A Deterministic Better-than-3/2 Approximation Algorithm for the Metric Traveling Salesperson Problem

Nathan Klein
University of Washington

Joint work with:

Anna Karlin

Shayan Oveis Gharan

Metric, symmetric TSP

Given a set of cities and their pairwise symmetric distances satisfying the triangle inequality,

$$
d(u, v) \leq d(u, w)+d(w, v)
$$

find the minimum cost tour that visits every city at least once.

In other words, given a weighted graph, find a minimum cost spanning Eulerian subgraph.

Approximation

Best approximation algorithm: at most 50\% worse than optimal, i.e. a 1.5approximation [Christofides '76, Serdyukov '78]

Lower bounds: can't do better than about 1\% (currently 123/122) unless $P=N P$ [Papadimitriou-Yannakakis '93, Böckenhauer-Seibert '00, Papadimitriou-Vempala '00, Engebretsen '03, Lampis '12, Karpinski-Lampis-Schmied '15]

Approximation algorithms

[Christofides '76, Serdyukov '78]: 3/2 approximation
[Wolsey ‘80, Shmoys-Williamson '90]: 3/2 integrality gap of LP relaxation
[Arora '96, Mitchell ‘96]: PTAS for Euclidean TSP
[Papadimitriou-Yannakakis ‘93,Blaser-Ram ‘05,Berman-Karpinski ‘06]: 1.14 for (1,2) TSP
[Grigni-Koutsoupias-Papadimitriou '95, Arora-Grigni-Karger-Klein-Woloszyn '98, Klein '05]: PTAS for planar TSP
[Talwar '04, Bartal-Gottlieb-Krauthgamer '12]: PTAS for TSP on metrics with bounded doubling dimension.
[Gamarnik-Lewenstein-Sviridenko '05, Aggarwal-Garg-Gupta '11, Boyd-Sitters-Ster- Stougie '11, Correa, Larre, Soto '12]: 4/3 and even below for graphic TSP on (sub)cubic graphs.
[Demaine-Hajiaghayi-Mohar’07, Demaine-Hajiaghayi-Kawarabayashi '11]: PTAS for TSP on bounded genus and minor free graphs
[Oveis Gharan-Saberi-Singh '10] [Mömke-Svensson '11] [Mucha '11] [Sebő-Vygen '12]: 1.4 for graphic TSP
[Carr-Ravi '98, Boyd-Carr '11,Boyd-Legault '15, Boyd-Sebő '17, Haddadan-Newman-Ravi '18, Hadaddan- Newman '19, Karlin-KOveis Gharan '20][Gupta-Lee-Li-Mucha-Newman-Sarkar '21]: 1.4983 for half integral TSP
[Hoogeveen '91][An-Kleinberg-Shmoys '11][Sebo '13][Vygen '15][Gottschalk-Vygen '15][Sebo-van Zuylen '16][Traub-Vygen
18][Zenklusen '18][Traub-Vygen-Zenklusen '19]: Reducing path TSP to TSP
[Kisfaludi-Bak '20]: Quasi-polynomial hyperbolic TSP

Recent result

Theorem [Karlin-K-Oveis Gharan '20]: There is a randomized $1.5-10^{-36}$ approximation algorithm for metric TSP.

András Sebő in Bonn

András Sebő in Bonn

(... It was definitely much nicer than this, maybe "it would be cool if you could derandomize it")

András Sebő in Bonn

This result

Theorem: There is arandomized deterministic $1.5-10^{-36}$ approximation algorithm for metric TSP.

Photo credit: Bill Cook

Outline

1. Background and algorithm

2. Computing $\mathbb{E}[c(T) \mid S e t]$ with the matrix tree theorem
3. Defining $y(T)$ in the special "degree cut" case.
4. Computing $\mathbb{E}[c(y) \mid$ Set $]$ in the degree cut case.

Background \#1: Linear programming relaxation

Subtour elimination LP/Held-Karp relaxation
[Dantzig, Fulkerson, Johnson '54][Held and Karp '70]

Background \#2: λ-uniform spanning trees

For $\lambda: E \rightarrow \mathbb{R}_{\geq 0}$, the λ-uniform spanning tree distribution sets:

$$
\mathbb{P}[T]=\prod_{e \in T} \lambda_{e}=\lambda^{T} \text { for all trees } T
$$

Where we assume λ is normalized such that $\sum_{T} \lambda^{T}=1$.

[Asadpour, Goemans, Madry, Oveis Gharan, Saberi '10]: For any point z in the spanning tree polytope, we can find a λ-uniform distribution in polynomial time (via a max entropy convex program) such that:

$$
\forall e, \mathbb{P}_{T \sim \mu_{\lambda}}[e \in T]=z_{e}
$$

Up to exponentially small multiplicative error.

Example

$$
\mathbb{P}_{\lambda}[T]=\prod_{e \in T} \lambda_{e}
$$

Suppose we get this point in the spanning tree polytope

$$
x_{e_{2}}=5 / 6
$$

Then we will produce this vector λ and thus a distribution over spanning trees

Max entropy tree algorithm for TSP

Slight variant of [Oveis Gharan, Saberi, Singh '10]

- Compute an LP solution x to the subtour LP
- Find a λ-uniform distribution μ_{λ} with marginals x
- Sample $T \sim \mu_{\lambda} \Longrightarrow \mathbb{E}[c(T)]=c(x) \leq O P T$
- Add the minimum cost matching M on the odd degree vertices of T

The subtour polytope is (almost) contained in the spanning tree polytope

* Using properties of λ-uniform trees... *

Main Theorem $\left[\mathrm{KKO}^{\prime} 20\right]: \mathbb{E}[c(M)] \leq\left(\frac{1}{2}-\epsilon\right)$ OPT for some $\epsilon>10^{-36}$.

A Deterministic $\frac{3}{2}-\epsilon$ Approximation Algorithm for TSP Obvious corollary!

Main Theorem $\left[K K O^{\prime} 20\right]: \mathbb{E}[c(T)+c(M)] \leq\left(\frac{3}{2}-\epsilon\right) O P T$ for some $\epsilon>10^{-36}$.

- Compute an LP solution x to the subtour LP
- Find $a \lambda$-uniform distribution μ_{λ} with marginals x
- For each T in the support of μ_{λ}, compute $c(T)+c(M)$.
- Output the tree that minimizes $\mathrm{c}(T)+c(M)$.

Issue: There are exponentially many trees in the support of μ_{λ}.

A Deterministic $\frac{3}{2}-\epsilon$ Approximation Algorithm for TSP
Attempt \#2
Main Theorem $\left[K K O^{\prime} 20\right]: \mathbb{E}[c(T)+c(M)] \leq\left(\frac{3}{2}-\epsilon\right) O P T$ for some $\epsilon>10^{-36}$.

- Compute an LP solution x to the subtour LP

A short remark and the main theorem

$$
\text { Issue: how do we compute } \mathbb{E}[c(T)+c(M) \mid \text { Set, } e \in T] \text { ? }
$$

Notice: the proof upper bounds this quantity.
Can we make the proof polytime?

> Main Theorem $\left[\mathrm{KKO}^{\prime} 20\right]$:
> $\mathbb{E}[c(M)+c(T)] \leq\left(\frac{3}{2}-\epsilon\right) O P T$

Here the analysis used the optimal solution. Thus there was really no hope of derandomizing this computation.

$$
\begin{gathered}
\text { Main Theorem }[\text { KКО'21] : } \\
\mathbb{E}[c(M)+c(T)] \leq\left(\frac{3}{2}-\epsilon\right) c(x)
\end{gathered}
$$

In this result, the analysis did not use the optimal solution. This bounded the integrality gap and gave hope for derandomization.

We show that the analysis in [KKO'21] can be made into a polynomial time algorithm.

Main Theorem: There exists a random variable $y: \mathcal{T} \rightarrow \mathbb{R}_{\geq 0}^{E}$ such that:

1. $\forall T \in \mathcal{T}, c(M) \leq c(y)$ (M is min cost matching).
2. $\mathbb{E}[c(T)+c(y)] \leq\left(\frac{3}{2}-\epsilon\right) c(x)$.
3. For any setting Set of edges in/out of the tree we can compute $\mathbb{E}[c(T)+c(y) \mid$ Set $]$ in polynomial time.
i.e., $c(y)$ is a pessimistic estimator for $c(M)$ that we can efficiently compute and has cost below $\frac{x}{2}$

Condition 3: For any setting Set of edges in/out of the tree we can compute $\mathbb{E}[c(T)+c(y) \mid S e t]$ in polynomial time. (Need to show!)

Shows that the algorithm can be implemented in polynomial time.

- Compute an LP solution x to the subtour LP
- Find a λ-uniform distribution μ_{λ} with marginals x
- Initialize Set = \varnothing.
- For each edge e :

To sample the tree deterministically

- If $\mathbb{E}[c(T)+c(y) \mid$ Set, $e \in T] \leq \mathbb{E}[c(T)+c(y) \mid$ Set, $e \notin T]$:
- Let Set $=\operatorname{Set} \cup\{e=1\}$
- Else, let $\operatorname{Set}=\operatorname{Set} \cup\{e=0\}$.
- Let T be the set of edges set to 1 in Set.
- Add the minimum cost matching M on the odd degree vertices of T

Goal: compute $\mathbb{E}[c(T)+c(y) \mid$ Set $]$ for any possible setting of edges in/out of the tree Set.

Outline

1. Background and algorithm
2. Computing $\mathbb{E}[c(T) \mid S e t]$ with the matrix tree theorem
3. Defining y in the special "degree cut" case.
4. Computing $\mathbb{E}[c(y) \mid S e t]$ in the degree cut case.

Key definition

Generating polynomial: Let μ_{λ} be a λ-uniform distribution over spanning trees of a $\operatorname{graph} G=(V, E)$. For each $e \in E$, define a variable z_{e}.

Then the generating polynomial of μ_{λ} is:
$g_{\mu_{\lambda}}\left(\left\{z_{e}\right\}_{e \in E}\right)=\sum \mu(T) z^{T}=\sum \lambda^{T} Z^{T}$
Where we define $z^{T}=\quad$ Why is this useful? It has exponentially many terms

$$
\lambda_{f}=1 / 2 g_{\mu_{\lambda}}\left(\left\{z_{e}\right\}_{e \in E}\right)=\frac{1}{2} z_{e} z_{f}+\frac{1}{3} z_{e} z_{g}+\frac{1}{6} z_{f} Z_{g}
$$

The matrix tree theorem

[Kirchoff 1847]

Matrix Tree Theorem: Let μ_{λ} be a λ-uniform distribution over spanning trees on a graph $G=(V, E)$. Then,

$$
\begin{aligned}
g_{\mu_{\lambda}}\left(\left\{z_{e}\right\}_{e \in E}\right)= & \sum_{T} \mu(T) z^{T}=\sum_{T} \lambda^{T} Z^{T} \\
& =\operatorname{det}\left(\sum_{e} \lambda_{e} z_{e} L_{e}+\frac{\mathbf{1 1}^{T}}{n^{2}}\right)
\end{aligned}
$$

Where for an edge $e=(u, v)$,

$$
L_{e}=\left(1_{u}-1_{v}\right)\left(1_{u}-1_{v}\right)^{T}
$$

is the Laplacian of the edge e.

Upshot: we can compute the value of $g_{\mu_{\lambda}}(z)$ at any point $z \in \mathbb{C}^{|E|}$ in polynomial time.

Therefore, we can easily compute $\mathbb{E}[c(T) \mid S e t]$.
It remains to compute $\mathbb{E}[c(y) \mid S e t]$.

Question 1: Given a λ-uniform distribution μ_{λ} and an oracle to compute $g_{\mu_{\lambda}}$ how do we compute $\mathbb{P}_{T \sim \mu_{\lambda}}[f \in T]$ for an edge f ?

Answer: $\mathbb{P}[f \in T]=1-\mathbb{P}[f \notin T]=1-g_{\mu_{\lambda}}(z)$ where $z_{f}=0$ and $z_{e}=1$ for $e \neq f$, as:

$$
g_{\mu_{\lambda}}(z)=\sum_{T: f \notin T} \lambda^{T}
$$

Question 2: How do we compute $\mathbb{P}[f \in T \mid$ Set $]$ for an edge f ?
Answer: First, contract all edges set to 1 and delete all edges set to 0 . We have a resulting λ^{\prime} uniform distribution μ_{λ}, on a graph G^{\prime}. First, renormalize λ^{\prime}. Then apply the above.

Goal: compute $\mathbb{E}[c(T)+c(y) \mid$ Set $]$ for any possible setting of edges in/out of the tree Set.

Outline

1. Background and algorithm
2. Computing $\mathbb{E}[c(T) \mid S e t]$ with the matrix tree theorem
3. Defining y in the special "degree cut" case.
4. Computing $\mathbb{E}[c(y) \mid S e t]$ in the degree cut case.

Interlude: The $\operatorname{Odd}(T)$-Join polyhedron $P_{O(T)}$

[Edmonds and Johnson '73]

$$
\begin{array}{cll}
\min \sum_{u, v} c_{e} y_{e} & & \\
\sum_{e \in \delta(S)} y_{e} \geq 1 & \forall S|\delta(S) \cap E(T)| \text { odd } & \stackrel{\text { Equivalent }}{\longleftrightarrow}
\end{array} \begin{aligned}
& \forall S \text { containing } \\
& \text { an odd } \\
& \text { number of } \\
& \text { odd vertices } \\
& \text { in the tree }
\end{aligned}
$$

Has an integrality gap of 1.
So, if y is in the $O d d(T)$-Join polyhedron $P_{O(T)}$, then $c(M) \leq c(y)$. We will ensure this, implying $c(y)$ is a pessimistic estimator.

Subtour LP constraints

Degree cut case

$$
\begin{array}{ll}
\sum_{e \in \delta(S)} x_{e} \geq 2 & \forall S \subset V \\
\sum_{e \in \delta(u)} x_{e}=2 & \forall u \in V \\
x_{e} \geq 0 & \forall e
\end{array}
$$

$\operatorname{Odd}(T)$-Join constraints

$$
\begin{array}{ll}
\sum_{e \in \delta(S)} y_{e} \geq 1 & \forall S|\delta(S) \cap E(T)| \text { odd } \\
y_{e} \geq 0 & \forall e
\end{array}
$$

Suppose that the only (really) small cuts in the LP solution x are the vertices.
In other words, suppose all cuts $S \subseteq V$ with $2 \leq|S| \leq n-2$ have

$$
\sum_{e \in \delta(S)} x_{e} \geq 2+\eta
$$

for some absolute constant $\eta>0$.

$\operatorname{Odd}(T)$-Join constraints

An estimator y for the degree cut case

$$
\begin{array}{ll}
\sum_{e \in \delta(S)} y_{e} \geq 1 & \forall S|\delta(S) \cap E(T)| \text { odd } \\
y_{e} \geq 0 & \forall e
\end{array}
$$

+ We assume all non-vertex cuts have at least
$2+\eta$ mass going across in x.

$$
y_{x_{e}}=\frac{x_{\gamma_{e}}}{22+\eta}
$$

For an edge $e=(u, v)$, we let:

$$
y_{e}= \begin{cases}\frac{x_{e}}{2+\eta} & \text { if } u \text { and } v \text { both have even degree in } T \\ \frac{x_{e}}{2} & \text { otherwise }\end{cases}
$$

Claim: $y(T)$ is in $P_{O(T)}$

For an edge $e=(u, v)$, we let: $y(T)_{e}=\left\{\begin{array}{cl}\frac{x_{e}}{2+\eta} & \text { if } u \text { and } v \text { both have even degree in } T \\ \frac{x_{e}}{2} & \text { otherwise }\end{array}\right.$
Proof: For any cut $2 \leq|S| \leq n-2, x(\delta(S)) \geq 2+\eta$ (by assumption). Since $y_{e} \geq \frac{x_{e}}{2+\eta^{\prime}}$,

$$
\sum_{e \in \delta(S)} y_{e} \geq \frac{1}{2+\eta} \sum_{e \in \delta(S)} x_{e} \geq \frac{1}{2+\eta} \cdot(2+\eta)=1
$$

For the vertices: if a vertex v is even, there is no constraint. If v is odd, then all $e \sim v$ have $y_{e}=\frac{1}{2} x_{e}$, so since $\sum_{e \in \delta(v)} x_{e}=2$ we have $\sum_{e \in \delta(v)} y_{e}=1$.

$$
\begin{array}{ll}
O d d(T) \text {-Join constraints }\left(P_{O(T)}\right) \\
\sum_{\substack{e \in \delta(S) \\
y_{e} \geq 0}} y_{e} \geq 1 & \forall S|\delta(S) \cap E(T)| \text { odd } \\
& \forall e
\end{array}
$$

So, y is a simple pessimistic estimator for the cost of the min-cost matching and it has $\mathbb{E}[c(y)] \leq\left(\frac{1}{2}-\epsilon\right) c(x)$ at the beginning.

Now we'll show how to compute $\mathbb{E}[c(y) \mid S e t]$ for this simple y.

$$
\mathbb{E}\left[y_{e}\right]=\frac{x_{e}}{2}(1-\mathbb{P}[u, v \text { even degree in } T])+\mathbb{P}[u, v \text { even degree in } T] \frac{x_{e}}{2+\eta}
$$

Some endpoint of e is odd

$$
=\left(\frac{1}{2}-\frac{\eta}{4+2 \eta} \mathbb{P}[u, v \text { even degree in } T]\right) x_{e} \leq\left(\frac{1}{2}-\frac{\eta p}{4+2 \eta}\right) x_{e}
$$

Outline

1. Background and algorithm
2. Computing $\mathbb{E}[c(T) \mid S e t]$ with the matrix tree theorem
3. Defining y in the special "degree cut" case.
4. Computing $\mathbb{E}[c(y) \mid S e t]$ in the degree cut case.

- For all trees $T \in \mathcal{T}, c(M) \leq c(y)$ where M is the minimum cost matching on the odd vertices of T. \checkmark
- $\mathbb{E}[c(T)+c(y)] \leq\left(\frac{3}{2}-\epsilon\right) c(x) ., ~ \square$
- For any setting Set of edges in/out of the tree we can compute $\mathbb{E}[c(T)+c(y) \mid S e t]$ in polynomial time.

Let $e=(u, v)$. Then,

$$
\mathbb{E}\left[y_{e}\right]=\left(\frac{1}{2}-\frac{\eta}{4+2 \eta} \mathbb{P}[u, v \text { even degree in } T]\right) x_{e}
$$

Therefore,

$$
\mathbb{E}\left[y_{e} \mid \text { Set }\right]=\left(\frac{1}{2}-\frac{\eta}{4+2 \eta} \mathbb{P}[u, v \text { even degree in } T \mid \text { Set }]\right) x_{e}
$$

So, to compute $\mathbb{E}[c(y)]$, it is enough to compute $\mathbb{P}[u, v$ even degree in $T \mid S e t]$ for all $e=(u, v)$.

This is straightforward using the generating polynomial $g_{\mu_{\lambda}}$

Computing $\mathbb{P}[u, v$ even degree in $T \mid \operatorname{Set}]$

Observation: It is easy to condition on Set.
We've seen this before! Contract all edges set to 1 , delete all edges set to 0 , and renormalize. So, all we have to do is compute $\mathbb{P}[u, v$ even degree in $T]$ for a λ-uniform distribution.

Warmup: Remember we can compute $g_{\mu \lambda}\left(\left\{z_{e}\right\}_{e \in E}\right)=\sum_{T} \mu(T) z^{T}=\sum_{T} \lambda^{T} z^{T}$ at any point z. If I give you a set $F \subseteq E$, how do we compute $\mathbb{P}[|F \cap T|$ even $]$?

$$
\text { So, } \mathbb{P}[|F \cap T| \text { even }]=\frac{1}{2}\left(g_{\mu_{\lambda}}(z)+1\right)
$$

Computing $\mathbb{P}[u, v$ even degree in $T \mid \operatorname{Set}]$

Lemma: We can compute $\mathbb{P}[|A \cap T|,|B \cap T|$ even \mid Set $]$ for any sets of (not necessarily disjoint) edges $A, B \subseteq E$.

From the previous slide, we can drop Set. Now observe:

$$
\mathbb{I}[|A \cap T|,|B \cap T| \text { even }]=\frac{1}{4}\left(1+(-1)^{|A \cap T|}+(-1)^{|B \cap T|}+(-1)^{|((A \backslash B) \cup(B \backslash A)) \cap T|}\right)
$$

Recall for $F \subseteq E$ and the point z^{F} where $z_{e}^{F}=1$ for $e \notin F, z_{e}^{F}=-1$ for $e \in F$, we have

$$
g_{\mu_{\lambda}}(z)=\sum_{T} \mu(T)(-1)^{|F \cap T|}=\mathbb{E}\left[(-1)^{|F \cap T|}\right]
$$

Corollary: We can compute $\mathbb{P}[u, v$ even degree in $T \mid S e t]$.
So, we have a deterministic algorithm in the degree cut case.

Using the actual (complicated) y from [KKO'21], after some more work...

Theorem: There is a deterministic fandomized $1.5-10^{-36}$ approximation algorithm for metric (path) TSP.

Traub, Vygen, Zenklusen in 2019

Key Derandomization Lemma

Lemma: For any sets of (not necessarily disjoint) edges $A_{1}, \ldots, A_{k} \subseteq E$, and any $\sigma_{1}, \ldots, \sigma_{k} \in \mathbb{F}_{r_{1}} \times \cdots \times \mathbb{F}_{r_{k}}$ and any λ-uniform distribution μ_{λ}, we can compute

$$
\mathbb{P}_{T \sim \mu_{\lambda}}\left[\left|A_{i} \cap T\right|=\sigma_{i}\left(\bmod r_{i}\right) \text { in } T \forall 1 \leq i \leq k \mid \operatorname{Set}\right]
$$

in time polynomial in $r_{1} r_{2} \ldots r_{k}$ (so, polynomial for any constant k).

Note: we only need this for $r_{i} \in\{2, n-1\}$, i.e. we are only interested in parity and cardinality.

Open questions

Open questions:

- Can we directly compute $\mathbb{E}[c(T)+c(M) \mid S e t]$ deterministically?
- Are there tree distributions with polynomial sized support that beat 3/2? (True for the degree cut case! [Hadaddan-Newman '19])

- Can we improve the analysis for this algorithm?

Thank you!

TSPortrait of Dantzig by Robert Bosch, 2006

Previous result

Theorem [Karlin-K-Oveis Gharan '20] There is a randomized $1.5-10^{-36}$ approximation algorithm for metric TSP.

On this tour we would gain the width of an atom!

We derandomize:

First, we 1. The probabilistic computations

uniform 2. The uncrossing operations

distribu 3. The construction of y for the laminar family Rayleigr

Generating polynomial: Let $\mu: 2^{E} \rightarrow \mathbb{R}_{\geq 0}$ be a distribution over ground set E. For each $e \in E$, define a variable z_{e}. Then the generating polynomial of μ is defined as:

$$
g_{\mu}\left(\left\{z_{e}\right\}_{e \in E}\right)=\sum_{S \in 2^{E}} \mu(S) z^{S}
$$

Where we define $z^{S}=\prod_{e \in S} z_{e}$.

Example: For a λ-uniform distribution of spanning trees over a graph $G=(V, E)$, the generating polynomial is:

$$
g_{\mu_{\lambda}}\left(\left\{z_{e}\right\}_{e \in E}\right)=\sum_{T \in \mathcal{T}} \mu(T) z^{T}=\sum_{T \in \mathcal{T}} \lambda^{T} z^{T}
$$

