
Optimization Qualifer Exam University of Wisconsin-Madison

Fall 2013 Qualifier Exam:

OPTIMIZATION

September 16, 2013

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and the

question answered in that book. On one of your books list the numbers of all the questions

answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if

needed.

SPECIFIC INSTRUCTIONS:

Answer all 4 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the

exam sometimes contains misprints and ambiguities. If you are convinced a problem has been

stated incorrectly, mention this to the proctor. If necessary, the proctor can contact a represen-

tative of the area to resolve problems during the first hour of the exam. In any case, you should

indicate your interpretation of the problem in your written answer. Your interpretation should

be such that the problem is nontrivial.

Fall 2013 Page 1



Optimization Qualifer Exam University of Wisconsin-Madison

1. In this problem, we will attempt to solve the quadratic program:

min
x≥0

f(x)
def
=

1

2
xTMx+ (r − ae)Tx (P)

where we are given parameters a ∈ R+, r ∈ Rn, e ∈ Rn is a vector of all ones, and the

matrix M has the value 2 for its diagonal elements, and 1 everywhere else. Specifically,

M = J + I, where J = eeT ∈ Rn×n is the matrix of all ones, and I ∈ Rn×n is the identity

matrix.

(a) Show that M = J + I is positive-definite.

(b) Write the KKT conditions for (P).

(c) Assume that r1 ≤ r2 ≤ . . . ≤ rn. Establish the following monotonicity property for

an optimal solution x∗ to (P):

x∗i = 0⇒ x∗j = 0 ∀j > i.

(d) Show that

M−1 =
1

n+ 1


n −1 · · · −1

−1 n . . . −1
...

...
. . .

...

−1 −1 · · · n


(e) Let R(P) be the problem (P) without the non-negativity constraints x ≥ 0. Write a

closed-form solution (formula) for an optimal solution to R(P).

(f) Using all these results, determine a closed-form solution for x∗, an optimal solution

to (P).

Answer:

(a) M = J + I is strictly positive definite because the quadratic form

xT (J + I)x = xTJx+ xTx

is positive for all x 6= 0.

(b) The KKT system for (P) is

x ≥ 0

Mx+ r − ae = µ (1)

µ ≥ 0

µTx = 0
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(c) Proof is by contradiction. Suppose xi = 0 and xj > 0 for some j > i and some

optimal solution x. By complementary slackness, µj = 0, and the ith and jth rows

of the equations (1) are  n∑
k=1,k 6=i

xk

+ ri − a = µi n∑
k=1,k 6=i

xk

+ xj + ri − a = 0

Substituting µi − ri + a =
∑n

k=1,k 6=i xk into the jth row gives

µi − ri + a+ xj + rj − a = 0, or

ui + xi = ri − rj (2)

The left hand side of (2) is > 0, and the right hand side is ≤ 0, a contradiction.

(d) It is easy to show that MM−1 = I

(e) If the problem is unconstrained, then the optimal solution occurs at the point x where

∇f(x) = 0. This implies that

Mx+ r − ae = 0, or x = M−1(ae− r)

If you do the multiplication using the closed form for M−1, you get that

x∗i =
1

n+ 1

a− (n+ 1)ri +

n∑
j=1

rj

 .

(f) Using the monotonicty property proved in [c], we characterize the solution to the

KKT system of (P) in terms of p, the number of components of x∗i that are positive.

Writing (1) gives  p∑
j=1

x∗j + x∗i

+ ri − a = 0 ∀i ≤ p (3)

 p∑
j=1

x∗j

+ ri − a = µ∗i ∀i > p (4)

The equation (3) are p equations in p unknowns, and they have the closed form

solution

x∗i =
1

(p+ 1)

a− (p+ 1)ri +

p∑
j=1

rj

 ∀i ≤ p (5)
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One can also show then by substituting (5) into (4) that

µ∗i =
−1

p+ 1

a− (p+ 1)ri +

p∑
j=1

rj

 ∀i > p (6)

Define

Sj =

j∑
i=i

ri

κi(p) = a− (p+ 1)ri + Sp

Thus what we have shown is that for x∗i , µ
∗
i to define an optimal solution, we need to

choose the number of positive components p∗ of x to be such that

κi(p
∗) ≥ 0 ∀i ≤ p∗

κi(p
∗) ≤ 0 ∀i > p∗.

3

2. Consider the multi-item lot-sizing problem formulated below:

min
x,y,s

m∑
i=1

n∑
t=1

(pitxit + hitsit + fityit) (7)

s.t.
m∑
i=1

Cityit ≤ Bt, t = 1, . . . , n (8)

si,t−1 + xit − sit = dit, t = 1, . . . , n, i = 1, . . . ,m (9)

xit ≤ Ditnyit, t = 1, . . . , n, i = 1, . . . ,m (10)

sit ≥ 0, xit ≥ 0, yit ∈ {0, 1}, t = 1, . . . , n, i = 1, . . . ,m. (11)

where si0 = 0 is a constant, all data (Bi, Cit, dit, pit, hit, fit) is positive and Dit` =
∑`

j=t dij

for any 1 ≤ t ≤ `. For each item i, define

Xi = {xi ∈ Rn
+, yi ∈ {0, 1}n, si ∈ Rn

+ : (9)− (10).}

For each i, the `-S inequalities∑
j∈S

xij ≤
∑
j∈S

Dij`yij + si`, ∀S ⊆ {1, . . . , `}, ` ∈ {1, . . . , n} (12)

are valid for conv(Xi). Furthermore, it is known that the convex hull of Xi is given by:

conv(Xi) =
{
xi ∈ Rn

+,yi ∈ [0, 1]n, si ∈ Rn
+ : (9)− (10), (12)

}
.

Let zLP1 be the value of the LP relaxation of (7) – (11) (i.e., where yit ∈ {0, 1} is replaced

by yit ∈ [0, 1]) and let zLP2 be the value of the LP relaxation of (7) – (11) augmented with

the additional inequalities (12).

Fall 2013 Page 4



Optimization Qualifer Exam University of Wisconsin-Madison

(a) Write down the Lagrangian relaxation problem obtained by relaxing constraints (8)

and the associated Lagrangian dual problem.

(b) Can the Lagrangian relaxation problem from part (a) be solved by solving a set of

smaller subproblems? If so, describe in words what these subproblems represent. If

not, explain why not.

(c) Let wLD
1 be the optimal value of the Lagrangian dual associated with the relaxation

you wrote in part (a). How does wLD
1 compare to zLP1 ? Choose one answer and

explain. Note: here and in the following sub-questions, you may apply (without

proof) known Lagrangian duality theory in your explanation.

i. wLD
1 = zLP1 .

ii. wLD
1 ≥ zLP1 and inequality might be strict.

iii. wLD
1 ≤ zLP1 and inequality might be strict.

iv. Based on the given information either wLD
1 > zLP1 or wLD

1 < zLP1 is possible.

(d) How does wLD
1 compare to zLP2 ? Choose one answer and explain:

i. wLD
1 = zLP2 .

ii. wLD
1 ≥ zLP2 and inequality might be strict.

iii. wLD
1 ≤ zLP2 and inequality might be strict.

iv. Based on the given information either wLD
1 > zLP2 or wLD

1 < zLP2 is possible.

(e) Now consider an alternative Lagrangian relaxation problem in which constraints (9)

are relaxed (and (8) are not relaxed). Let wLD
2 be the optimal value of the associated

Lagrangian dual problem. How does wLD
2 compare to zLP2 ? Choose one answer and

explain:

i. wLD
2 = zLP2 .

ii. wLD
2 ≥ zLP2 and inequality might be strict.

iii. wLD
2 ≤ zLP2 and inequality might be strict.

iv. Based on the given information either wLD
2 > zLP2 or wLD

2 < zLP2 is possible.

Answer:

(a) Let π ∈ Rn
+ be the multipliers for relaxing (8). We obtain the Lagrangian relaxation

problem:

L1(π) = min
m∑
i=1

n∑
t=1

(pitxit + hitsit + fityit) +

n∑
t=1

πt
( m∑
i=1

Cityit −Bt

)
s.t. (9)− (11).

The associated Lagrangian dual problem is:

max{L1(π) : π ∈ Rn
+}
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(b) Yes, the problem decomposes into a separate single-item lot sizing problems for each

item.

(c) wLD
1 ≥ zLP1 and inequality might be strict. Explanation: This inequality holds for

any Lagrangian dual problem. By Lagrangian duality theory, we know that:

wLD
1 = min{

m∑
i=1

n∑
t=1

(pitxit + hitsit + fityit) : (8), (xi, si, yi) ∈ conv(Xi), i = 1, . . . ,m}.

Therefore, inequality might be strict because the basic LP relaxation of the single-

item sets Xi does not define the convex hull conv(Xi)..

(d) wLD
1 = zLP2 . The LP relaxation with the addition of the `-S inequalities does define

the convex hull of the single-item lot sizing sets, and so the bounds are identical.

(e) Lagrangian duality theory shows that:

wLD
2 = min{

m∑
i=1

n∑
t=1

(pitxit + hitsit + fityit : y·,t ∈ conv(Yt), (9)− (10), x ≥ 0, s ≥ 0}

where for each t, Yt = {y·,t ∈ {0, 1}m :
∑m

i=1Cityit ≤ Bt} is the single period

knapsack set. The constraints y·,t ∈ conv(Yt) are potentially stronger than (8) plus

y ∈ [0, 1]m, and so it’s possible that wLD
2 > wLD

1 . On the other hand, the constraints

(xi, si, yi) ∈ conv(Xi) are potentially stronger than (9) - (10) and xi ≥ 0, si ≥ 0,

yi ∈ [0, 1]m and so the reverse inequality is also possible. (Not asked for, but the

obvious formulation better than both of them is to also include the `-S inequalities

in the second Lagrangian dual. )

3

3. Let f be twice continuously differentiable. Suppose that x∗ is a local minimum such that

for all x in an open sphere S centered at x∗, we have, for some m > 0,

m ‖d‖2 ≤ dT∇2f(x)d, ∀d ∈ Rn.

Show that for every x ∈ S, we have

‖x− x∗‖ ≤ ‖∇f(x)‖
m

, f(x)− f(x∗) ≤ ‖∇f(x)‖2

m
.

Hint: use the relation

∇f(y) = ∇f(x) +

∫ 1

0
∇2f(x+ t(y − x))(y − x)dt.

Answer: We have

∇f(x)−∇f(x∗) =

∫ 1

0
∇2f(x∗ + t(x− x∗))(x− x∗)dt
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and since ∇f(x∗) = 0, we obtain

(x− x∗)T∇f(x) =

∫ 1

0
(x− x∗)T∇2f(x∗ + t(x− x∗))(x− x∗)dt ≥ m

∫ 1

0
‖x− x∗‖2 dt.

Using the Cauchy-Schwartz inequality (x− x∗)T∇f(x) ≤ ‖x− x∗‖ ‖∇f(x)‖, we have

m

∫ 1

0
‖x− x∗‖2 dt ≤ ‖x− x∗‖ ‖∇f(x)‖ ,

and

‖x− x∗‖ ≤ ‖∇f(x)‖
m

.

Now define for all scalars t,

F (t) = f(x∗ + t(x− x∗)).

We have

F ′(t) = (x− x∗)T∇f(x∗ + t(x− x∗))

and

F ′′(t) = (x− x∗)T∇2f(x∗ + t(x− x∗))(x− x∗) ≥ m ‖x− x∗‖2 ≥ 0.

Thus F ′ is an increasing function, and F ′(1) ≥ F ′(t) for all t ∈ [0, 1]. Hence

f(x)− f(x∗) = F (1)− F (0) =

∫ 1

0
F ′(t)dt

≤ F ′(1) = (x− x∗)T∇f(x)

≤ ‖x− x∗‖ ‖∇f(x)‖ ≤ ‖∇f(x)‖2

m
,

where in the last step we used the result shown earlier. 3

4. Consider the following constrained optimization problem

(A) min
x

f(x) s.t. ci(x) ≥ 0, i = 1, 2, . . . ,m,

where f : Rn → R and ci : Rn → R are smooth functions. Consider the following

reformulation of (A) that makes use of “squared slack variables:”

(B) min
x,s

f(x) s.t. ci(x)− s2i = 0, i = 1, 2, . . . ,m.

Evidently any solution of

(a) Write down the Karush-Kuhn-Tucker (KKT) conditions for both (A) and (B).

(b) If x∗ is a KKT point for (A), verify that we can obtain a KKT point for (B) by setting

x∗ to the same value and defining s∗i =
√
ci(x∗).
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(c) If (x∗, s∗) is a KKT point for (B), is it true that x∗ must be a KKT point for (A)?

Explain.

(d) Write down the linear independence constraint qualification (LICQ) conditions for

both (A) and (B). (Use A to denote the set of active indices in (A), that is, A :=

{i = 1, 2, . . . ,m : ci(x
∗) = 0}.)

(e) Given a KKT point x∗ for (A) at which LICQ holds, is it true that the LICQ condi-

tions for (B) are satisfied at the KKT point for (B) constucted as in part (b)?

(f) Write down the Mangasarian-Fromovitz constraint qualifications (MFCQ) for both

(A) and (B).

(g) Given a KKT point x∗ for (A) at which MFCQ holds, is it true that the MFCQ

conditions for (B) are satisfied at the KKT point for (B) constucted as in part (b)?

Answer:

(a) For (A): There exists λ∗ ∈ Rm such that

(A) ∇f(x∗)−
m∑
i=1

λ∗i∇ci(x∗) = 0, 0 ≤ λ∗i ⊥ ci(x∗) ≥ 0, i = 1, 2, . . . ,m.

For (B): There exists λ∗ ∈ Rm such that

(B) ∇f(x∗)−
m∑
i=1

λ∗i∇ci(x∗) = 0, 2s∗iλ
∗
i = 0, ci(x

∗)−(s∗i )
2 = 0, i = 1, 2, . . . ,m.

(b) If x∗ is a KKT point for (A), we have λ∗ ∈ Rm that satisfies the conditions above for

(A). Defining s∗ as in the question, it is obvious that (x∗, s∗, λ∗) satisfy the conditions

for (B) above.

(c) No. If (x∗, s∗, λ∗) satisfies the conditions for (B), it is clear that x∗ will be feasible

for (A) and that the required complementarity conditions involving λ∗i and ci(x
∗) are

satisfied. Moreover, we will have ci(x
∗) ≥ 0. However, there is no guarantee that the

λ∗i are nonnegative, as required by the KKT conditions for (A).

(d) For (A), we need that {∇ci(x∗) : i ∈ A} is a linearly independent set. For (B), since

all constraints are equalities (and hence all are active), we require the following set

of vectors in Rm+n to be linearly independent:{[
∇fi(x∗)
−2s∗i ei

]
: i = 1, 2, . . . ,m

}
,

where ei is the ith unit vector in Rm.

(e) Yes. Suppose we have wi, i = 1, 2, . . . ,m such that

m∑
i=1

[
∇fi(x∗)
−2s∗i ei

]
wi = 0.
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For i /∈ A, we have s∗i > 0, so by examining the n+ i component of this summation,

we conclude that wi = 0. The first n components of the summation therefore yield∑
i∈A
∇ci(x∗)wi = 0,

which implies that wi = 0 for all i ∈ A, by the LICQ conditions for (A).

(e) Using the active set notation A, the MFCQ conditions for (A) are that there is a

vector v ∈ Rn such that ∇ci(x∗)T v > 0 for all i ∈ A. Formulation (B) has only

equality constraints, so the MFCQ condition here is simply that the Jacobian is

linearly independent — the same condition as LICQ desribed in the answer to part

(d).

(f) No. In order for MFCQ for (B) to hold, we need the set of active constraint gradients

{∇ci(x∗) : i ∈ A} to be linearly independent. This is not guaranteed by MFCQ for

(A).

3
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