
Optimization Qualifer Exam University of Wisconsin-Madison

Fall 2012 Qualifier Exam:

OPTIMIZATION

September 24, 2012

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and the

question answered in that book. On one of your books list the numbers of all the questions

answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if

needed.

SPECIFIC INSTRUCTIONS:

Answer 4 out of 6 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the

exam sometimes contains misprints and ambiguities. If you are convinced a problem has been

stated incorrectly, mention this to the proctor. If necessary, the proctor can contact a represen-

tative of the area to resolve problems during the first hour of the exam. In any case, you should

indicate your interpretation of the problem in your written answer. Your interpretation should

be such that the problem is nontrivial.
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1. Consider the following convex quadratic program with a single equality constraint, non-

negativity constraints, and a diagonal Hessian:

min
x∈Rn

1

2
xTQx+ cTx subject to aTx = 1, x ≥ 0, (1)

where a ∈ Rn is a vector with all positive entries, and Q is a diagonal matrix with all

positive diagonal entries.

(a) Suppose we drop the bounds x ≥ 0 from the formulation (1). Write down the KKT

conditions for the resulting simplified problem, and use them to deduce the solution

x in closed form.

(b) Returning to the full problem (1), write down the KKT conditions, denoting the

Lagrange multiplier for the constraint aTx = 1 by λ.

(c) Fixing the value of λ in these KKT conditions, find the value of xi, i = 1, 2, . . . , n

that satisfies these conditions as an explicit function of λ. (Use the notation xi(λ),

i = 1, 2, . . . , n to denote these values.)

(d) Show that the function t : R→ R defined by

t(λ) = aTx(λ)− 1 =
n∑
i=1

aixi(λ)− 1

is a monotonic piecewise linear function of λ, and identify the breakpoints of this

function (the points where the slope changes discontinuously).

Answer:

(a) The KKT conditions for the simplified problem are

Qx+ c− λa = 0, aTx = 1.

Since A is positve definite diagonal, we can use the first condition to express x ex-

plicitly in terms of λ: x = Q−1(λa − c). Substituting into the constraint, we have

aTQ−1(λa − c) = 1, from which we deduce that λ = (1 + aTQ−1c)/(aTQ−1a). We

thus obtain

x = Q−1
[

1 + aTQ−1c

aTQ−1a
a− c

]
.

(b)

0 ≤ Qx+ c− λq ⊥ x ≥ 0, aTx = 1.

(c)

xi(λ) = max (0, (aiλ− ci)/Qii, 0) , i = 1, 2, . . . , n.
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(d) Note that each xi(λ) in (c) is a piecewise linear function of λ with two pieces separated

by a breakpoint located at ci/ai. We have

xi(λ) =

0 for λ ≤ ci/ai
(aiλ− ci)/Qii for λ ≥ ci/ai.

Since ai > 0 for all i, the function t(λ) inherits the properties of piecewise linearity

and monotonicity, and also inherits the breakpoints ci/ai, i, 1, 2, . . . , n.

3

2. The Christmas board game “22” involves a board with 13 holes and 13 pegs which fit in

the holes. The pegs are numbered from 1 to 13. Holes are situated at the 12 intersection

points on a six-pointed star and in the center of the star. To play the game, a peg is

inserted in each hole. A winning configuration is one in which the sum of values for each

of the six outer triangles sums to 22. Here, for example, is a winning assignment:

13

5 4

10

7

1 12

6

3 9 2 8

11

In your solution, use the following indexing scheme to reference the game board holes:

h1

h3 h4

h6

h2

h0 h7

h5

h8 h9 h10 h11

h12
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(a) Determine which variables are needed to provide a solution to the game?

(b) Define a mapping H(t) that provides the subset of “holes” used in triangle t and use

this to write down the “22” constraint. Note that t will range from 1 to 6, indicating

each of the “outer” triangles.

(c) Write the full mathematical (or GAMS) model which finds a solution to the game.

(d) Suppose this model is solved for one solution. Determine an additional constraint

that would eliminate just this solution, and enable the model to be rerun to find

another solution.

(e) What techniques could you use to remove “equivalent solutions” from within your

model search? Provide two constraints that remove such “symmetries” from your

search.

(f) Write pseudo-code (GAMS or similar for example) that shows the sequence of model

solves that will find all solutions to the game.

Answer: $title Christmas board game

option limrow=0, limcol=0, solprint=off; $offlisting

set h /h0*h12/; set tri /t1*t6/; set p /p1*p13/; set map(tri,h) / t1.(h1,h3,h4), t2.(h2,h3,h6),

t3.(h4,h5,h7), t4.(h6,h8,h9), t5.(h7,h10,h11), t6.(h9,h10,h12) /; set inner(h) /h3,h4,h6,h7,h9,h10/;

set cuts /c1*c1000/; set cut(cuts); set soln(cuts,h,p);

equations sumup(tri), onepeg(p), oneper(h), dummy, sym1(h), sym2, remove(cuts); vari-

ables obj; binary variables x(h,p);

sumup(tri).. sum((h,p)$map(tri,h), p.ord*x(h,p)) =e= 22;

onepeg(p).. sum(h, x(h,p)) =e= 1;

oneper(h).. sum(p, x(h,p)) =e= 1;

* fix inner permutation so h3 has minimum value sym1(h)$(inner(h) and not sameas(h,’h3’))..

sum(p, p.ord*x(’h3’,p)) + 1 =l= sum(p, p.ord*x(h,p));

* inner permutation can go both ways: disallow sym2.. sum(p, p.ord*x(’h4’,p)) + 1 =l=

sum(p, p.ord*x(’h6’,p));

* exclude solutions via cut to generate all solutions remove(cut).. sum((h,p)$(inner(h) and

soln(cut,h,p)), x(h,p)) =l= 5;

dummy.. obj =e= 0;

model xmas22 /all/;

alias(c,cuts); scalar done /0/; cut(cuts) = no; soln(cuts,h,p) = no;

* fix to improve computing time marginally * x.fx(’h3’,p)$(p.ord gt 6) = 0;

loop(c$(not done), solve xmas22 using mip min obj; if (xmas22.modelstat eq 1, soln(c,h,p)$(x.l(h,p)

gt 0.9) = 1; cut(c) = yes; else done = 1; ); );
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* run using command options: ps=9999999 pw=240 parameter allsols(cuts,h); allsols(cut,h)

= sum(p$soln(cut,h,p), p.ord); option allsols:0:1:1; display allsols;

* Total solutions is then dimension of cut * 12 * for each solution, move h3 to another

inner hole * for each solution, flip the ordering of the permutation in inner holes 3

3. In this problem, we will consider the feasible region of a chance-constrained problem:

X = {x ∈ Rn | P[gi(x, ξ) ≥ 0 ∀i = 1, . . . ,m] ≥ 1− ε},

with each constraint function

gi : Rn × Rd → R̄,

and ξ being a random vector on a probability space (Ω,Σ,P).

(a) The set X is in general not convex. Give a simple example of constraints gi(x, ξ) and

probability space (Ω,Σ,P), where X is not a convex set. Prove that your example

set X is not convex.

(b) Now suppose the feasible region takes the form

X = {x ∈ Rn | P(ξTx ≥ b) ≥ 1− ε},

where ξ ∈ Rn is a normally distributed random vector with mean µ and covariance

matrix Q. Show that X is convex if ε < 0.5.

(c) In this concrete example, we will consider a production/distribution problem with a

set J of customers whose (random) demand dj(ξ) must be met from a set of facilities

I. Let xij be the amount of product shipped from i ∈ I to j ∈ J . Suppose that

the random demand for customer j comes from a discrete distribution; namely, that

the demand of customer j in scenario s ∈ S is djs with probability ps, for a finite

set of scenarios S. We must choose the distribution amounts xij before the demands

djs are known. We would like to impose the constraint that the probability that all

customers get their demand met is at least 1 − ε. Demonstrate how to model this

using binary variables.

Answer:

(a) Here’s one simple example. Let ξ = (ξ1, ξ2)
T ∈ R2 have two outcomes:

Ω =

{(
0.25

0.75

)
,

(
0.75

0.25

)}
,

with each outcome having probability 0.5 of occuring. Consider the set

X = {x ∈ R2 | x1 ≥ ξ1, x2 ≥ ξ2}.
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The points y = (0.25, 0.75)T and z = (0.75, 0.25) are both inX. However 0.5y+0.5z =

(0.5, 0.5)T 6∈ X, so X is not convex.

(b) We argue convexity by first doing a standard transformation to the standard normal:

P(ξTx ≥ b) = P

(
ξTx− µTx√

xTQx
≥ b− µTx√

xTQx

)

= 1− Φ

(
b− µTx√
xTQx

)
.

So

P(ξTx ≥ b) ≥ 1− ε

when

1− Φ

(
b− µTx√
xTQx

)
≥ 1− ε,

or when

Φ

(
b− µTx√
xTQx

)
≤ ε.

The standard normal cdf is invertible, so we can say that

X = {x ∈ Rn | b− µTx− Φ−1(ε)
√
xTQx ≤ 0}.

It remains to argue that X is convex. Note that Φ−1(ε) < 0 for ε < 0.5, and since

Q � 0, the function
√
xTQx =

√
xTLLTx =

√
uTu = ‖u‖2 for some matrix L. The

‖ · ‖2 function is convex, so b− µTx− Φ−1(ε)
√
xTQx is convex, and thus so is X.

(c) For each scenario s ∈ S, we need to introduce binary indicator variables zs that will

be 1 if ∑
i∈I

xij < djs for some j ∈ J.

We add the following two classes of constraints:∑
i∈I

xij − djszs ≥ djs ∀j ∈ J, ∀s ∈ S∑
s∈S

pszs ≤ ε.

3

4. Let X be the set of (x, y) ∈ {0, 1}n × {0, 1}n(n−1)/2 that satisfy

yij ≤ xi, ∀1 ≤ i < j ≤ n (2)

yij ≤ xj , ∀1 ≤ i < j ≤ n (3)

xi + xj − yij ≤ 1, ∀1 ≤ i < j ≤ n. (4)
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(a) Use Gomory-Chvátal rounding to show that the inequality

xi + xj + xk ≤ yij + yjk + yik + 1 (5)

is valid for conv(X) for any 1 ≤ i < j < k ≤ n.

(b) Show that the inequality

yij + yik ≤ xi + yjk (6)

is valid for conv(X) for any 1 ≤ i < j < k ≤ n. (You do not have to use Gomory-

Chvátal rounding for this question, but you may if you wish.)

(c) Now, suppose that n = 3. Prove the specific case of inequality (6),

y12 + y13 ≤ x1 + y23, (7)

is facet-defining for conv(X). You may take as given the fact that dim(conv(X)) = 6,

i.e., conv(X) is full-dimensional.

Answer:

(a) Add inequality (4) for {i, j}, {i, k} and {j, k} yields

2xi + 2xj + 2xk − yij − yjk − yik ≤ 3.

Divide by two yields,

xi + xj + xk − (1/2)yij − (1/2)yjk − (1/2)yik ≤ 3/2.

Round down the coefficients on the left-hand side yields,

xi + xj + xk − yij − yjk − yik ≤ 3/2.

Now, round down the right-hand side yields,

xi + xj + xk − yij − yjk − yik ≤ 1.

Rearranging yields (5).

(b) I give two possible correct answers. First, is a direct case-by-case argument. Suppose

xi = 0. Then, by (2), it holds that yij = 0 and yik = 0, and hence

yij + yik = 0 ≤ xi + yjk

and so (6) holds. Now suppose xi = 1. If xj = 0, then yij = 0 by (3), and hence

yij + yik = yik ≤ 1 = xi ≤ xi + yjk

and so (6) holds. A symmetric argument works if xk = 0. If xj = 1 and xk = 1, then

by (4), it holds that yjk = 1, and hence

yij + yik ≤ 2 = xi + yjk
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and so (6) holds.

The second argument is based on Gomory-Chvátal rounding. First, add inequalities

(2) and (3) for (i, j) and for (i, k), which yields

2yij + 2yik − 2xi − xj − xk ≤ 0.

Now add inequality (4) corresponding to (j, k) to obtain

2yij + 2yik − 2xi − yjk ≤ 1.

Now divide by two:

yij + yik − xi − (1/2)yjk ≤ 1/2.

Round down the coefficients:

yij + yik − xi − yjk ≤ 1/2.

Finally, round down the right-hand side:

yij + yik − xi − yjk ≤ 0.

Rearranging yields the inequality (6).

(c) We must provide six affinely independnet points in conv(X) that satisfy the inequality

as an equation. Consider the six points below:

x1 x2 x3 y12 y13 y23 y12 + y13 x1 + y23

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 1 0 1 0 0 1 1

1 0 1 0 1 0 1 1

1 1 1 1 1 1 2 2

As verified in this table, each of these points satisfies (7) as an equation. In addition,

noting that (2) – (4) model the conditions that yij = xixj , it is easy to check that

these points are in X and hence are in conv(X). Finally, subtracting the first point

from the others doesn’t change them, and hence it is sufficient to show the final 5

points are linearly independent. Note from their arrangement in the table that these

points form a lower-triangular matrix with ones on the diagonal, and hence these

points have full row-rank, and thus are linearly independent. (Depending on the

order the points are given in, row and column swaps may be necessary to make it

obvious the points are linearly independent.)

3
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5. (a) Suppose that f : Rn → R is convex and concave. Show that f must be an affine

function.

(b) Suppose that f : Rn → R is convex and bounded above. Show that f must be a

constant function.

(c) Suppose f : Rn → R is strongly convex and Lipschitz, meaning that there is a constant

L such that |f(x)− f(y)| ≤ L||x− y|| for all x and y. Show no such f exists.

Answer:

(a) If f is both convex and concave, f(x) = f(0) + vTx for all x and some v ∈ ∂f(0).

(b) If f is not constant, then there is a line that goes off to infinity that lower bounds

the function contradicting boundedness.

(c) Assuming Lipschitz gives: |f(x)− f(y)| < L||x− y|| for some constant L. Assuming

strongly convex and Lipschitz gradients gives:

|f(x)− f(y)| > −|∇f(x)T (x− y)|+ `/2||x− y||2 > (`/2||x− y|| − ‖∇f(x)‖)||x− y|| .

Putting these together gives

`/2||x− y|| < ‖∇f(x)‖+ L

for all x and y in Rd. Plugging in x = 0 and y sufficiently large gives a contradiction.

3

6. Consider the following optimization problem, which is parametrized by the scalar α:

P (α) : min
x∈Rn

f(x) subject to pTx ≤ α, (8)

where f : Rn → R is a smooth, strongly convex function and p is a nonzero vector in

Rn. We denote the optimal objective value for this problem by φ(α), and note that the

problem (8) has a unique minimizer x(α) for each α ∈ R.

(a) Show that φ is a convex, decreasing function of α.

(b) Show that φ is a continuous function of α.

(c) Show that there is a threshold value ᾱ such that φ(α) = φ(ᾱ) for all α ≥ ᾱ while

φ(α) > φ(ᾱ) for all α < ᾱ. (Hint: Consider the unconstrained global minimizer x∗ of

f(x).)

(d) Consider the following related problem, in which λ ≥ 0 is a parameter:

min
z∈Rn

f(z) + λpT z, (9)

where f and p are the same as in (8). Show that the point z(λ) that solves (9) is

identical to the solution x(α) of (8) if we set α = pT z(λ).
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Answer:

(a) Consider two values α1 < α2 and set α := ρα1 + (1 − ρ)α2, for some ρ ∈ [0, 1]. The

point xρ := ρx(α1) + (1− ρ)x(α2) is feasible for P (α), and we have

φ(α) ≤ f(xρ) ≤ ρf(x(α1)) + (1− ρ)f(x(α2)) = ρφ(α1) + (1− ρ)φ(α2),

proving convexity. The fact that φ is a decreasing function of α follows immediately

from the fact that the feasible set for P (α) increases as α increases.

(b) Continuity follows from monotonicity, convexity, and the fact that φ has domain R.

We can prove from first principles as follows. Given any α and small ε > 0 note that

x(α) + εp/(pT p) is feasible for P (α+ ε), so

φ(α+ ε) ≤ f(x(α) + εp/(pT p)) = f(x(α)) +O(ε) = φ(α) +O(ε).

Similarly, x(α+ ε)− εp/(pT p) is feasible for P (α), so

φ(α) ≤ f(x(α+ ε)− εp/(pT p)) = φ(α+ ε) +O(ε).

By combining these bounds, we have |φ(α)− φ(α+ ε)| = O(ε) for all ε ≥ 0, implying

continuity of φ at α.

(c) Set ᾱ = f(x∗), where x∗ is the unconstrained minimized of f . Note that x∗ is feasible

for P (α) for all α ≥ ᾱ, so φ(α) = φ(ᾱ). For α < ᾱ we must have φ(α) > φ(ᾱ), since

otherwise we would have x(α) 6= x∗ with f(x(α)) ≤ f(x∗), which is not possible since

x∗ is the global minimizer of f , unique because f is convex.

(d) The unique solution z(λ) of (9) satisfies ∇f(z(λ)) + λp = 0. Comparing with the

KKT conditions for (8), namely,

∇f(x)− γp = 0, 0 ≤ γ ⊥ α− pTx ≥ 0,

we see that x = z(λ) and γ = λ satisfies these conditions, when α is defined as in the

question. Thus z(λ) is the unique solution of P (α) when α = pT z(λ).

3
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