
Optimization Qualifer Exam University of Wisconsin-Madison

Fall 2014 Qualifier Exam:

OPTIMIZATION

September 15, 2014

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and the

question answered in that book. On one of your books list the numbers of all the questions

answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if

needed.

SPECIFIC INSTRUCTIONS:

Answer 4 of 5 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the

exam sometimes contains misprints and ambiguities. If you are convinced a problem has been

stated incorrectly, mention this to the proctor. If necessary, the proctor can contact a represen-

tative of the area to resolve problems during the first hour of the exam. In any case, you should

indicate your interpretation of the problem in your written answer. Your interpretation should

be such that the problem is nontrivial.
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1. Let ai ∈ Rn and bi ∈ R, i = 1, . . . ,m, d > 0, and c ∈ Rn.

(a) Formulate the problem

max
{
c>x :

m∑
i=1

max{a>i x− bi, 0} ≤ d, x ≥ 0
}

(1)

as a compact linear program. (Compact here means that the number of decision

variables and constraints is polynomial in n and m.)

(b) Now write down an (exponential) number of linear inequalities just involving x that

would be equivalent to the original nonlinear inequality in (1), and show this equiva-

lence. (Hints: (i) To build intuition on what the form of this formulation will be, you

may find it helpful to consider a special case with n = 1, and also start with m = 1

and m = 2. (ii) Alternatively, it may help to think about how you would check if a

given solution x̂ is feasible to (1).)

(c) Explain how you would use a cutting plane approach for solving the formulation

defined using the inequalities in part (b).

Answer:

(a) Introduce variables yi, i = 1, . . . ,m yielding the formulation:

max c>x

s.t.yi ≥ a>i x− bi, ı = 1, . . . ,m
m∑
i=1

yi ≤ d

y ≥ 0, x ≥ 0

(b) The formulation is:

max c>x

s.t.
∑
i∈S

(a>i x− bi) ≤ d, ∀S ⊆ {1, . . . ,m} (2)

x ≥ 0

Suppose x is feasible to (1) and let S ⊆ {1, . . . ,m}. Then∑
i∈S

(a>i x− bi) ≤
∑
i∈S

max{a>i x− bi, 0} ≤
m∑
i=1

max{a>i x− bi, 0} ≤ d

and therefore x is feasible to (2).

Now suppose x is feasible to (2). Then, let S∗ = {i = 1, . . . ,m : a>i x − bi > 0}. By

definition of S∗ and (2), it holds that

m∑
i=1

max{a>i x− bi, 0} =
∑
i∈S∗

(a>i x− bi) ≤ d.
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(c) Separation of a violated inequality at a point x̂ is efficient: just find Ŝ = {i : a>i x̂−bi >
0 and evaluate

∑
i∈Ŝ(a>i x̂−bi). If it exceeds d a violated inquality is found, otherwise

there is none. This separation can either be used in the ellipsoid algorithm for a

polynomial algorithm, or in conjunction with the simplex algorithm as part of a

cutting plane algorithm that is likely to solve efficiently in practice.

3

2. Consider the following data describing hydrological characteristics of a small hydroelectric

power station.

m denotes month

fm Water inflow in month m (million cubic meters)

p̄m Market price of electricity in month m

Lmax Maximum water level the dam can store (million cubic meters)

Lmin Minimum water level the dam can store (million cubic meters)

Rmax Maximum water which can be released per month

κ Energy per amount of water (megawatt hours per million cubic meters)

In any given month, water may be spilled to respect the maximum reservior level. When

water is spilled, it leaves the reservoir without producing energy.
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(a) Formulate a steady-state monthly linear programming (LP) model which maximizes

annual profit, taking market prices as given.

Use the following notation:

Lm Reservior level at the start of month m

Rm Water released during month m to generate electricity

Sm Water spilled during month m

(b) Write out key elements of the GAMS code for this model.

(c) Suppose that monthly demand as a function of price (pm) is given by:

Dm = αm − βmpm

where pm is the market price, and αm and βm are both positive constants. Formu-

late a quadratic programming (QP) model to determine the production profile which

maximizes profit.

Answer:

(a) Let Rm denote the water released to generate electricity in month m, and let Sm

represent the water which is spilled, and let Lm represent the reservior level at the

start of month m.

max
∑
m

p̄mκRm

subject to:

Lm++1 = Lm + fm −Rm − Sm

Lmin ≤ Lm ≤ Lmax

Rm ≤ Rmax

Rm, Sm ≥ 0

Here we have used the “++” operator to reference the set of months on a “ring”, i.e.

january = december + +1.

(b) The GAMS code is:

(c)

max
∑
m

Dm(αm −Dm)/βm

subject to:

Dm = κRm

Lm++1 = Lm + fm −Rm − Sm

Lmin ≤ Lm ≤ Lmax
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Rm ≤ Rmax

Rm, Sm ≥ 0

3

3. Let n ∈ Z with n ≥ 2, and for all 1 ≤ i < j ≤ n consider the following sets of constraints:

xi + xj − yij ≤ 1, (3)

−xi + yij ≤ 0, (4)

−xj + yij ≤ 0, (5)

−yij ≤ 0, (6)

xi integer, yij integer, (7)

We denote by QPn
LP the polyhedron defined by (3), . . . , (6):

QPn
LP = {(x, y) ∈ Rn(n+1)/2 : (x, y) satisfies (3), . . . , (6)},

and by QPn the integer hull of QPn
LP :

QPn = conv{(x, y) ∈ Rn(n+1)/2 : (x, y) satisfies (3), . . . , (7)}.

(a) Show that if (x, y) ∈ QPn
LP , then 0 ≤ xi ≤ 1 and yij ≤ 1 for all 1 ≤ i < j ≤ n.

(b) What is the dimension of QPn?

(c) Prove or disprove that QP 2 = QP 2
LP .

(d) Show that QP 3 6= QP 3
LP by giving a fractional vertex of QP 3

LP . Give a Gomory-

Chvátal Rounding inequality that cuts off such fractional vertex.

Answer:

(a) Inequalities xi ≥ 0 can be obtained by summing (4) and (6), inequalities xi ≤ 1 can

be obtained by summing (3) and (5), inequalities yij ≤ 1 can be obtained by summing

(3), (4), and (5).

(b) We show that QPn is full-dimensional by giving n(n+ 1)/2 + 1 affinely independent

vectors that satisfy constraints (3), . . . , (7):

(i) The zero vector (1 vector);

(ii) For every 1 ≤ i ≤ n, the vector (x, y) with xi = 1, and all other components

equal to zero (n vectors);

(iii) For every 1 ≤ i < j ≤ n, the vector (x, y) with xi = xj = yij = 1, and all other

components equal to zero (
(
n
2

)
vectors).
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(c) The polytope QP 2
LP has dimension 3 and is defined by 4 inequalities. Therefore it can

be easily checked that its vertices are all integral: (0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1).

Therefore QP 2 = QP 2
LP .

(d) A fractional vertex (x̄, ȳ) of QP 3
LP is given by x̄1 = x̄2 = x̄3 = 1/2, and ȳij = 0,

1 ≤ i < j ≤ 3. This can be seen as it is the unique vector that satisfies tightly the

6 inequalities (3) and (6). The vector (x̄, ȳ) is cut off by the inequality x1 + x2 +

x3 − y12 − y13 − y23 ≤ 1, which is the Gomory-Chvátal rounding inequality obtained

by summing inequalities (3) and (6), dividing the resulting inequality by 2, and then

rounding down the right-hand side.

3
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4. Let C = {(x1, x2) : −x1 + 2x2 ≤ 0,−x1 − 2x2 ≤ 0}, i.e. 2 |x2| ≤ x1.

(a) Define the normal cone to C at x (in the general case for a convex set C) and determine

NC(x) for every x ∈ R2 in this specific example.

(b) Consider the problem

min
x∈C

1

2
(x21 − x22)− px1

Show that for p = 0 the origin is a strict local minimizer of this problem. (If you use

the second order sufficient conditions, be careful to define these precisely and define

the sets that are used in its statement).

(c) Now let p assume small positive values. How many stationary points (points satisfying

the first order necessary conditions) are there near the origin? What are they? What

kinds of points are they (local minimizers, saddle points, local maximizers)?

(d) Suppose we change C to {(x1, x2) : 2x22 ≤ x1}. How does the answer to (b) change?

Answer:

(a) Faces are C, {(0, 0)}, F1 = {(x1, x2) : −x1 + 2x2 = 0, x1 ≥ 0}, F2 = {(x1, x2) : −x1−
2x2 = 0, x1 ≥ 0}. If x /∈ C, then NC(x) = ∅. For x ∈ rintC, NC(x) = {(0, 0)}. For

x ∈ rintF1, NC(x) = {(−λ1, 2λ1) : λ1 ≥ 0}. For x ∈ rintF2, NC(x) = {(−λ2,−2λ2) :

λ2 ≥ 0}. For x = (0, 0), NC(x) = {(−λ1, 2λ1) + (−λ2,−2λ2) : λ ≥ 0}. (Note that

NC(x) is constant on the relative interiors of the faces of C.)

(b) The critical cone is KC(x) = TC(x)
⋂

[∇f(x)]⊥. SOSC is FONC and ∇2f(x) is

positive definite on KC(x).

∇2f(x) =

[
1 0

0 −1

]
and KC(0) = C and thus 0 6= d ∈ C has dT∇2f(0)d = d21 − d22 which is strictly

positive if d2 = 0, and ≥ 3d22 > 0 otherwise.

(c) When p > 0, the origin is no longer stationary (0 /∈ ∇f(0) +NC(0)). There are three

stationary points (4p/3,±2p/2), (p, 0). The first two are strict local minimizers and

the third is a saddle point. (Note that TC(x) easily calculated from NC(x) given

above and hence the critical cone is easy to write down).

(d) At p = 0, origin becomes saddle point since moving along the curved boundary de-

creases f . (Details: TC(0) = R+×R, and hence Hessian is only positive semidefinite

on Kc(0), so SOSC not satisfied. If we take x(µ) = (2µ2, µ) ∈ C then f(x(µ)) =

0.5(4µ4−µ2) < 0 for µ small.) (While not needed here, note that for p > 0, there are

still 3 stationary points (p + 1/4,±
√
p/2 + 1/8), (p, 0), the first two are strict local

minimizers and the third is a saddlepoint.)

3
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5. (a) Consider the following constrained optimization problem:

min
x∈Rn

f(x) subject to ci(x) = 0, i = 1, 2, . . . ,m, hj(x) ≥ 0, j = 1, 2, . . . , r,

where the functions f , ci, i = 1, 2, . . . ,m, and hj , j = 1, 2, . . . , r are all continuously

differentiable. Write down KKT necessary conditions for optimality of a point x∗.

(b) Write down the linear independence constraint qualification (LICQ) and Mangasarian-

Fromovitz constraint qualification (MFCQ) for the problem in (a) at the point x∗.

(c) Consider the Lagrange multipliers which, along with the point x∗, satisfies the KKT

conditions for the problem in part (a). Denote these multipliers by λ∗i , i = 1, 2, . . . ,m

for the equality constraints and µ∗j , j = 1, 2, . . . , r for the inequality constraints. Show

that when LICQ holds, the set of multipliers satisfying the KKT conditions contains

a single point.

(d) Consider the problem with inequality constraints only (that is, m = 0), and let µ∗j , j =

1, 2, . . . , r be optimal Lagrange multipliers for the inequality constraints, as in part (c).

Show that when MFCQ holds, this set of multipliers is bounded. (Hint: Assume for

contradiction that {µk}k=1,2,... = {(µk1, µk2, . . . , µkr )T }k=1,2,... is a sequence such that

each µk is a vector of optimal Lagrange multipliers for the inequality-constrained

problem such that limk ‖µk‖ = ∞. Consider limit points µ̄ of the sequence of unit

vectors {µk/‖µk‖}.)

(e) Consider the following nonlinear program with complementarity constraint:

min
x∈Rn

f(x) subject to g1(x) ≥ 0, g2(x) ≥ 0, g1(x)g2(x) = 0,

where f , g1, and g2 are all continuously differentiable functions that map Rn to R.

Show that the LICQ and MFCQ cannot be satisfied at any feasible point of this

problem.

Answer:

(a) KKT conditions are that there exist multipliers λ∗i , i = 1, 2, . . . ,m and µ∗j , j =

1, 2, . . . , r such that

∇f(x∗)−
m∑
i=1

λ∗i∇ci(x∗)−
r∑

j=1

µ∗j∇hj(x∗) = 0, (8a)

ci(x
∗) = 0, i = 1, 2, . . . ,m, (8b)

0 ≤ µ∗j ⊥ hj(x∗) ≥ 0, j = 1, 2, . . . , r. (8c)

(b) Denote by A∗ the set of active inequality constraints at x∗, that is,

A∗ := {j = 1, 2, . . . , r |hj(x∗) = 0}.
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LICQ is that the set of vectors {∇ci(x∗) | i = 1, 2, . . . ,m} ∪ {∇hj(x∗) | j ∈ A∗} is

linearly independent. MFCQ is that (i) the set of vectors {∇ci(x∗) | i = 1, 2, . . . ,m}
is linearly indepedent and (ii) there exists a vector v 6= 0 such that

∇ci(x∗)T v = 0, i = 1, 2, . . . ,m; ∇hj(x∗)T v > 0, j ∈ A∗.

(c) If LICQ holds, uniqueness of the optimal Lagrange multipliers follows immediately

from the following modification of (8a):

∇f(x∗)−
m∑
i=1

λ∗i∇ci(x∗)−
∑
j∈A∗

µ∗j∇hj(x∗) = 0. (9)

(d) To show boundedness of optimal multipliers for MFCQ, we argue by contradiction,

using the unbounded sequence of multiplers {µk} defined in the hint. Without loss of

generality ( by taking a subsequence if necessary) and using compactness of the unit

ball, we can identify a vector µ̄ with ‖µ̄‖ = 1 such that

µk/‖µk‖ → µ̄.

Since µkj = 0 for j /∈ A∗, we have µ̄j = 0 for j /∈ A∗. Additionally, it is clear that

µ̄j ≥ 0 for all j ∈ A∗. From (9), we have

∇f(x∗)−
∑
j∈A∗

µkj∇hj(x∗) = 0, for all k. (10)

By dividing (10) by ‖µk‖ and taking limits as k →∞, we have∑
j∈A∗

µ̄j∇hj(x∗) = 0. (11)

Taking the inner product of both sides with the vector v in the definition of MFCQ,

we have

0 =
∑
j∈A∗

µ̄j(v
T∇hj(x∗)).

Since vT∇hj(x∗) > 0 for j ∈ A∗ and µ̄j ≥ 0 for all j ∈ A∗, this last expression can

be satisfied only if µ̄j = 0 for j ∈ A∗. This contradicts ‖µ̄‖ = 1. We conclude that

the set of multipliers satisfying the KKT conditions must be bounded.

(e) The gradient of the equality constraint is

g1(x)∇g2(x) + g2(x)∇g1(x).

For any feasible point we have three possible scenarios:

(i) g1(x) = 0 and g2(x) > 0. In this case the active inequality constraint gradient is

∇g1(x) while the equality constraint gradient is g2(x)∇g1(x). These two vectors

are linearly dependent, so LICQ is not satisfied. For MFCQ to be satisfied, we

would need a vector v such that both ∇g1(x)T v > 0 and g2(x)∇g1(x)T v = 0.

Since g2(x) = 0, these conditions are incompatible, so MFCQ cannot be satisfied

either.
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(ii) g1(x) > 0 and g2(x) = 0. The argument here is identical to (i), with the indices

“1” and “2” reversed.

(iii) g1(x) = g2(x) = 0. In this case the gradient of the inequality constraint is zero,

so neither LICQ nor MFCQ can be satisfied.

3
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