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Given a set of cities and their pairwise symmetric distances satisfying the triangle 
inequality, 

𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣)
find the minimum cost tour that visits every city at least once.

In other words, given a weighted graph, find a minimum cost spanning Eulerian 
subgraph.

Metric, symmetric TSP



Approximation

Approximate tour
(efficiently computed)

Best approximation algorithm: at most 50% worse than optimal, i.e. a 1.5-
approximation [Christofides ’76, Serdyukov ‘78]        

Lower bounds: can’t do better than about 1% (currently 123/122) unless P=NP 
[Papadimitriou-Yannakakis ‘93, Böckenhauer-Seibert ‘00, Papadimitriou-Vempala  
’00, Engebretsen ‘03, Lampis ‘12, Karpinski-Lampis-Schmied ’15]



[Christofides '76, Serdyukov ‘78]: 3/2 approximation

[Wolsey ‘80, Shmoys-Williamson ‘90]: 3/2 integrality gap of LP relaxation

[Arora ‘96, Mitchell ‘96]: PTAS for Euclidean TSP

[Papadimitriou-Yannakakis ‘93,Blaser-Ram ‘05,Berman-Karpinski ‘06]: 1.14 for (1,2) TSP

[Grigni-Koutsoupias-Papadimitriou ’95, Arora-Grigni-Karger-Klein-Woloszyn ‘98, Klein ‘05]: PTAS for planar TSP

[Talwar ‘04, Bartal-Gottlieb-Krauthgamer ‘12]: PTAS for TSP on metrics with bounded doubling dimension.

[Gamarnik-Lewenstein-Sviridenko ‘05, Aggarwal-Garg-Gupta ‘11, Boyd-Sitters-Ster- Stougie ‘11, Correa, Larre, Soto '12]: 4/3 and even 
below for graphic TSP on (sub)cubic graphs. 

[Demaine-Hajiaghayi-Mohar’07, Demaine-Hajiaghayi-Kawarabayashi ‘11]: PTAS for TSP on bounded genus and minor free graphs

[Oveis Gharan-Saberi-Singh ‘10] [Mömke-Svensson ‘11] [Mucha ‘11] [Sebő-Vygen ’12]: 1.4 for graphic TSP

[Carr-Ravi ’98, Boyd-Carr ’11,Boyd-Legault ’15, Boyd-Sebő ’17, Haddadan-Newman-Ravi ’18, Hadaddan- Newman ’19, Karlin-K-
Oveis Gharan ‘20][Gupta-Lee-Li-Mucha-Newman-Sarkar ‘21]: 1.4983 for half integral TSP

[Hoogeveen ‘91][An-Kleinberg-Shmoys ‘11][Sebo ‘13][Vygen ‘15][Gottschalk-Vygen ‘15][Sebo-van Zuylen ‘16][Traub-Vygen 
‘18][Zenklusen ‘18][Traub-Vygen-Zenklusen ‘19]: Reducing path TSP to TSP

[Kisfaludi-Bak ‘20]: Quasi-polynomial hyperbolic TSP

Approximation algorithms



Theorem [Karlin-K-Oveis Gharan ‘20]: There is a 
randomized 1.5	 − 10!"# approximation algorithm for 
metric TSP.

Recent result

𝜖 improvement in meters



𝜖 improvement in meters

András Sebő in Bonn

Me in Bonn 2021

Using randomness is cheating



Me in Bonn 2021

András Sebő in Bonn

Using randomness is cheating

You haven’t beaten Christofides
until you get a 
deterministic algorithm.



Me in Bonn 2021

András Sebő in Bonn(… It was definitely much nicer 
than this, maybe “it would be cool 
if you could derandomize it”)

Using randomness is cheating

You haven’t beaten Christofides
until you get a 
deterministic algorithm.



Theorem: There is a randomized deterministic 1.5	 − 10!"# 
approximation algorithm for metric TSP.

This result

Photo credit: Bill Cook



Outline

1. Background and algorithm

2. Computing 𝔼[𝑐 𝑇 ∣ 𝑆𝑒𝑡] with the matrix tree theorem

3. Defining 𝑦(𝑇) in the special “degree cut” case.

4. Computing 𝔼 𝑐 𝑦 𝑆𝑒𝑡  in the degree cut case.



0.5
1

Subtour elimination LP/Held-Karp relaxation 
[Dantzig, Fulkerson, Johnson ‘54][Held and Karp ‘70]

Background #1: Linear programming 
relaxation

min=
$

𝑐$𝑥$

	 =
$∈&(()

𝑥$ ≥ 2	 ∀𝑆 ⊂ 𝑉

	 =
$∈&(*)

𝑥$ = 2	 ∀𝑢 ∈ 𝑉

	 𝑥$≥ 0	 ∀𝑒



Background #2: 𝜆-uniform spanning trees
For 𝜆: 𝐸 → ℝ+,,	the 𝜆 −uniform spanning tree distribution sets:

ℙ 𝑇 = ∏$∈- 𝜆$ = 𝜆-for all trees 𝑇

Where we assume 𝜆 is normalized such that ∑- 𝜆- = 1 .
𝜆! =	1

𝜆" =	1/3
𝜆# = 1/2 = + +1

2
1
3

1
6

[Asadpour, Goemans, Madry, Oveis Gharan, Saberi ‘10]: For any point 𝑧 in the spanning 
tree polytope, we can find a 𝜆-uniform distribution in polynomial time (via a max entropy 
convex program) such that:

∀𝑒,ℙ-∼/! 𝑒 ∈ 𝑇 = 𝑧$
Up to exponentially small multiplicative error.



Example
For 𝜆: 𝐸 → ℝ0,	a	𝜆 −uniform 
spanning tree distribution satisfies

ℙ1 𝑇 =O
$∈-

𝜆$

𝜆! =	1

𝜆" =	1/3
𝜆# = 1/2 = + +1

2
1
3

1
6

𝑥$! = 5/6

𝑥$" = 1/2
𝑥$# = 2/3

Suppose we get this point
in the spanning tree polytope 

Then we will produce this vector 𝜆 and thus a distribution over spanning trees 



• Compute an LP solution 𝑥 to the subtour LP
• Find a 𝜆-uniform distribution 𝜇1 with marginals 𝑥 
• Sample 𝑇 ∼ 𝜇1	
• Add the minimum cost matching 𝑀	on the odd degree vertices of 𝑇

Max entropy tree algorithm for TSP
Slight variant of [Oveis Gharan, Saberi, Singh ‘10]

𝔼 𝑐(𝑇) = 𝑐 𝑥 ≤ 𝑂𝑃𝑇

Main Theorem [KKO’20] : 𝔼 𝑐 𝑀 ≤ 2
3− 𝜖 𝑂𝑃𝑇	for some 𝜖 > 10!"#.

The subtour polytope is 
(almost) contained in 
the spanning tree 
polytope

* Using properties of 𝝀-uniform trees… *



• Compute an LP solution 𝑥 to the subtour LP
• Find a 𝜆-uniform distribution 𝜇1 with marginals 𝑥
• For each 𝑇 in the support of 𝜇1, compute 𝑐 𝑇 + 𝑐 𝑀 .
• Output the tree that minimizes c(𝑇) + 𝑐(𝑀).

A Deterministic !
"
− 𝜖 Approximation Algorithm for TSP

Obvious corollary!

Main Theorem [KKO’20] : 𝔼 𝑐 𝑇 + 𝑐(𝑀) ≤ "
3− 𝜖 𝑂𝑃𝑇 for some 𝜖 > 10!"#.

Issue: There are exponentially many trees in the support of 𝜇1.



• Compute an LP solution 𝑥 to the subtour LP
• Find a 𝜆-uniform distribution 𝜇1 with marginals 𝑥
• Initialize 𝑆𝑒𝑡 = ∅.
• For each edge 𝑒:
• If 𝔼 𝑐 𝑇 + 𝑐 𝑀 𝑆𝑒𝑡, 𝑒 ∈ 𝑇 ≤ 𝔼[𝑐 𝑇 + 𝑐 𝑀 ∣ 𝑆𝑒𝑡, 𝑒 ∉ 𝑇]:
• Let 𝑆𝑒𝑡 = 𝑆𝑒𝑡 ∪ {𝑒 = 1}

• Else, let 𝑆𝑒𝑡 = 𝑆𝑒𝑡 ∪ {𝑒 = 0}.
• Let 𝑇 be the set of edges set to 1 in 𝑆𝑒𝑡.
• Add the minimum cost matching 𝑀	on the odd degree vertices of 𝑇

A Deterministic !
"
− 𝜖 Approximation Algorithm for TSP

Attempt #2

Main Theorem [KKO’20] : 𝔼 𝑐 𝑇 + 𝑐(𝑀) ≤ "
3− 𝜖 𝑂𝑃𝑇 for some 𝜖 > 10!"#.

To sample the tree
deterministically

Issue: how do we compute this quantity? 



A short remark and the main theorem

Main Theorem [KKO’20] : 

𝔼 𝑐 𝑀 + 𝑐(𝑇) ≤
3
2 − 𝜖 𝑂𝑃𝑇

Here the analysis used the optimal solution. 
Thus there was really no hope of 
derandomizing this computation.

Notice: the proof upper bounds this quantity. 

Can we make the proof polytime?

Issue: how do we compute 𝔼 𝑐 𝑇 + 𝑐 𝑀 𝑆𝑒𝑡, 𝑒 ∈ 𝑇 ?

Main Theorem [KKO’21] : 

𝔼 𝑐 𝑀 + 𝑐(𝑇) ≤
3
2 − 𝜖 𝑐(𝑥)

In this result, the analysis did not use the 
optimal solution. This bounded the 
integrality gap and gave hope for 

derandomization. 



We show that the analysis in [KKO’21] can be made into a polynomial time algorithm.

Main Theorem: There exists a random variable 𝑦: 	𝒯 → ℝ+,4  such that: 

1.  ∀	𝑇 ∈ 𝒯, 𝑐 𝑀 ≤ 𝑐 𝑦  (𝑀 is min cost matching).
2.  𝔼[𝑐 𝑇 + 𝑐 𝑦 ] ≤ "

3− 𝜖 𝑐(𝑥). 
3.  For any setting 𝑆𝑒𝑡	of edges in/out of the tree we can compute 𝔼 𝑐 𝑇 + 𝑐 𝑦 𝑆𝑒𝑡  in 

polynomial time. 

i.e., 𝑐(𝑦) is a pessimistic estimator for 𝑐(𝑀) that we can efficiently compute and has cost 
below 53



• Compute an LP solution 𝑥 to the subtour LP
• Find a 𝜆-uniform distribution 𝜇1 with marginals 𝑥 
• Initialize 𝑆𝑒𝑡 = ∅.
• For each edge 𝑒:
• If 𝔼 𝑐 𝑇 + 𝑐 𝑦 𝑆𝑒𝑡, 𝑒 ∈ 𝑇 ≤ 𝔼[𝑐 𝑇 + 𝑐 𝑦 ∣ 𝑆𝑒𝑡, 𝑒 ∉ 𝑇]:
• Let 𝑆𝑒𝑡 = 𝑆𝑒𝑡 ∪ {𝑒 = 1}

• Else, let 𝑆𝑒𝑡 = 𝑆𝑒𝑡 ∪ {𝑒 = 0}.
• Let 𝑇 be the set of edges set to 1 in 𝑆𝑒𝑡.
• Add the minimum cost matching 𝑀	on the odd degree vertices of 𝑇

A Deterministic !
"
− 𝜖 Approximation Algorithm for TSP

For real this time

To sample the tree
deterministically

Condition 1: For all trees 𝑇 ∈ 𝒯, 𝑐 𝑀 ≤ 𝑐 𝑦  where 𝑀 is the minimum cost 
matching on the odd vertices of 𝑇. (Follows from definition of 𝑦)

Shows that the cost of the algorithm is at most	𝔼[𝒄 𝑻 + 𝒄 𝒚 ].

Condition 2: 𝔼[𝑐 𝑇 + 𝑐 𝑦 ] ≤ "
3− 𝜖 𝑐 𝑥  (Follows from [KKO’21])

With Condition 1, shows that the algorithm is a 𝟑𝟐− 𝛜 approximation.

Condition 3: For any setting 𝑆𝑒𝑡	of edges in/out of the tree we can compute 
𝔼 𝑐 𝑇 + 𝑐 𝑦 𝑆𝑒𝑡  in polynomial time. (Need to show!)

Shows that the algorithm can be implemented in polynomial time. 



Outline

1. Background and algorithm

2. Computing 𝔼[𝒄 𝑻 ∣ 𝑺𝒆𝒕] with the matrix tree theorem

3. Defining 𝑦 in the special “degree cut” case.

4. Computing 𝔼 𝑐 𝑦 𝑆𝑒𝑡  in the degree cut case.

Goal: compute 𝔼 𝑐 𝑇 + 𝑐 𝑦 𝑆𝑒𝑡  for any 
possible setting of edges in/out of the tree 𝑆𝑒𝑡.



Generating polynomial: Let 𝜇1 be a 𝜆-uniform distribution over spanning trees of a 
graph 𝐺 = (𝑉, 𝐸). For each 𝑒 ∈ 𝐸, define a variable 𝑧$. 

Then the generating polynomial of 𝜇1 is:

𝑔/! {𝑧$ $∈4) = =
-∈𝒯

𝜇 𝑇 𝑧- = =
-∈𝒯

𝜆-𝑧-

Where we define 𝑧- = ∏$∈- 𝑧$.

Key definition

𝜆$ =	1

𝜆% =	1/3
𝜆& = 1/2 𝑔/! {𝑧$ $∈4) =

1
2𝑧$𝑧9 +

1
3𝑧$𝑧: +

1
6𝑧9𝑧:

Why is this useful? It has exponentially many terms



The matrix tree theorem
[Kirchoff 1847]

Matrix Tree Theorem: Let 𝜇1 be a 𝜆-uniform distribution over spanning trees on a 
graph 𝐺 = (𝑉, 𝐸). Then,

𝑔/! 𝑧$ $∈4 ==
-

𝜇(𝑇)𝑧- ==
-

𝜆-𝑧-

	 = det =
$

𝜆$𝑧$𝐿$ +
𝟏𝟏
𝑛3

-

Where for an edge 𝑒 = (𝑢, 𝑣),
𝐿$ =	(1* − 1;) 1* − 1; -

is the Laplacian of the edge 𝑒.

Upshot: we can compute the value of 𝑔/!(𝑧) at any point 𝑧 ∈ ℂ|4| in polynomial 
time.



Question 1: Given a 𝜆-uniform distribution 𝜇1 and an oracle to compute 𝑔/! how do we compute 
ℙ-∼/![𝑓 ∈ 𝑇] for an edge 𝑓? 

Answer: ℙ 𝑓 ∈ 𝑇 = 1 −ℙ 𝑓 ∉ 𝑇 = 1 − 𝑔/!(𝑧) where 𝑧9 = 0 and 𝑧$ = 1 for 𝑒 ≠ 𝑓, as:

𝑔/! 𝑧 = =
-:9∉-

𝜆-

Upshot: Given a graph 𝐺 and 𝜆, we can compute the generating polynomial of 𝜇1 at any point 𝑧 ∈
ℂ|4| in polynomial time.

𝑔/! 𝑧$ $∈4 ==
-

𝜇(𝑇)𝑧- ==
-

𝜆-𝑧-

Question 2: How do we compute ℙ[𝑓 ∈ 𝑇 ∣ 𝑆𝑒𝑡] for an edge 𝑓? 

Answer: First, contract all edges set to 1 and delete all edges set to 0. We have a resulting 𝜆’-
uniform distribution 𝜇1? on a graph 𝐺′. First, renormalize 𝜆′. Then apply the above.

Therefore, we can easily compute 𝔼[𝑐 𝑇 ∣ 𝑆𝑒𝑡].

It remains to compute 𝔼 𝑐 𝑦 𝑆𝑒𝑡 .



Outline

1. Background and algorithm

2. Computing 𝔼[𝑐 𝑇 ∣ 𝑆𝑒𝑡] with the matrix tree theorem

3. Defining 𝒚 in the special “degree cut” case.

4. Computing 𝔼 𝑐 𝑦 𝑆𝑒𝑡  in the degree cut case.

Goal: compute 𝔼 𝑐 𝑇 + 𝑐 𝑦 𝑆𝑒𝑡  for any 
possible setting of edges in/out of the tree 𝑆𝑒𝑡.



,
$∈( )

𝑦$ ≥ 1 No constraint

Interlude: The 𝑂𝑑𝑑(𝑇)-Join polyhedron 𝑃!(#)

min=
*,;

𝑐$𝑦$

	 =
$∈&(()

𝑦$ ≥ 1	 ∀𝑆 𝛿(𝑆) ∩ 𝐸(𝑇) 	odd

        𝑦$ ≥ 0	 ∀𝑒	

[Edmonds and Johnson ‘73]

∀𝑆 containing 
an odd 
number of 
odd vertices 
in the tree

Equivalent

Has an integrality gap of 1. 

So, if 𝑦 is in the 𝑂𝑑𝑑(𝑇)-Join polyhedron 𝑃/(1), then 𝑐 𝑀 ≤ 𝑐(𝑦). We will ensure this, 
implying 𝑐(𝑦) is a pessimistic estimator.



Degree cut case

Suppose that the only (really) small cuts in the LP solution 𝑥 are the vertices. 

In other words, suppose all cuts 𝑆 ⊆ 𝑉 with 2 ≤ 𝑆 ≤ 𝑛 − 2 have 

=
$∈& (

𝑥$ ≥ 2+ 𝜂

for some absolute constant 𝜂 > 0.

𝑥$ =
2

𝑛 − 1

Subtour LP constraints

	 ,
$∈(())

𝑥$ ≥ 2	 ∀𝑆 ⊂ 𝑉

	 ,
$∈((,)

𝑥$ = 2	 ∀𝑢 ∈ 𝑉

	 𝑥$≥ 0	 ∀𝑒

𝑂𝑑𝑑(𝑇)-Join constraints

	 ,
$∈(())

𝑦$ ≥ 1	 ∀𝑆 𝛿(𝑆) ∩ 𝐸(𝑇) 	odd

        𝑦$ ≥ 0	 ∀𝑒	



An estimator 𝑦 for the degree cut case

𝑒

For an edge 𝑒 = (𝑢, 𝑣), we let:

𝑦$ =

5"
30A if 𝑢 and 𝑣 both have even degree in 𝑇

5"
3  otherwise

𝑦$ =
𝑥$
2 + 𝜂

𝑦$ =
𝑥$
2

𝑂𝑑𝑑(𝑇)-Join constraints

	 ,
$∈(())

𝑦$ ≥ 1	 ∀𝑆 𝛿(𝑆) ∩ 𝐸(𝑇) 	odd

        𝑦$ ≥ 0	 ∀𝑒	

+ We assume all non-vertex cuts have at least
2 + 𝜂 mass going across in 𝑥.



Claim: 𝑦(𝑇) is in 𝑃!(#)

For an edge 𝑒 = (𝑢, 𝑣), we let:
𝑦(𝑇)$ =

5"
30A if 𝑢 and 𝑣 both have even degree in 𝑇

5"
3  otherwise

Proof: For any cut 2 ≤ 𝑆 ≤ 𝑛 − 2, 𝑥 𝛿 𝑆 ≥ 2 + 𝜂 (by assumption). Since 𝑦$ ≥
5"
30A, 

=
$∈&(()

𝑦$ ≥
1

2 + 𝜂 =
$∈&(()

𝑥$ ≥
1

2 + 𝜂 ⋅ 2 + 𝜂 = 1

For the vertices: if a vertex 𝑣	is even, there is no 
constraint. If 𝑣 is odd, then all 𝑒 ∼ 𝑣 have 𝑦$ =

2
3𝑥$, so 

since ∑$∈&(;)𝑥$ = 2 we have ∑$∈&(;)𝑦$ = 1.

𝑂𝑑𝑑(𝑇)-Join constraints (𝑃-(.))

	 ,
$∈(())

𝑦$ ≥ 1	 ∀𝑆 𝛿(𝑆) ∩ 𝐸(𝑇) 	odd

        𝑦$ ≥ 0	 ∀𝑒	



Claim: 𝔼[𝑐(𝑦)] ≤ %
&
− 𝜖 𝑐(𝑥)

Assume: (By properties of 𝜆-uniform trees) With some constant probability 
at least 𝑝 ∈ Ω(1), any two vertices have even degree simultaneously in 𝑇

Some endpoint of 𝑒 is odd

Both endpoints of 𝑒 are even

𝔼 𝑦$ =
𝑥$
2 1 −ℙ 𝑢, 𝑣	even	degree	in	𝑇 + ℙ 𝑢, 𝑣	even	degree	in	𝑇

𝑥$
2 + 𝜂

=
1
2 −

𝜂
4 + 2𝜂ℙ 𝑢, 𝑣	even	degree	in	𝑇 𝑥$ ≤

1
2 −

𝜂𝑝
4 + 2𝜂 𝑥$

So, 𝑦 is a simple pessimistic estimator for the cost of the min-cost matching and it 
has 𝔼 𝑐 𝑦 ≤ 2

3
− 𝜖 𝑐(𝑥) at the beginning. 

Now we’ll show how to compute 𝔼 𝒄 𝒚 𝑺𝒆𝒕  for this simple 𝒚.



Outline

1. Background and algorithm

2. Computing 𝔼[𝑐 𝑇 ∣ 𝑆𝑒𝑡] with the matrix tree theorem

3. Defining 𝑦 in the special “degree cut” case.

4. Computing 𝔼 𝒄 𝒚 𝑺𝒆𝒕  in the degree cut case.

• For all trees 𝑇 ∈ 𝒯, 𝑐 𝑀 ≤ 𝑐 𝑦  where 𝑀 is the minimum cost matching on the odd 
vertices of 𝑇. 

• 𝔼[𝑐 𝑇 + 𝑐 𝑦 ] ≤ !
"
− 𝜖 𝑐(𝑥). 

• For any setting 𝑆𝑒𝑡	of edges in/out of the tree we can compute 𝔼 𝑐 𝑇 + 	𝑐 𝑦 𝑆𝑒𝑡  in 
polynomial time. 



Let 𝑒 = (𝑢, 𝑣).	Then,

𝔼 𝑦$ =
1
2 −

𝜂
4 + 2𝜂ℙ 𝑢, 𝑣	even	degree	in	𝑇 𝑥$

Therefore,

𝔼 𝑦$ ∣ 𝑆𝑒𝑡 =
1
2 −

𝜂
4 + 2𝜂ℙ 𝑢, 𝑣	even	degree	in	𝑇 ∣ 𝑆𝑒𝑡 𝑥$

So, to compute 𝔼[𝑐 𝑦 ], it is enough to compute ℙ 𝑢, 𝑣	even	degree	in	𝑇 ∣ 𝑆𝑒𝑡  for all 
𝑒 = (𝑢, 𝑣).

This is straightforward using the generating polynomial 𝑔!H



Computing ℙ 𝑢, 𝑣	even	degree	in	𝑇 ∣ 𝑆𝑒𝑡  

Observation: It is easy to condition on 𝑆𝑒𝑡. 

We’ve seen this before! Contract all edges set to 1, delete all edges set to 0, and renormalize. 
So, all we have to do is compute ℙ[𝑢, 𝑣	even	degree	in	𝑇] for a 𝜆-uniform distribution.

Warmup: Remember we can compute 𝑔/! 𝑧$ $∈4 = ∑- 𝜇(𝑇)𝑧- = ∑- 𝜆-𝑧- at any point 𝑧. 
If I give you a set 𝐹 ⊆ 𝐸, how do we compute ℙ[|𝐹 ∩ 𝑇|	even]?  

For all edges not in 𝐹, set 𝑧$ = 1. For all edges in 𝐹, set 𝑧$ = −1.

𝑔/! 𝑧 ==
-

𝜇(𝑇) −1 |B∩-| = =
-:|B∩-|	EFEG

𝜇 𝑇 − =
-:|B∩-|	HII

𝜇 𝑇

= ℙ |𝐹 ∩ 𝑇| even in 𝑇 − 1 −ℙ |𝐹 ∩ 𝑇| even 	
= 2ℙ |𝐹 ∩ 𝑇| even − 1	

So, ℙ |𝐹 ∩ 𝑇| even = 2
3 (𝑔/! 𝑧 + 1)



Computing ℙ 𝑢, 𝑣	even	degree	in	𝑇 ∣ 𝑆𝑒𝑡  
Lemma: We can compute ℙ |𝐴 ∩ 𝑇|, |𝐵 ∩ 𝑇|	even ∣ 𝑆𝑒𝑡  for any sets of (not necessarily 
disjoint) edges 𝐴,𝐵 ⊆ 𝐸.

From the previous slide, we can drop 𝑆𝑒𝑡. Now observe:

𝕀 |𝐴 ∩ 𝑇|, |𝐵 ∩ 𝑇|	even =
1
4 1 + −1 J∩- + −1 K∩- + −1 J∖K ∪ K∖J ∩-

Recall for 𝐹 ⊆ 𝐸 and the point 𝑧B where 𝑧$B = 1 for 𝑒 ∉ 𝐹, 𝑧$B = −1 for 𝑒 ∈ 𝐹, we have 

𝑔/! 𝑧 ==
-

𝜇 𝑇 −1 |B∩-| = 𝔼[ −1 |B∩-|]

ℙ |𝐴 ∩ 𝑇|, |𝐵 ∩ 𝑇|	even = 𝔼 𝕀 |𝐴 ∩ 𝑇|, |𝐵 ∩ 𝑇|	even 	

	 = 𝔼
1
4 1 + −1 J∩- + −1 K∩- + −1 J∖K ∪ K∖J ∩-

	 =
1
4 1 + 𝑔/! 𝑧

J +𝑔/! 𝑧
K +𝑔/! 𝑧

J∖K ∪ K∖J

Which we can compute.

Corollary: We can compute ℙ 𝑢, 𝑣	even	degree	in	𝑇 ∣ 𝑆𝑒𝑡 .

So, we have a deterministic algorithm in the degree cut case.



Theorem: There is a deterministic randomized 1.5	 − 10!"# 
approximation algorithm for metric (path) TSP.

Using the actual (complicated) 𝑦 from [KKO’21],
 after some more work…

Traub, Vygen, Zenklusen
in 2019



Key Derandomization Lemma

Lemma: For any sets of (not necessarily disjoint) edges 𝐴2, … , 𝐴N⊆ 𝐸, and any 
𝜎2, … , 𝜎N ∈ 𝔽O#×⋯×𝔽O$ and any 𝜆-uniform distribution 𝜇1, we can compute

ℙ-∼/! |𝐴P ∩ 𝑇| = 𝜎P mod	𝑟P 	in	𝑇	∀1 ≤ 𝑖 ≤ 𝑘 ∣ 𝑆𝑒𝑡
in time polynomial in 𝑟2𝑟3…𝑟N (so, polynomial for any constant 𝑘).

Note: we only need this for 𝑟P ∈ {2, 𝑛 − 1}, i.e. we are only interested in parity and 
cardinality. 



Open questions: 

• Can we directly compute 𝔼 𝑐 𝑇 + 𝑐 𝑀 ∣ 𝑆𝑒𝑡  deterministically? 

• Are there tree distributions with polynomial sized support that beat 3/2? 
(True for the degree cut case! [Hadaddan-Newman ’19])

• Can we improve the analysis for this algorithm?

Open questions



Thank you! 

TSPortrait of Dantzig by Robert Bosch, 2006



Theorem [Karlin-K-Oveis Gharan ‘20]: There is a 
randomized 1.5	 − 10!"# approximation algorithm 
for metric TSP.

Previous result

gaia1331906450

On this tour we would gain the 
width of an atom!



Beyond the degree cut case

Then, we use the polygon 
representation of near min cuts 
of Benczúr and Goemans to 
“uncross” the family of small 
cuts

First, we study properties of 𝜆-
uniform spanning tree 
distributions and Strongly 
Rayleigh distributions.

Finally, we define a 𝑦 for 
the remaining laminar 
family of cuts

We derandomize:

1. The probabilistic computations
2. The uncrossing operations 
3. The construction of 𝑦 for the laminar family



Generating polynomial: Let 𝜇: 24 → ℝ+, be a distribution over ground set 𝐸. For each 
𝑒 ∈ 𝐸, define a variable 𝑧$. Then the generating polynomial of 𝜇 is defined as:

𝑔/ {𝑧$}$∈4 = =
(∈3%

𝜇(𝑆)𝑧(

Where we define 𝑧( = ∏$∈( 𝑧$.

Example: For a 𝜆-uniform distribution of spanning trees over a graph 𝐺 = (𝑉, 𝐸), the 
generating polynomial is:

𝑔/! {𝑧$ $∈4) = =
-∈𝒯

𝜇 𝑇 𝑧- = =
-∈𝒯

𝜆-𝑧-


