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Sparse Approximation is the problem of identifying a subset that most
accurately models an observation.
(Sebastian Ament and Carla Gomes)

(Signal Recovery) (Pattern Recognition) (Machine Learning)

(Computed Tomography) (Portfollo Selectlon)



Mathematical Description.

m Given:

m Matrix A € Zm*",
m Vector b e Z™,
m Integer o € [n].

m Task:

min{|[b — Ax||2 : x € [0,1]", [|x][o < o} (Po)
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Mathematical Description.

m Given:

m Matrix A € Zm*",
m Vector b e Z™,
m Integer o € [n].

m Task:

min{|[b — Ax||2 : x € [0,1]", [|x][o < o} (Po)

m In General: NP-Hard !

m |dea: Let's fix m.

Tropp, J.A. (2004). "Greed is good: Algorithmic results for sparse
approximation”. |EEE Transactions on Information Theory. 50 (10): 2231=2242
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That’s easy!

min{||b — Ax||2 : x € [0,1]", ||x|lo < o}
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mm=2

(Po) is NP-hard, even if m = 2.
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Assumptions

m ||Al|~ bounded
m m bounded

mEm<<n

*x ok ok Kk ... ok kK%

*x ok ok k... ok Kk %
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/1-Relaxation.

min{||b — Ax||2 : x € [0,1]", ||x|lo < o}

min{||b — Ax||2 : x € [0,1]", ||x|s < o}

(Po)

(P1)
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Algorithms

® need A to satisfy (hard
to verify) properties.
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Algorithms

® need A to satisfy (hard
to verify) properties.

m depend highly on the
input.

m succeed only with a
certain probability.

Our contribution

Independent of A we give

m Probabilistic analysis
for random targets b.

m Proximity result
between (Pp) and (P1).

m Deterministic algorithm
polynomial in n
provided m and ||Al|
constant.
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Few fractional entries for ().

m Feasible vector x with support S.

m Set of (Pp)-feasible points with same objective value:

Ps(x):={y eR®: Ax = Asy,0 < y < 1}.

m Ps(x):
m polyhedron,
H non-empty,
m has at least one vertex v.

m At v at least |S| — m inequalities of the form 0 < y <1 are tight.



Few fractional entries for ().

Lemma

There exists a solution of (Py) that has at most m fractional entries.




Few fractional entries for (P;).

Lemma

There exists a solution of (P1) that has at most m fractional entries.




Section 1

The /;-relaxation for Random Targets b.
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Which vectors b are "easy” target vectors?

m Set of points representable with the /1-relaxation

Q:={AxeR™:x€[0,1]", |x]1 < o}.

m If bis "deep” inside Q, then (Py) is easy.

If b e 2=+ Q, then an optimal solution of (Py) solves (Py).

The £;-relaxation for Random Targets b 14 / 37
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Which vectors b are "easy” target vectors?

B Q:={AxeR":x€]0,1]",||x||1 < o}

Theorem
If b e 2= Q, then an optimal solution of (Py) solves (Py).

Proof (Sketch).

m Polyhedron {x € [0,1]" : Ax = b, ||x|1 <o — m+1}.
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Which vectors b are "easy” target vectors?

B Q:={AxeR":x€]0,1]",||x||1 < o}

Theorem
If b e 2= Q, then an optimal solution of (Py) solves (Py).

Proof (Sketch).

m Polyhedron {x € [0,1]" : Ax = b, ||x|1 <o — m+1}.

m Vertex v has at most ¢ — m + 1 integral non-zero entries.
® v has at most m fractional entries.

m vio <o
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Which vectors b are "easy” target vectors?

B Q:={AxeR":x€]0,1]",||x||1 < o}

Theorem
If b e 2= Q, then an optimal solution of (Py) solves (Py).

Proof (Sketch).

Polyhedron {x € [0,1]" : Ax = b, ||x|l1 <o — m+1}.
Vertex v has at most ¢ — m + 1 integral non-zero entries.
v has at most m fractional entries.

Ivlo < o

v is optimal for (Pp).

The £;-relaxation for Random Targets b



Which vectors b are "easy” target vectors?

B Q:={AxeR":x€[0,1]"||x|1 < o}
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Figure: The sampling of the vector b from Q + A\B
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Which vectors b are "easy” target vectors?

m If b is far outside of Q, then (Py) is easy with high probability.

Figure: The sampling of the vector b from Q + \B

The £;-relaxation for Random Targets b
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Which vectors b are "easy” target vectors?

Theorem

If b is sampled uniformly at random from the convex set Q + AB, then
with probability at least

= Grramars)
P= T om|[A]s

there exists an optimal solution of (P;) that is optimal for (Po).

m Example: If A = 2m?0||Al|oo, then p > % by Bernoulli’s inequality.

The £;-relaxation for Random Targets b 19 / 37
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Which vectors b are "easy” target vectors?

m Conversely, if b is close to the boundary of @, then the probability
that an optimal solution of (P1) solves (Pp) is almost 0.

Figure: The sampling of the vector b from Q + \B

The £;-relaxation for Random Targets b
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Separation Lemma.

m X optimal solution of (Py).

m x feasible point of (Pp).

Ax -
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Separation Lemma.

Ax

Lemma

H separates b from all vectors Ax with x feasible for (Pp).
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Perturbation Lemma.

Ax

Lemma

If we perturb % along the fractional entries, we will remain in H.

Proximity between (P;) and (Pp) 26 / 37



Proximity Result.

Theorem

For an optimal solution x* to (Py) we have

JAx* — A2 < 2] Al .
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Proximity Result.

Theorem

For an optimal solution x* to (Py) we have

| Ax* — A%]l2 < 2m*/?||Al|so.

Proof (Sketch)

m Reduce support of X by "filling up” the fractional entries — y.

m y is feasible for (Pp).
m By the Perturbation Lemma Ay € H.
m Separation Lemma + Standard Linear Algebra yields the result.

Proximity between (P1) and (Pp) 28 / 37
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Section 3

A Deterministic Algorithm.

A Deterministic Algorithm
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Az*

A Deterministic Algorithm

1. Guess support supp(f*) of fractional entries.
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Main ldea:

Az*

A Deterministic Algorithm

3. Match each z € Z* with its fractional part f.
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Arithmetic Cost
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Arithmetic Cost

m Guess support supp(f*) of fractional entries.

m supp(f*) < m.
m Minimal index set of fractional entries uses distinct columns of A.
m There are at most (2||Aflo + 1) distinct columns.

Lemma

There are at most (2||Alloo + 1)™ potentially different index sets
supp(f*).

A Deterministic Algorithm



Arithmetic Cost

m Establish candidate set Z* for z*.

Compute Z* by solving at most
O(m? || Allos)™ LIPs

A\f*y = b/,
Z Yi S g —m,
i=1

y € {0,1}"™.

A Deterministic Algorithm



Arithmetic Cost

m Match each z € Z* with its fractional part f.

b
-

A solution of
min{|[(b — A\f+2*) — Ar-gll2: g €[0,1]™}

can be computed in O(3™m?3) arithmetic
operations.

A Deterministic Algorithm
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Arithmetic Cost.

Theorem

The arithmetic cost of finding an optimal solution to (Py) is

(mllAll)°C™) - poly(n, In(([b]1)).

A Deterministic Algorithm
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