
Computational Research 101
Experimental Design - Data Analysis
Software Engineering

Domenico Salvagnin

DEI, University of Padova

IPCO 2023
Madison, WI

Motivation

Computational research is key ingredient in many areas

Deceptively simple:

1. Implement algorithm

2. Compare against existing methods

3. Publish

Not so fast…

Need proper practices for:

Correctness
Reproducibility

of
Results

Sharing

Outline

Experimental design

Data analysis

Writing code

Conclusions

Experimental Design

Why experiments?

❖ Worst-case analysis not always very telling

❖ Average-case analysis often relies on questionable
assumptions

❖ Complex algorithms and data structures too hard/
impossible to analyze theoretically

❖ Many complex algorithms never implemented at all :-(

Increasing gap between theory and practice:

Why experiments?

❖ Algorithm engineering can improve runtime by orders
of magnitude

❖ Theories are confirmed and suggested by
experimentation

❖ Empirical science no easier than theoretical one (just
different)

Inherent value in efficient implementations:

Which type of paper?

Different types of papers:

Application Horse Race Experimental
Analysis

The Scientific Method

1. exploration

2. formulate hypothesis or question

3. design experiment to test its validity

4. data analysis

5. draw conclusions

and reiterate!

Basic Principles
Ask interesting questions

Use appropriate testsets

Use appropriate experimental design

Use reasonable efficient implementation

Ensure reproducibility

Test significance and draw justified conclusions

Interesting Questions
Exploratory experimentation to find good questions

Think before you compute

❖ Which interactions are you planning to investigate?

❖ Are you collecting the right data?

❖ What are the potential outcomes? How would they affect the
hyphotesis?

Don't spend too much time (on the wrong experiments)

Testsets

Cannot clearly test on all possible instances…

Need the (finite) subset to be representative of the actual
instances of interest

Easier said than done…

Testsets

Large and heterogeneous enough

Right level of difficulty (avoid ceiling/floor effects)

Avoid over/underrepresentation of problem classes

Real-world vs randomly-generated models

Types of Experiments

Manipulation Observation Factorial

Pitfalls

Missing control experiment (related: confirmation bias)

Data collection biases (e.g., survival bias)

Overtuning

❖ Split into training/testing/validation

❖ Avoid data leakage

Pitfalls

Do not compare algorithms that play a different game:

❖ Exact methods vs. heuristics

❖ Exact methods with different stopping criteria (e.g.
optimality tolerances!)

You never compare algorithms, but rather their
implementation!

Reasonable implementation

Naïve implementation can hide fundamental weaknesses
of the proposed approach

Unnecessarily inefficient implementation is a limit factor
in how much testing you are able to perform

Do not overdo it! (see profiling tomorrow)

Reproducibility

Keep track of all necessary metadata about the experiments

Provide enough information for another researcher to be
able to replicate the experiment

❖ No need to replicate the same runtime and/or path

❖ But an equivalent experiment should be consistent
and allowing to draw the same conclusions

Reproducibility
Code and paper must match

Horse race papers: instances and/or the code publicly available

Tell the full story:

❖ Do not overly aggregate data (put detailed results online,
in a proper format!)

❖ Do not hide/omit anomalous results

❖ Always report running times (even if not the main focus)

Speaking of time…

If measuring time (almost always), need to enforce reliable measures:

❖ Identical machines

❖ Exclusive usage

❖ No background processes

❖ No Turboboost and Hyperthreading (or similar)

❖ Avoid unnecessary I/O (disk and network) while benchmarking

What about the timelimit?

Introduces a bias against methods that solve more models

Inherently nondeterministic and nonreproducible

…but it is a practical necessity: use the highest your
resources can afford!

[No, PAR-x is not the answer]

What performance measures?
time to optimality (but remember time limit bias!)

❖ variant: time to x% gap

number of instances solved (within resource limits)

B&B nodes (only meaningful for instances solved to
optimality by all methods under comparison!)

Primal-dual integral (gives more global view on solution
process)

What performance measures?
What about heuristics?

❖ Number of solutions found (success rate)

❖ Time to first solution

❖ Time to optimal solution

❖ Time to solution within X% gap

❖ Primal integral

Justified Conclusions

Use appropriate data analysis tools

Interpret the data: look for patterns/explanations

Avoid statements not supported by data

Data Analysis

How to aggregate results?

Performance variability

Statistical significance of results

How to aggregate numbers?
First of all: aggregation always leads to information loss

Always look at the whole dataset before aggregation!

Means are mean
Obvious choice: arithmetic mean

❖ Proportional to total runtime in the real world

❖ Unsuited for normalized numbers

❖ Too sensitive to big numbers

Geometric mean: too sensitive to small numbers

Quartiles/medians: too insensitive to measure progress

Common empirical tradeoff: shifted geometric mean

How to split results?

Aggregation on the whole testset too harsh: what about
splitting into groups first?

Very natural criterion: split by difficulty of instances

Beware of biased selections :-(

N = 10000
names = list('AB')
df = pd.DataFrame(100*np.random.rand(N, 2), columns=names)

easy = df[df['A'] < 80]
hard = df[df['A'] >= 80]

easy = df[df.min(axis=1) < 80]
hard = df[df.min(axis=1) >= 80]

0

25

50

75

100

Easy Hard

A
B

0

25

50

75

100

Easy Hard

A
B

Performance Variability
The behaviour of the solver can be significantly influenced
by seemingly neutral changes in the environment/input
data

❖ random seed initialization

❖ order of constraints and variables in the problem

Runtime of the a given algorithm is basically a random
variable even on what is mathematically the same instance!

14 Thorsten Koch et al.

(a) Instance ex9

(b) Instance pg5 34

(c) Instance neos13

(d) Instance bnatt350

(e) Instance enlight13

Fig. 3: Solution times for 100 permutations

14 Thorsten Koch et al.

(a) Instance ex9

(b) Instance pg5 34

(c) Instance neos13

(d) Instance bnatt350

(e) Instance enlight13

Fig. 3: Solution times for 100 permutations

Performance Variability
Where does performance variability comes from?

In a nutshell: imperfect tie-breaking

❖ Solvers take many decisions with limited knowledge

Can we fix it?

This is the price to pay for trying to be smart and
efficient!

No

Statistical Tests to the Rescue
Mathematically sound approach to computationally
evaluate the probability of two sequences of numbers
coming from the same distribution (null hypothesis)

❖ numbers are the performance measures on the
selected testset by the methods under comparison

❖ null hypothesis is that the methods are equivalent,
and the difference we measured is just noise

Statistical Tests II

Many different statistical tests that differs on:

❖ Assumptions

❖ Power

❖ Paired vs unpaired samples

Statistical Tests III

Either way: need a sufficiently large testset!!!

McNemar

binary outcome
(solved,success)

Wilcoxon

quantitative
(runtime,nodes)

Remember that significant ≠ meaningful

Conclusions (so far)

1. Apply Scientific method

2. Avoid biases in experiment setup/data analysis

3. Deal with Performance Variability

4. Use Statistical tests

Writing (Good) Code

Why good code?

Correctness Productivity Sharing

–Bjarne Stroustrup (inventor of C++)

“I like my code to be elegant and efficient.
The logic should be straightforward to

make it hard for bugs to hide, the
dependencies minimal to ease

maintenance, error handling complete
according to an articulated strategy, and
performance close to optimal so as not to

tempt people to make the code messy with
unprincipled optimizations.

Clean code does one thing well.”

How to write good code?

Writing (good) code is inherently hard:

❖ Complex problems require complex code

❖ Requires (almost inhuman) attention to every
details…

❖ …over (many) different levels of abstractions

How to write good code?

It does not come natural, but can be learnt!

❖ Best practices from software engineering

❖ Use the right tool for the job

This is very relevant even for academic code
developed by a single person

Use right tool for the job

Pick the right language for job:

❖ Compiled language where performance is critical

❖ Scripting language for the rest

Use sufficiently powerful editor/IDE

Don’t debug with print statements: learn to use a debugger

Don’t do version control by hand

Invest time in learning your tools
Did you know that vim supports compiler assisted code
completion?

Did you know that gdb can be scripted with Python?

Are you proficient with templates and the STL in C++?

Are you proficient with numpy, pandas and matplotlib in
Python?

Don’t reinvent the wheel!!!

Git Git Git
There is no real excuse for not using version control

❖ Even for academic code

❖ Even if developing alone

At a bare minimum:

❖ Need to sync code back and forth between laptop and
workstation

❖ Ability to revert back bad changes

❖ And no, sending code by email or scp is not an alternative

Git: a game changer
Changes your approach to coding completely:

❖ Time machine for code

❖ Multiverse for code (branches)

❖ Key to reproducibility (tags/commit hashes)

Fundamental to share code with others!

No need to become a wizard: can go long way with just the
basics!

Good code: correctness

Correctness trumps everything else…

…but how to make sure your code is correct?

Readability Testing Reviews

Good code: readability

Code is read way more often than it is written

Unreadable code is hard to:

❖ Understand (and thus argue correct)

❖ Maintain (modify, fix, improve, extend)

Please be gentle to the next developer (it could be you!)

–Brian Kernighan

“Debugging is twice as hard as writing the
code in the first place.

Therefore, if you write the code as cleverly
as possible, you are, by definition, not

smart enough to debug it.”

Good code: readability
Proper naming (classes, functions, variables)

Use language features whenever appropriate

Split code into relatively short chunks

Single responsibility (one thing well) at a single
abstraction level

Explicit preconditions, postconditions, invariants
(asserts)

Proper naming
Intention revealing

badint t; // elapsed time in hours

goodint elapsedHours;

Unambiguous

badvoid copy(char* a1, char* a2);

goodvoid copy(char* source, char* destination);

Searchable

Use language from problem domain

Language features
Const/access modifiers

Named constants (instead of defines)

badvoid copy(char* source, char* destination);

goodvoid copy(const char* source, char* destination);

really badif (context == 128) {...}

good
const int RELAXATION_CONTEXT = 128;

if (context == RELAXATION_CONTEXT) {... }

bad
#define RELAXATION_CONTEXT 128

if (context == RELAXATION_CONTEXT) {...}

Functions
Small

Single responsibility (one thing well) at a single
abstraction level

Avoid side effects

Explicit preconditions, postconditions,
invariants (asserts)

How many times the same code needs to be
written before we turn it into a function?

Once, just once!

Good code: comments
useless

wrong

useful

int colIndex; //< column index

// indices 1-based
for (int i = 0; i < n; i++) {

a[i] = compute_value(i);
}

// Autogenerated, do not edit. All changes will be undone

// http://tools.ietf.org/html/rfc4180 suggests that CSV lines
// should be terminated by CRLF, hence the \r\n.
csvStringBuilder.append("\r\n");

“If the comment and code disagree, both
are probably wrong.”

–Brian Kernighan & P.J. Plaugher

“Don’t comment bad code—rewrite it!”

–Bjarne Stroustrup

Good code: testing
There is no substitute for actual testing

Whenever the program misbehaves, write a test

But how do you know the program has a bug?

Well, you should write the tests first!

Testing must not be an afterthought!

Time consuming? Yes, but usually well worth it!

Good code: reviews
One of the most effective practices

4 eyes are better than 2, but not just that

As authors of the code, we are the most biased in evaluating it

If developing alone, please ask your supervisor to review
your code

After all, you would never put your name on a paper without
checking its proofs…this is no different!

Good code: performance
“Premature optimization is the root of all evil.”

–Sir Tony Hoare

“The full version of the quote is "We should forget about small
efficiencies, say about 97% of the time: premature optimization is the
root of all evil." and I agree with this. Its usually not worth
spending a lot of time micro-optimizing code before it’s obvious
where the performance bottlenecks are. But, conversely, when
designing software at a system level, performance issues should
always be considered from the beginning.”

–Charles Cook

Good code: profiling

Worry about other issues (good algorithm design and
good implementations of those algorithms) before
worrying about counting cycles.

How do you spot inefficiencies?

❖ Do not trust your judgement

❖ Use a profiler (valgrind, perf, VTune)

Conclusions
Inherently hard (no easier than theoretical research)

Many challenges:

❖ general lack of formal training

❖ increasingly resource hungry

❖ some fields are more mature

Still great opportunities :-)

One more thing…

Presentation
Don’t spoil your hard work with a mediocre presentation!

Invest time to learn properly display of information in:

❖ Tables

❖ Plots

❖ Slides

Remember: you are a professional communicator!

Instance Time Nodes
A 1.34 1
B 7.1 123
C 100.2 40000
D 3600 1453322
E 15.22 430
F 93.333 7023
G 211.3 50311

Instance Time Nodes

A 1.34 1

B 7.10 123

C 100.20 40,000

D 3,600.00 1,453,322

E 15.22 430

F 93.33 7,023

G 211.30 50,311

0

20

40

60

80

April May June July

US Europe

Fischetti, Salvagnin, and Zanette: Fast Approaches to Improve the Robustness of a Railway Timetable
Transportation Science 43(3), pp. 321–335, © 2009 INFORMS 329

Table 2 Comparison of Different Training Methods with Respect to Computing Time, Percentage WAD, and Validation Function (Cumulative Delay
in Minutes), for Different Lines and Trade-Off !

Fat Slim1 Slim2 LR

! (%) Line Delay WAD (%) Time (s) Delay WAD (%) Time (s) Delay WAD (%) Time (s) Delay WAD (%) Time (s)

0 BZVR 16"149 — 9"667 16"316 — 532 16"294 — 994 16"286 — 2#27
0 BrBO 12"156 — 384 12"238 — 128 12"214 — 173 12"216 — 0#49
0 MUVR 18"182 — 377 18"879 — 88 18"240 — 117 18"707 — 0#43
0 PDBO 3"141 — 257 3"144 — 52 3"139 — 63 3"137 — 0#25

Tot: 49"628 — 10"685 50"577 — 800 49"887 — 1"347 50"346 — 3#44

1 BZVR 14"399 16#4 10"265 15"325 45 549 14"787 17 1"087 14"662 18 2#13
1 BrBO 11"423 21#6 351 11"646 42 134 11"472 21 156 11"499 23 0#48
1 MUVR 17"808 12#9 391 18"721 37 96 17"903 12 120 18"386 8 0#48
1 PDBO 2"907 15#6 250 3"026 51 57 2"954 11 60 2"954 13 0#27

Tot: 46"537 66#5 11"257 48"718 175 836 47"116 61 1"423 47"501 62 3#36

5 BZVR 11"345 15#9 9"003 12"663 48 601 11"588 19 982 12"220 22 1#99
5 BrBO 9"782 18#9 357 11"000 50 146 9"842 22 164 10"021 23 0#51
5 MUVR 16"502 14#5 385 18"106 41 86 16"574 13 107 17"003 11 0#45
5 PDBO 2"412 14#7 223 2"610 44 49 2"508 20 57 2"521 19 0#28

Tot: 40"041 64 9"968 44"379 183 882 40"512 74 1"310 41"765 75 3#23

10 BZVR 9"142 21#4 9"650 10"862 50 596 9"469 24 979 10"532 33 2#01
10 BrBO 8"496 19#1 387 10"179 51 132 8"552 20 157 8"842 23 0#51
10 MUVR 15"153 14#7 343 17"163 49 84 15"315 15 114 15"710 13 0#43
10 PDBO 1"971 19#9 229 2"244 49 50 2"062 27 55 2"314 37 0#25
Tot: 34"762 75#1 10"609 40"448 199 862 35"398 86 1"305 37"398 106 3#2

20 BZVR 6"210 28#5 9"072 7"986 50 538 6"643 31 1"019 8"707 52 2#04
20 BrBO 6"664 22#1 375 8"672 53 127 6"763 23 153 7"410 30 0#52
20 MUVR 13"004 17#1 384 15"708 52 91 13"180 18 116 13"576 19 0#42
20 PDBO 1"357 28#4 230 1"653 49 55 1"486 34 60 1"736 53 0#28
Tot: 27"235 96#1 10"061 34"019 204 811 28"072 106 1"348 31"429 154 3#26

40 BZVR 3"389 35#4 10"486 4"707 50 578 3"931 37 998 5"241 51 2#31
40 BrBO 4"491 27#7 410 6"212 52 130 4"544 29 166 6"221 52 0#53
40 MUVR 10"289 21#8 376 13"613 52 95 10"592 25 108 11"479 34 0#45
40 PDBO 676 37#1 262 879 49 55 776 41 57 1"010 52 0#28
Tot: 18"845 122 11"534 25"411 203 858 19"843 132 1"329 23"951 189 3#57

five-minute time limit and by storing all the incum-
bent solutions produced during the run. Moreover,
we ran the solver with a one-hour time limit so as to
produce an almost optimal solution of value, say, zref.

1 5 10 20
6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000
Line BrBO

Efficiency loss (%)

C
um

ul
at

iv
e

de
la

y
(m

in
) Fat

Slim 1
Slim 2
LR

1 5 10 20
1,200
1,400
1,600
1,800
2,000
2,200
2,400
2,600
2,800
3,000
3,200

Line PDBO

Efficiency loss (%)

C
um

ul
at

iv
e

de
la

y
(m

in
)

Figure 2 Comparison of Different Training Models Applied to the Best Reference Solution for Each Instance
Notes. On the x-axis there is the efficiency loss (!) whereas the y -axis reproduces the confidence intervals of the validation figure (run with 500 scenarios).

(For all instances, the optimality gap after one hour
was fewer than 4%.) Then we compared the robust-
ness achieved by our fat model when starting from
these solutions, by allowing for a relative efficiency

IN
FO

R
M
S

ho
ld
s

co
py

ri
gh

t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

References
❖ T. Achterberg and R. Wunderling. “Mixed Integer Programming: Analyzing 12 Years of Progress” In Facets of Combinatorial

Optimization, 449–81, 2013.

❖ F. Brooks. “The Mythical Man-Month”, 1975

❖ B. W. Kernighan and P. J. Plauger. “The Elements of Programming Style”, 1978

❖ E. S. Raymond. “The Art of UNIX Programming”, 2003

❖ M. Fowler et al. “Refactoring: Improving the Design of Existing Code”, 1999

❖ R. C. Martin. “Clean Code”, 2008

❖ K. Beck. “Test-Driven Development by Example”, 2002

❖ R. Hyde. “The Fallacy of Premature Optimization”, ACMUbiquity, 2009

❖ T. Preston-Werner. “The Git Parable”, 2009 (on the web)

❖ G. Law. “Give me 15 minutes & I'll change your view of GDB”, CppCon 2015 (on youtube)

❖ S. Few. “Show Me the Numbers”, 2012

❖ C. O. Wilke. “Fundamentals of Data Visualization”, 2019

