in the formulation, and in the num-
ber of beam angles allowed.

If the most promising beam angles can be iden-
tified in advance, the full problem can be solved
with a small number of discrete variables. A simple
approach for removing unpromising beam angles is
to remove from consideration those that pass directly
through any OAR (Rowbottom et al. 2001). A more
elaborate approach (Pugachev and Xing 2001) intro-
duces a score function for each candidate angle, based
on the ability of that angle to deliver a high dose to
the PTV without exceeding prescribed dose tolerances
to OAR or to normal tissue located along its path.
Only beam angles with good scores are included in
the model.

These heuristics can reduce solution time apprecia-
bly, but their effect on the quality of the final solution
cannot be determined a priori. We propose instead
the following incremental modeling scheme, which
obtains a near-optimal solution within a small fraction
of the time required to solve the original formulation
directly. Our scheme proceeds as follows.
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5.2.1. Phase 1: Selection of Promising Beam
Angles. Our aim in this phase is to construct a subset
of beam angles !1 that are likely to appear in the final
solution of (10). (A similar technique can be applied
to (16).) We solve a collection of r MIPs, where each
MIP is constructed from a reduced set of voxels con-
sisting of the voxels in the PTV, a randomly sampled
10% of the OAR voxels (# ′), and the voxels in '3!"";
that is, (1 = -" ∪# ′ ∪'3!"".. We define !1 as the set
of all angles A with wA > 0 in at least one of the r
sampled problems.

5.2.2. Phase 2: Treatment-Beam-Angle Determi-
nation. In the next phase, we select K or fewer treat-
ment beam angles from !1. We solve a version of (10)
using !1 in place of ! and a reduced set of voxels
defined as (2 = -" ∪# ∪'3!""∪$1.. Note that !!1!
is typically greater than or equal to K, so the binary
variables play a nontrivial role in this phase.

5.2.3. Phase 3: Final Approximation. In the final
phase, we fix the K beam angles (by fixing ,A = 1 for
the angles A selected in Phase 2 and ,A = 0 other-
wise) and solve the resulting simplified optimization
problem over the complete set of voxels. This final
approximation typically takes much less time to solve
than does the full-scale model, both because of the
smaller amount of data (due to fewer beam angles)
and the absence of binary variables.

Although there is no guarantee that this technique
will produce the same solution as the original full-
scale model (10), we have found that the quality of
its approximate solution is close to optimal. Com-
putational experience with this approach is given in
Section 6.

6. Computational Performance
In this section, we discuss the performance of our
proposed approaches (including the three-phase ap-
proach) on the pancreatic data set introduced in Sec-
tion 4. We also describe the treatment plan obtained
for this data set for the full model in which DVH con-
trols and wedges are all applied.

The specific optimization model considered in this
section is as follows:

min
w#,

f !D("

s.t. D( =
∑

A∈!
wA%A#(# (=" ∪# ∪$ #

D" ≤ ue"#

0≤wA ≤M,A# ∀A ∈!#
∑

A∈!
,A ≤K#

,A ∈ -0#1.# ∀A ∈!#

(17)

where f !D(" is defined by (8). Note that we have
introduced the hard upper bound D" ≤ u (see (14)) on
the target, allowing us to experiment using the tight-
ened upper bounds of Section 3.4. We fix the param-
eters in (17) as follows: + L = 0$95, + U = 1$07, ' = 0$2,
K = 4, )+

t = )−
t = )s = )n = 1, u = 1$15, and !!! = 36.

The set of angles ! consists of angles equally spaced
by 10# in a full 360# circumference.
First, we solve (17) using the full set of voxels. The

MIP solver is set to terminate when the gap between
the upper and lower bounds of the objective value
falls below 1% (in relative terms). This calculation
and the others in this section were performed on a
Pentium 4, 1.8 GHz PC running Linux. The prob-
lems were modeled in the GAMS modeling language
(Brooke et al. 1988) and CPLEX 7.1 was used as the
LP and MIP solver.

Figure 8 shows changes of upper and lower bounds
on the optimal objective value as the iteration num-
ber increases, where iteration count is the total number
of branch-and-bound nodes explored. Only slight
improvements to the upper bound (which represents
the best integer solutions found to date) occur after the
first 220,000 iterations, and the lower bound of
the objective value increases slowly beyond this point.
We set the “big M” value to 2 for this experiment; the
total computation time of over 112 hours is shown in
column I of Table 1. This table also shows the effects
of the computational speedups described in Section 5.
In columns II, III, and IV we use the tight bound (15)
on wA, specialized to the case in which no wedges are
used. (That is, we replace the constraint wA ≤M,A in
(17) by wA ≤ !u/0A",A.) In addition, column III shows
the effects of using the reduced-voxel version of the
problem discussed in Section 5.1. Finally, column IV
shows results obtained with the three-phase approach
of Section 5.2 using r = 10 samples of the OAR.
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Table 1 Comparisons Among Different Solution Schemes

I II III IV

Approach Single solve Single solve Reduced model Three-phase
Bound (M) 2 u/#A u/#A u/#A

Final objective 0.0342 0.0342 0.0342 0.0342
Time (hours) 112.3 93$5 29$9 0$5
Time saved (%) — 16$8 73$3 99$5

For purposes of comparing the quality of the
computational results obtained with these four ap-
proaches, we calculated the final objective values on
the full set of voxels. To three significant figures, these
values were the same. The next rows in Table 1 show
the CPU times required (in hours) for each of the four
experiments, and the savings in comparison with the
time in column I. By comparing columns I and II, we
see that a modest reduction is obtained by using the
tighter bound. Column III shows a computational sav-
ings of almost three quarters, without degradation of
solution quality, when a reduced model is used. The
full problem contains 1,244 voxels in the PTV, 69,270
voxels in the OAR, and 747,667 voxels in the normal
region, while the reduced model has 1,244 voxels in
the PTV, 14,973 voxels in the OAR, and 96,154 voxels
in the normal tissue. The most dramatic savings, how-
ever, were for the three-phase scheme, which yielded
a savings of 99.5% over the direct solution scheme
with no appreciable effect on the quality of the solu-
tion. The difficulty of the full problem arises in large
part from the hot-spot and cold-spot control terms.
Using looser values for these parameter values speeds
up the the solution time considerably.

We believe our three-phase technique is equally
effective for the case in which wedges are included
in the formulation. Hence, we performed a final test
with the pancreatic data set on a full model that
includes wedges. This case is made particularly dif-
ficult by the close proximity of the PTV to several
OARs, including the spinal cord, liver, left kidney, and
right kidney. Besides the 36 beam angles, we allow
wedges with four possible orientations (at points of
the compass) at each angle.

The specific goals of the treatment plan were
defined as follows:

1. Four beam angles.
2. As the highest priority, the target volume should

receive a dose of between 95% and 107% of the pres-
ribed dose.

3. 90% of each OAR should receive less than 20%
of the target prescribed dose level.

4. The integral dose delivered to the normal tissue
should be kept as small as possible.
To achieve these goals, we set DVH control param-
eters as follows: + L = 0$95, + U = 1$07, r = 10, K = 4,
and ' = 0$2, for each organ in -spinal cord# liver#
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Figure 9 Cumulative Dose-Volume Histogram at Optimum

left kidney# right kidney.. (We included a separate
term of the form )s*!D# −'&e# "+*1/!# ! in the objec-
tive function for each of the four individual critical
structures.)

Figure 9 shows DVH plots of this experiment. The
homogeneity constraints are satisfied for the PTV;
every voxel in the PTV receives between 95% and
107% of the prescribed dose. It is also clear that
approximately 90% of each OAR receives at most
20% of the target prescribed dose, as specified; the
DVH plot for each OAR passes very close to the
point !0$2#0$1" that corresponds to the aforemen-
tioned treatment goal.

Figure 10 shows isodose lines on the slices through
the treatment region obtained by computerized tomo-
graphy. The PTV is outlined within four isodose lines.
The outermost line is the 20% isodose line, which
encloses a region in which the voxels receive a dose
of at least 20% of the PTV prescribed dose. Moving
inwards towards the PTV, we see 50%, 80%, and
95% isodose lines. Figure 10(a) shows an axial slice.
The kidneys are outlined as two circles right below
the PTV. As can be seen, the PTV lies well inside the
95% isodose line, while the dose to the organs at risk
remains reasonable. Figure 10(b) shows a sagittal view
of the PTV with those four isodose lines also.

The three-phase approach outlined here has been
used in a number of other studies. Examples of the
benefits of this procedure on breast, pancreatic, head,
and neck cases, for example, can be found in Ferris
et al. (2004).

7. Summary
We have developed an optimization framework for
3D conformal radiotherapy. The key features of our
methodology are as follows:
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(a) Axial

(b) Sagittal

Figure 10 Isodose Plots: Lines Represent 20%, 50%, 80%, and 95%
Isodoses (20% Line Outermost)

1. Simultaneous optimization of three key param-
eters (beam angles, wedge orientations, and beam
weights) via a sequential-sampling and angle-set-
reduction technique.

2. The use of a penalization scheme (rather than
integer variables) to control the DVH.

3. A three-phase algorithm to find the solution
rapidly using standard software tools for LP and
MIP, and a technique for bounding maximum beam
weights a priori, to increase the efficiency of the MIP
solver. Our approach yielded a 99.5% improvement in
runtime over direct solution of a full-resolution prob-
lem on a clinical data set.
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Appendix. Universal Wedge
We show here that a treatment plan that requires the
use of a wedge is in some cases equivalent to one that
uses a wedge with different properties in combination

with an open (unwedged) beam of the same shape. This
result implies that a single “universal” wedge suffices in
designing a wide range of treatment plans; not much is
to be gained by using a range of wedges with different
properties.

Suppose that at some angle A and some wedge at a given
orientation with parameters % ′

0 and % ′
1 (with 0≤ % ′

0 < % ′
1 ≤ 1),

we have a treatment plan that calls for delivering a weight
w′

A#open through the open beam, and w′
A#west through the

wedge. (The attenuation parameter %ij for beamlet !i# j" is
given by (1).) We now ask whether it is possible to deliver
an equivalent dose through every beamlet using a differ-
ent wedge with the same (west) orientation, and different
parameters %0 and %1, with 0≤ %0 < %1 ≤ 1.

Using (1), we find that the total dose delivered through
beamlet !i# j" is

w′
A#open +w′

A#west

[

% ′
0 +

j − 0$5
N

!% ′
1 − % ′

0"

]

=w′
A#open +w′

A#west1%
′
0 − 0$5/N !% ′

1 − % ′
0"2

+ jw′
A#west!%

′
1 − % ′

0"/N $

If we were to use the alternative wedge with parameters %0
and %1, and weights wA#open and wA#west, we would find that
the total dose delivered through beamlet !i# j" is

wA#open +wA#west1%0 − 0$5/N !%1 − %0"2

+ jwA#west!%1 − %0"/N $

By equating the constant terms and the coefficient of j in
the last two formulae, we find that the plans are equivalent
if

wA#west!%1 − %0"=w′
A#west!%

′
1 − % ′

0"

and

wA#open +wA#west1%0 − 0$5/N !%1 − %0"2

=w′
A#open +w′

A#west1%
′
0 − 0$5/N !% ′

1 − % ′
0"2$

By rearranging and substituting, we find that the weights
for the new beam must be

wA#west =
% ′
1 − % ′

0

%1 − %0
w′

A#west

and
wA#open =w′

A#open +w′
A#west

[

% ′
0 −

% ′
1 − % ′

0

%1 − %0
%0

]

$ (18)

Note that wA#west is always nonnegative whenever w′
A#west

is nonnegative, but that wA#open is not necessarily nonnega-
tive, even when the weights for the original wedge are both
nonnegative. However, a sufficient condition for wA#open to
be nonnegative for any nonnegative values of w′

A#open and
w′

A#west is that
% ′
0

%0
≥ % ′

1 − % ′
0

%1 − %0
#

since this condition ensures that the bracketed term on
the right-hand side of (18) is nonnegative. This condition
implies that, given a solution using a particular wedge, we
can always identify an equivalent plan using an alternative
wedge with the same (or smaller) value of %0 and a larger
value of %1 − %0.
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