Constrained Sparse Approximation Over the Cube

Sabrina Bruckmeier Christoph Hunkenschröder Robert Weismantel
Sparse Approximation is the problem of identifying a subset that most accurately models an observation.

(Sebastian Ament and Carla Gomes)

(Signal Recovery) (Pattern Recognition) (Machine Learning)

(Computed Tomography) (Portfolio Selection)
Mathematical Description.

- **Given:**
 - Matrix $A \in \mathbb{Z}^{m \times n}$,
 - Vector $b \in \mathbb{Z}^{m}$,
 - Integer $\sigma \in [n]$.

- **Task:**

 $$\min\{\|b - Ax\|_2 : x \in [0, 1]^n, \|x\|_0 \leq \sigma\}. \quad (P_0)$$

- **In General:** NP-Hard \(^1\)
- **Idea:** Let’s fix m.

Mathematical Description.

Given:

- Matrix $A \in \mathbb{Z}^{m \times n}$,
- Vector $b \in \mathbb{Z}^m$,
- Integer $\sigma \in [n]$.

Task:

$$\min\{\|b - Ax\|_2 : x \in [0, 1]^n, \|x\|_0 \leq \sigma\}.$$ \hspace{1cm} (P_0)

In General: NP-Hard \(^1\)

Idea: Let’s fix m.

Mathematical Description.

- **Given:**
 - Matrix $A \in \mathbb{Z}^{m \times n}$,
 - Vector $b \in \mathbb{Z}^m$,
 - Integer $\sigma \in [n]$.

- **Task:**

$$
\min \{ \| b - Ax \|_2 : x \in [0, 1]^n, \| x \|_0 \leq \sigma \}. \quad (P_0)
$$

- **In General:** NP-Hard

- **Idea:** Let’s fix m.

That’s easy!

\[\min \{ \| b - Ax \|_2 : x \in [0, 1]^n, \| x \|_0 \leq \sigma \} . \]

\[m = 1 \]

\[\begin{array}{cccc}
0 & \cdot & ? & \cdot b \\
\end{array} \]
That’s easy!

\[\min \{ \|b - Ax\|_2 : x \in [0, 1]^n, \|x\|_0 \leq \sigma \} \]

- \(m = 1 \)

\[0 \quad \rightarrow \quad b \]
Or not?

- $m = 2$

Theorem

(P_0) is NP-hard, even if $m = 2$.

$\cdot b$

0
Or not?

- \(m = 2 \)

\[\cdot b \]

Theorem

\((P_0)\) is \(NP\)-hard, even if \(m = 2\).
Assumptions

- $\|A\|_\infty$ bounded
- m bounded
- $m \ll n$

\[
A = \begin{bmatrix}
\ast & \ast & \ast & \ast & \ldots & \ast & \ast & \ast \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\ast & \ast & \ast & \ast & \ldots & \ast & \ast & \ast
\end{bmatrix}
\]
ℓ_1-Relaxation.

\[
\min \{ \|b - Ax\|_2 : x \in [0, 1]^n, \|x\|_0 \leq \sigma \} \quad (P_0)
\]

\[
\min \{ \|b - Ax\|_2 : x \in [0, 1]^n, \|x\|_1 \leq \sigma \} \quad (P_1)
\]
So far

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of A we give

- Probabilistic analysis for random targets b.
- Proximity result between (P_0) and (P_1).
- Deterministic algorithm polynomial in n provided m and $\|A\|_\infty$ constant.
So far

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of A we give

- Probabilistic analysis for random targets b.
- Proximity result between (P_0) and (P_1).
- Deterministic algorithm polynomial in n provided m and $\|A\|_\infty$ constant.
So far

Algorithms
- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of A we give
- Probabilistic analysis for random targets b.
- Proximity result between (P_0) and (P_1).
- Deterministic algorithm polynomial in n provided m and $\|A\|_\infty$ constant.
So far

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of A we give

- Probabilistic analysis for random targets b.
- Proximity result between (P_0) and (P_1).
- Deterministic algorithm polynomial in n provided m and $\|A\|_\infty$ constant.
So far

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of A we give

- Probabilistic analysis for random targets b.
- Proximity result between (P_0) and (P_1).
- Deterministic algorithm polynomial in n provided m and $\|A\|_{\infty}$ constant.
So far

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of A we give

- Probabilistic analysis for random targets b.
- Proximity result between (P_0) and (P_1).
- Deterministic algorithm polynomial in n provided m and $\|A\|_{\infty}$ constant.
Few fractional entries for \((P_0)\).

- Feasible vector \(x\) with support \(S\).
- Set of \((P_0)\)-feasible points with same objective value:

\[
P_S(x) := \{ y \in \mathbb{R}^{|S|} : Ax = A_S y, 0 \leq y \leq 1 \}.
\]

- \(P_S(x)\):
 - polyhedron,
 - non-empty,
 - has at least one vertex \(v\).

- At \(v\) at least \(|S| - m\) inequalities of the form \(0 \leq y \leq 1\) are tight.
Few fractional entries for \((P_0)\).

- Feasible vector \(x\) with support \(S\).
- Set of \((P_0)\)-feasible points with same objective value:

 \[P_S(x) := \{ y \in \mathbb{R}^{|S|} : Ax = A_S y, 0 \leq y \leq 1 \}. \]

- \(P_S(x)\):
 - polyhedron,
 - non-empty,
 - has at least one vertex \(v\).

- At \(v\) at least \(|S| - m\) inequalities of the form \(0 \leq y \leq 1\) are tight.
Few fractional entries for \((P_0)\).

- Feasible vector \(x\) with support \(S\).
- Set of \((P_0)\)-feasible points with same objective value:

\[
P_S(x) := \{y \in \mathbb{R}^{|S|} : Ax = A_S y, 0 \leq y \leq 1\}.
\]

- \(P_S(x)\):
 - polyhedron,
 - non-empty,
 - has at least one vertex \(v\).
- At \(v\) at least \(|S| - m\) inequalities of the form \(0 \leq y \leq 1\) are tight.
Few fractional entries for \((P_0)\).

- Feasible vector \(x\) with support \(S\).
- Set of \((P_0)\)-feasible points with same objective value:

\[
P_S(x) := \{ y \in \mathbb{R}^{|S|} : Ax = A_S y, 0 \leq y \leq 1 \}.
\]

- \(P_S(x)\):
 - polyhedron,
 - non-empty,
 - has at least one vertex \(v\).
- At \(v\) at least \(|S| - m\) inequalities of the form \(0 \leq y \leq 1\) are tight.
Few fractional entries for \((P_0)\).

- Feasible vector \(x\) with support \(S\).
- Set of \((P_0)\)-feasible points with same objective value:

\[
P_S(x) := \{y \in \mathbb{R}^{|S|} : Ax = A_Sy, 0 \leq y \leq 1\}.
\]

- \(P_S(x)\):
 - polyhedron,
 - non-empty,
 - has at least one vertex \(v\).
- At \(v\) at least \(|S| - m\) inequalities of the form \(0 \leq y \leq 1\) are tight.
Few fractional entries for \((P_0)\).

Lemma

There exists a solution of \((P_0)\) that has at most \(m\) fractional entries.
Few fractional entries for \((P_1)\).

Lemma

There exists a solution of \((P_1)\) that has at most \(m\) fractional entries.
Section 1

The ℓ_1-relaxation for Random Targets b.
Which vectors b are "easy" target vectors?

- Set of points representable with the ℓ_1-relaxation

$$Q := \{ Ax \in \mathbb{R}^m : x \in [0, 1]^n, \|x\|_1 \leq \sigma \}.$$

- If b is "deep" inside Q, then (P_0) is easy.

Theorem

If $b \in \frac{\sigma - m + 1}{\sigma} Q$, then an optimal solution of (P_1) solves (P_0).
Which vectors \(b \) are "easy" target vectors?

- Set of points representable with the \(\ell_1 \)-relaxation

\[
Q := \{ Ax \in \mathbb{R}^m : x \in [0,1]^n, \|x\|_1 \leq \sigma \}.
\]

- If \(b \) is "deep" inside \(Q \), then \((P_0)\) is easy.

Theorem

If \(b \in \frac{\sigma - m + 1}{\sigma}Q \), then an optimal solution of \((P_1)\) solves \((P_0)\).
Which vectors b are "easy" target vectors?

- Set of points representable with the ℓ_1-relaxation

$$Q := \{Ax \in \mathbb{R}^m : x \in [0, 1]^n, \|x\|_1 \leq \sigma\}.$$

- If b is "deep" inside Q, then (P_0) is easy.

Theorem

If $b \in \frac{\sigma - m + 1}{\sigma} Q$, then an optimal solution of (P_1) solves (P_0).
Which vectors b are "easy" target vectors?

- Set of points representable with the ℓ_1-relaxation

$$Q := \{Ax \in \mathbb{R}^m : x \in [0, 1]^n, \|x\|_1 \leq \sigma\}.$$

- If b is "deep" inside Q, then (P_0) is easy.

Theorem

*If $b \in \frac{\sigma-m+1}{\sigma} Q$, then an optimal solution of (P_1) solves (P_0).***
Which vectors \(b \) are "easy" target vectors?

- \(Q := \{ Ax \in \mathbb{R}^m : x \in [0, 1]^n, \|x\|_1 \leq \sigma \} \).

Theorem

If \(b \in \frac{\sigma - m + 1}{\sigma} Q \), then an optimal solution of \((P_1)\) solves \((P_0)\).

Proof (Sketch).

- Polyhedron \(\{ x \in [0, 1]^n : Ax = b, \|x\|_1 \leq \sigma - m + 1 \} \).
- Vertex \(v \) has at most \(\sigma - m + 1 \) integral non-zero entries.
- \(v \) has at most \(m \) fractional entries.
- \(\|v\|_0 \leq \sigma \).
- \(v \) is optimal for \((P_0)\).
Which vectors b are "easy" target vectors?

Q:

$$Q := \{ Ax \in \mathbb{R}^m : x \in [0, 1]^n, \|x\|_1 \leq \sigma \}.$$

Theorem

If $b \in \frac{\sigma - m + 1}{\sigma} Q$, then an optimal solution of (P_1) solves (P_0).

Proof (Sketch).

- Polyhedron $\{ x \in [0, 1]^n : Ax = b, \|x\|_1 \leq \sigma - m + 1 \}$.
- Vertex v has at most $\sigma - m + 1$ integral non-zero entries.
- v has at most m fractional entries.
- $\|v\|_0 \leq \sigma$.
- v is optimal for (P_0).

The ℓ_1-relaxation for Random Targets b
Which vectors b are "easy" target vectors?

$Q := \{ Ax \in \mathbb{R}^m : x \in [0, 1]^n, \|x\|_1 \leq \sigma \}.$

Theorem

If $b \in \frac{\sigma - m + 1}{\sigma} Q$, then an optimal solution of (P_1) solves (P_0).

Proof (Sketch).

- Polyhedron $\{ x \in [0, 1]^n : Ax = b, \|x\|_1 \leq \sigma - m + 1 \}$.
- Vertex v has at most $\sigma - m + 1$ integral non-zero entries.
- v has at most m fractional entries.
- $\|v\|_0 \leq \sigma$.
- v is optimal for (P_0).
Which vectors b are "easy" target vectors?

$Q := \{ Ax \in \mathbb{R}^m : x \in [0,1]^n, \|x\|_1 \leq \sigma \}.$

Theorem

If $b \in \frac{\sigma - m + 1}{\sigma} Q$, then an optimal solution of (P_1) solves (P_0).

Proof (Sketch).

- Polyhedron $\{ x \in [0,1]^n : Ax = b, \|x\|_1 \leq \sigma - m + 1 \}$.
- Vertex v has at most $\sigma - m + 1$ integral non-zero entries.
- v has at most m fractional entries.
- $\|v\|_0 \leq \sigma$.
- v is optimal for (P_0).

The ℓ_1-relaxation for Random Targets b
Which vectors b are "easy" target vectors?

$Q := \{ Ax \in \mathbb{R}^m : x \in [0,1]^n, \|x\|_1 \leq \sigma \}$.

Theorem

If $b \in \frac{\sigma - m + 1}{\sigma} Q$, then an optimal solution of (P_1) solves (P_0).

Proof (Sketch).

- Polyhedron $\{ x \in [0,1]^n : Ax = b, \|x\|_1 \leq \sigma - m + 1 \}$.
- Vertex v has at most $\sigma - m + 1$ integral non-zero entries.
- v has at most m fractional entries.
- $\|v\|_0 \leq \sigma$.
- v is optimal for (P_0).
Which vectors b are "easy" target vectors?

\[Q := \{ Ax \in \mathbb{R}^m : x \in [0, 1]^n, \|x\|_1 \leq \sigma \}. \]
Which vectors b are "easy" target vectors?

Figure: The sampling of the vector b from $Q + \lambda B$
Which vectors b are "easy" target vectors?

- If b is far outside of Q, then (P_0) is easy with high probability.

Figure: The sampling of the vector b from $Q + \lambda B$
Which vectors b are "easy" target vectors?

Theorem

*If b is sampled uniformly at random from the convex set $Q + \lambda B$, then with probability at least

$$\rho = \left(\frac{\lambda}{\lambda + \sigma m \|A\|_\infty} \right)^m$$

there exists an optimal solution of (P_1) that is optimal for (P_0).*

- Example: If $\lambda = 2m^2\sigma \|A\|_\infty$, then $\rho \geq \frac{1}{2}$ by Bernoulli’s inequality.
Which vectors b are "easy" target vectors?

- Conversely, if b is close to the boundary of Q, then the probability that an optimal solution of (P_1) solves (P_0) is almost 0.

Figure: The sampling of the vector b from $Q + \lambda B$
Section 2

Proximity between \((P_1)\) and \((P_0)\).
Separation Lemma.

- \hat{x} optimal solution of (P_1).
Separation Lemma.

- \(\hat{x} \) optimal solution of \((P_1)\).

![Diagram showing separation between \((P_1)\) and \((P_0)\)]
Separation Lemma.

- \(\hat{x} \) optimal solution of \((P_1)\).
- \(x \) feasible point of \((P_0)\).
Separation Lemma.

Lemma

\(H \) separates \(b \) from all vectors \(Ax \) with \(x \) feasible for \((P_0) \).
Separation Lemma.

Lemma

H separates *b* from all vectors *Ax* with *x* feasible for (*P₀*).
Perturbation Lemma.

If we perturb \hat{x} along the fractional entries, we will remain in H.
Theorem

For an optimal solution x^* to (P_0) we have

$$\|Ax^* - A\hat{x}\|_2 \leq 2m^{3/2}\|A\|_\infty.$$
Theorem

For an optimal solution \(x^\star \) to \((P_0)\) we have

\[
\|Ax^\star - \hat{A}x\|_2 \leq 2m^{3/2}\|A\|_\infty.
\]

Proof (Sketch)

- Reduce support of \(\hat{x} \) by "filling up" the fractional entries \(\rightarrow y \).
- \(y \) is feasible for \((P_0)\).
- By the Perturbation Lemma \(Ay \in H \).
- Separation Lemma + Standard Linear Algebra yields the result.
Proximity Result.

Theorem

For an optimal solution x^* to (P_0) we have

$$\|Ax^* - \hat{A}\|_2 \leq 2m^{3/2}\|A\|_\infty.$$

Proof (Sketch)

- Reduce support of \hat{x} by "filling up" the fractional entries $\to y$.
- y is feasible for (P_0).
- By the Perturbation Lemma $Ay \in H$.
- Separation Lemma + Standard Linear Algebra yields the result.
Proximity Result.

Theorem

For an optimal solution x^\star to (P_0) we have

$$
\|Ax^\star - A\hat{x}\|_2 \leq 2m^{3/2}\|A\|_\infty.
$$

Proof (Sketch)

- Reduce support of \hat{x} by "filling up" the fractional entries $\rightarrow y$.
- y is feasible for (P_0).
- By the Perturbation Lemma $Ay \in H$.
- Separation Lemma + Standard Linear Algebra yields the result.

Proximity between (P_1) and (P_0)
Proximity Result.

Theorem

For an optimal solution x^* to (P_0) we have

$$\|Ax^* - A\hat{x}\|_2 \leq 2m^{3/2}\|A\|_\infty.$$

Proof (Sketch)

- Reduce support of \hat{x} by "filling up" the fractional entries → y.
- y is feasible for (P_0).
- By the Perturbation Lemma $Ay \in H$.
- Separation Lemma + Standard Linear Algebra yields the result.
Section 3

A Deterministic Algorithm.
Ax

\hat{A}x

Ax^*

b
Main Idea: Decompose $x^* = z^* + f^*$.

1. Guess support $\text{supp}(f^*)$ of fractional entries.
Main Idea: Decompose $x^* = z^* + f^*$.

1. Guess support $\text{supp}(f^*)$ of fractional entries.
Main Idea: Decompose $x^* = z^* + f^*$.

2. Establish candidate set Z^* for z^*.
Main Idea: Decompose \(x^* = z^* + f^* \).

3. Match each \(z \in Z^* \) with its fractional part \(f \).
Arithmetic Cost

- Guess support $\text{supp}(f^*)$ of fractional entries.
 - $\text{supp}(f^*) \leq m$.
 - Minimal index set of fractional entries uses distinct columns of A.
 - There are at most $(2\|A\|_\infty + 1)^m$ distinct columns.

Lemma

There are at most $(2\|A\|_\infty + 1)^{m^2}$ potentially different index sets $\text{supp}(f^*)$.
Arithmetic Cost

- Guess support $\text{supp}(f^*)$ of fractional entries.
 - $\text{supp}(f^*) \leq m$.
 - Minimal index set of fractional entries uses distinct columns of A.
 - There are at most $(2\|A\|_\infty + 1)^m$ distinct columns.

Lemma

There are at most $(2\|A\|_\infty + 1)^m$ potentially different index sets $\text{supp}(f^*)$.
Arithmetic Cost

- Guess support $\text{supp}(f^*)$ of fractional entries.
 - $\text{supp}(f^*) \leq m$.
 - Minimal index set of fractional entries uses distinct columns of A.
 - There are at most $(2\|A\|_\infty + 1)^m$ distinct columns.

Lemma

There are at most $(2\|A\|_\infty + 1)^{m^2}$ potentially different index sets $\text{supp}(f^*)$.
Arithmetic Cost

- Guess support $\text{supp}(f^*)$ of fractional entries.
 - $\text{supp}(f^*) \leq m$.
 - Minimal index set of fractional entries uses distinct columns of A.
 - There are at most $(2\|A\|_\infty + 1)^m$ distinct columns.

Lemma

There are at most $(2\|A\|_\infty + 1)^{m^2}$ potentially different index sets $\text{supp}(f^*)$.
Arithmetic Cost

- Guess support $\text{supp}(f^*)$ of fractional entries.
 - $\text{supp}(f^*) \leq m$.
 - Minimal index set of fractional entries uses distinct columns of A.
 - There are at most $(2\|A\|_\infty + 1)^m$ distinct columns.

Lemma

There are at most $(2\|A\|_\infty + 1)^{m^2}$ potentially different index sets $\text{supp}(f^*)$.
Establish candidate set Z^* for z^*.

Theorem

Compute Z^* by solving at most $O(m^3 \|A\|_\infty^m) \ LIPs$

$$A\hat{f}^*y = b', \quad \sum_{i=1}^{n-m} y_i \leq \sigma - m, \quad y \in \{0,1\}^{n-m}.$$
Arithmetic Cost

- Match each $z \in Z^*$ with its fractional part f.

Theorem

A solution of

$$\min \{ \|(b - A_f^*z^*) - A_f^*g\|_2 : g \in [0, 1]^m \}$$

can be computed in $O(3^m m^3)$ arithmetic operations.
Theorem

The arithmetic cost of finding an optimal solution to (P_0) is

$$(m\|A\|_\infty)^{O(m^2)} \cdot poly(n, \ln(\|b\|_1)).$$