Constrained Sparse Approximation Over the Cube

Sabrina Bruckmeier
Christoph Hunkenschröder
Robert Weismantel

Sparse Approximation is the problem of identifying a subset that most accurately models an observation.
(Sebastian Ament and Carla Gomes)

(Signal Recovery)

(Pattern Recognition)

(Machine Learning)

(Computed Tomography)

(Portfolio Selection)

Mathematical Description.

- Given:
- Matrix $A \in \mathbb{Z}^{m \times n}$,
- Vector $b \in \mathbb{Z}^{m}$,
- Integer $\sigma \in[n]$.

■ Task:

$$
\min \left\{\|b-A x\|_{2}: x \in[0,1]^{n},\|x\|_{0} \leq \sigma\right\} .
$$

- In General: NP-Hard ${ }^{1}$
- Idea: Let's fix m.

Mathematical Description.

■ Given:

- Matrix $A \in \mathbb{Z}^{m \times n}$,
- Vector $b \in \mathbb{Z}^{m}$,
- Integer $\sigma \in[n]$.

■ Task:

$$
\min \left\{\|b-A x\|_{2}: x \in[0,1]^{n},\|x\|_{0} \leq \sigma\right\} .
$$

- In General: NP-Hard ${ }^{1}$
- Idea: Let's fix m.

[^0]
Mathematical Description.

■ Given:

- Matrix $A \in \mathbb{Z}^{m \times n}$,
- Vector $b \in \mathbb{Z}^{m}$,
- Integer $\sigma \in[n]$.

■ Task:

$$
\begin{equation*}
\min \left\{\|b-A x\|_{2}: x \in[0,1]^{n},\|x\|_{0} \leq \sigma\right\} . \tag{0}
\end{equation*}
$$

- In General: NP-Hard ${ }^{1}$
- Idea: Let's fix m.

[^1]
That's easy!

$$
\min \left\{\|b-A x\|_{2}: x \in[0,1]^{n},\|x\|_{0} \leq \sigma\right\} .
$$

- $m=1$

That's easy!

$$
\min \left\{\|b-A x\|_{2}: x \in[0,1]^{n},\|x\|_{0} \leq \sigma\right\} .
$$

- $m=1$

Or not?
$\square m=2$

Theorem
$\left(P_{0}\right)$ is NP-hard, even if $m=2$.

Or not?

■ $m=2$

$\left(P_{0}\right)$ is NP-hard, even if $m=2$.

Assumptions

■ $\|A\|_{\infty}$ bounded

- m bounded
- $m \ll n$

$$
A=\left[\begin{array}{cccccccc}
\star & \star & \star & \star & \ldots & \star & \star & \star \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
\star & \star & \star & \star & \ldots & \star & \star & \star
\end{array}\right]
$$

ℓ_{1}-Relaxation.

$$
\begin{aligned}
& \min \left\{\|b-A x\|_{2}: x \in[0,1]^{n},\|x\|_{0} \leq \sigma\right\} \\
& \min \left\{\|b-A x\|_{2}: x \in[0,1]^{n},\|x\|_{1} \leq \sigma\right\}
\end{aligned}
$$

So far

Algorithms

■ need A to satisfy (hard to verify) properties.

- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Indenendent of A whe give

- Probabilistic analysis for random targets b.
- Proximity result between $\left(P_{0}\right)$ and $\left(P_{1}\right)$.
- Deterministic algorithm polynomial in n provided m and $\|A\|_{\infty}$ constant.

So far

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of 1 we give

- Probabilistic analysis for random targets b.
- Proximity result between $\left(P_{0}\right)$ and $\left(P_{1}\right)$.
- Deterministic algorithm polynomial in n provided m and $\|A\|_{\infty}$ constant.

So far

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of \wedge we give

- Probabilistic analysis for random targets b.
- Proximity result between $\left(P_{0}\right)$ and $\left(P_{1}\right)$.
- Deterministic algorithm polynomial in n provided m and $\|A\|_{\infty}$ constant.

Our contribution

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability. Independent of A we give
- Probabilistic analysis for random targets b.
- Proximity result between $\left(P_{0}\right)$ and $\left(P_{1}\right)$.
- Deterministic algorithm polynomial in n provided m and $\|A\|_{\infty}$ constant.

Our contribution

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Independent of A we give

- Probabilistic analysis for random targets b.
- Proximity result between $\left(P_{0}\right)$ and $\left(P_{1}\right)$.
- Deterministic algorithm polynomial in n provided m and $\|A\| \infty$ constant.

Our contribution

Independent of A we give

- Probabilistic analysis for random targets b.
- Proximity result between $\left(P_{0}\right)$ and $\left(P_{1}\right)$.
- Deterministic algorithm polynomial in n provided m and $\|A\|_{\infty}$ constant.

Few fractional entries for $\left(P_{0}\right)$.

■ Feasible vector x with support S.
■ Set of $\left(P_{0}\right)$-feasible points with same objective value:

$$
P_{S}(x):=\left\{y \in \mathbb{R}^{|S|}: A x=A_{s} y, 0 \leq y \leq 1\right\}
$$

■ polyhedron,

- non-empty,
- has at least one vertex V .

■ At v at least $|S|-m$ inequalities of the form $0 \leq y \leq 1$ are tight.

Few fractional entries for $\left(P_{0}\right)$.

■ Feasible vector x with support S.
■ Set of $\left(P_{0}\right)$-feasible points with same objective value:

$$
P_{S}(x):=\left\{y \in \mathbb{R}^{|S|}: A x=A_{S y}, 0 \leq y \leq 1\right\} .
$$

- $P_{S}(x)$:

■ polyhedron,

- non-empty,

■ has at least one vertex v

- At v at least $|S|$ - m inequalities of the form $0 \leq y \leq 1$ are tight.

Few fractional entries for $\left(P_{0}\right)$.

■ Feasible vector x with support S.
■ Set of $\left(P_{0}\right)$-feasible points with same objective value:

$$
P_{S}(x):=\left\{y \in \mathbb{R}^{|S|}: A x=A_{S y}, 0 \leq y \leq 1\right\} .
$$

- $P_{S}(x):$

■ polyhedron,
■ non-empty,

- has at least one vertex v

■ At v at least $|S|-m$ inequalities of the form $0 \leq y \leq 1$ are tight.

Few fractional entries for $\left(P_{0}\right)$.

■ Feasible vector x with support S.
■ Set of $\left(P_{0}\right)$-feasible points with same objective value:

$$
P_{S}(x):=\left\{y \in \mathbb{R}^{|S|}: A x=A_{S y}, 0 \leq y \leq 1\right\} .
$$

- $P_{S}(x)$:

■ polyhedron,

- non-empty,

■ has at least one vertex v.

- At v at least $|S|-m$ inequalities of the form $0 \leq y \leq 1$ are tight

Few fractional entries for $\left(P_{0}\right)$.

■ Feasible vector x with support S.
■ Set of $\left(P_{0}\right)$-feasible points with same objective value:

$$
P_{S}(x):=\left\{y \in \mathbb{R}^{|S|}: A x=A_{S y}, 0 \leq y \leq 1\right\} .
$$

- $P_{S}(x):$

■ polyhedron,

- non-empty,
- has at least one vertex v.

■ At v at least $|S|-m$ inequalities of the form $0 \leq y \leq 1$ are tight.

Few fractional entries for $\left(P_{0}\right)$.

Lemma

There exists a solution of $\left(P_{0}\right)$ that has at most m fractional entries.

Few fractional entries for $\left(P_{1}\right)$.

Lemma

There exists a solution of $\left(P_{1}\right)$ that has at most m fractional entries.

Section 1

The ℓ_{1}-relaxation for Random Targets b.

Which vectors b are "easy" target vectors?

■ Set of points representable with the ℓ_{1}-relaxation

$$
Q:=\left\{A x \in \mathbb{R}^{m}: x \in[0,1]^{n},\|x\|_{1} \leq \sigma\right\} .
$$

- If b is "deep" inside Q, then $\left(P_{0}\right)$ is easy.

Theorem

If $b \in \frac{\sigma-m+1}{\sigma} Q$, then an optimal solution of $\left(P_{1}\right)$ solves $\left(P_{0}\right)$.

Which vectors b are "easy" target vectors?

■ Set of points representable with the ℓ_{1}-relaxation

$$
Q:=\left\{A x \in \mathbb{R}^{m}: x \in[0,1]^{n},\|x\|_{1} \leq \sigma\right\} .
$$

■ If b is "deep" inside Q, then $\left(P_{0}\right)$ is easy.

Theorem

If $b \in \frac{\sigma-m+1}{\sigma} Q$, then an optimal solution of $\left(P_{1}\right)$ solves $\left(P_{0}\right)$

Which vectors b are "easy" target vectors?

■ Set of points representable with the ℓ_{1}-relaxation

$$
Q:=\left\{A x \in \mathbb{R}^{m}: x \in[0,1]^{n},\|x\|_{1} \leq \sigma\right\} .
$$

■ If b is "deep" inside Q, then $\left(P_{0}\right)$ is easy.

Theorem

If $b \in \frac{\sigma-m+1}{\sigma} Q$, then an optimal solution of $\left(P_{1}\right)$ solves $\left(P_{0}\right)$

Which vectors b are "easy" target vectors?

■ Set of points representable with the ℓ_{1}-relaxation

$$
Q:=\left\{A x \in \mathbb{R}^{m}: x \in[0,1]^{n},\|x\|_{1} \leq \sigma\right\} .
$$

- If b is "deep" inside Q, then $\left(P_{0}\right)$ is easy.

Theorem

If $b \in \frac{\sigma-m+1}{\sigma} Q$, then an optimal solution of $\left(P_{1}\right)$ solves $\left(P_{0}\right)$.

Which vectors b are "easy" target vectors?

■ $Q:=\left\{A x \in \mathbb{R}^{m}: x \in[0,1]^{n},\|x\|_{1} \leq \sigma\right\}$.

Theorem

If $b \in \frac{\sigma-m+1}{\sigma} Q$, then an optimal solution of $\left(P_{1}\right)$ solves $\left(P_{0}\right)$.

Proof (Sketch).

- Polyhedron $\left\{x \in[0,1]^{n}: A x=b,\|x\|_{1} \leq \sigma-m+1\right\}$.
- Vertex v has at most $\sigma-m+1$ integral non-zero entries.
- v has at most m fractional entries.
- V is optimal for $\left(P_{0}\right)$

Which vectors b are "easy" target vectors?

■ $Q:=\left\{A x \in \mathbb{R}^{m}: x \in[0,1]^{n},\|x\|_{1} \leq \sigma\right\}$.

Theorem

If $b \in \frac{\sigma-m+1}{\sigma} Q$, then an optimal solution of $\left(P_{1}\right)$ solves $\left(P_{0}\right)$.

Proof (Sketch).

- Polyhedron $\left\{x \in[0,1]^{n}: A x=b,\|x\|_{1} \leq \sigma-m+1\right\}$.
- Vertex v has at most $\sigma-m+1$ integral non-zero entries.
- v is optimal for $\left(P_{0}\right)$

Which vectors b are "easy" target vectors?

■ $Q:=\left\{A x \in \mathbb{R}^{m}: x \in[0,1]^{n},\|x\|_{1} \leq \sigma\right\}$.

Theorem

If $b \in \frac{\sigma-m+1}{\sigma} Q$, then an optimal solution of $\left(P_{1}\right)$ solves $\left(P_{0}\right)$.

Proof (Sketch).

- Polyhedron $\left\{x \in[0,1]^{n}: A x=b,\|x\|_{1} \leq \sigma-m+1\right\}$.
- Vertex v has at most $\sigma-m+1$ integral non-zero entries.
- v has at most m fractional entries.
- v is optimal for $\left(P_{0}\right)$

Which vectors b are "easy" target vectors?

- $Q:=\left\{A x \in \mathbb{R}^{m}: x \in[0,1]^{n},\|x\|_{1} \leq \sigma\right\}$.

Theorem

If $b \in \frac{\sigma-m+1}{\sigma} Q$, then an optimal solution of $\left(P_{1}\right)$ solves $\left(P_{0}\right)$.

Proof (Sketch).

- Polyhedron $\left\{x \in[0,1]^{n}: A x=b,\|x\|_{1} \leq \sigma-m+1\right\}$.
- Vertex v has at most $\sigma-m+1$ integral non-zero entries.
- v has at most m fractional entries.
- $\|v\|_{0} \leq \sigma$.
- V is optimal for $\left(P_{0}\right)$

Which vectors b are "easy" target vectors?

- $Q:=\left\{A x \in \mathbb{R}^{m}: x \in[0,1]^{n},\|x\|_{1} \leq \sigma\right\}$.

Theorem

If $b \in \frac{\sigma-m+1}{\sigma} Q$, then an optimal solution of $\left(P_{1}\right)$ solves $\left(P_{0}\right)$.

Proof (Sketch).

- Polyhedron $\left\{x \in[0,1]^{n}: A x=b,\|x\|_{1} \leq \sigma-m+1\right\}$.
- Vertex v has at most $\sigma-m+1$ integral non-zero entries.
- v has at most m fractional entries.
- $\|v\|_{0} \leq \sigma$.
- v is optimal for $\left(P_{0}\right)$.

Which vectors b are "easy" target vectors?

- $Q:=\left\{A x \in \mathbb{R}^{m}: x \in[0,1]^{n},\|x\|_{1} \leq \sigma\right\}$.

Which vectors b are "easy" target vectors?

Figure: The sampling of the vector b from $Q+\lambda B$

Which vectors b are "easy" target vectors?

- If b is far outside of Q, then $\left(P_{0}\right)$ is easy with high probability.

Figure: The sampling of the vector b from $Q+\lambda B$

Which vectors b are "easy" target vectors?

Theorem

If b is sampled uniformly at random from the convex set $Q+\lambda B$, then with probability at least

$$
\rho=\left(\frac{\lambda}{\lambda+\sigma m\|A\|_{\infty}}\right)^{m}
$$

there exists an optimal solution of $\left(P_{1}\right)$ that is optimal for $\left(P_{0}\right)$.
■ Example: If $\lambda=2 m^{2} \sigma\|A\|_{\infty}$, then $\rho \geq \frac{1}{2}$ by Bernoulli's inequality.

Which vectors b are "easy" target vectors?

■ Conversely, if b is close to the boundary of Q, then the probability that an optimal solution of $\left(P_{1}\right)$ solves $\left(P_{0}\right)$ is almost 0 .

Figure: The sampling of the vector b from $Q+\lambda B$

Section 2

Proximity between $\left(P_{1}\right)$ and $\left(P_{0}\right)$.

Separation Lemma.

■ \hat{x} optimal solution of $\left(P_{1}\right)$.

Separation Lemma.

■ \hat{x} optimal solution of $\left(P_{1}\right)$.

Separation Lemma.

■ \hat{x} optimal solution of $\left(P_{1}\right)$.
■ x feasible point of $\left(P_{0}\right)$.

Separation Lemma.

Lemma

H separates b from all vectors $A \times$ with \times feasible for $\left(P_{0}\right)$

Separation Lemma.

Lemma

H separates b from all vectors $A x$ with x feasible for $\left(P_{0}\right)$.

Perturbation Lemma.

Lemma

If we perturb \hat{x} along the fractional entries, we will remain in H.

Proximity Result.

Theorem

For an optimal solution x^{\star} to $\left(P_{0}\right)$ we have

$$
\left\|A x^{\star}-A \hat{x}\right\|_{2} \leq 2 m^{3 / 2}\|A\|_{\infty} .
$$

Proximity Result.

Theorem

For an optimal solution x^{\star} to $\left(P_{0}\right)$ we have

$$
\left\|A x^{\star}-A \hat{x}\right\|_{2} \leq 2 m^{3 / 2}\|A\|_{\infty} .
$$

Proof (Sketch)

■ Reduce support of \hat{x} by "filling up" the fractional entries $\rightarrow y$.

- y is feasible for $\left(P_{0}\right)$
- By the Perturbation Lemma $A y \in H$
- Separation Lemma + Standard Linear Algebra yields the result.

Proximity Result.

Theorem

For an optimal solution x^{\star} to $\left(P_{0}\right)$ we have

$$
\left\|A x^{\star}-A \hat{x}\right\|_{2} \leq 2 m^{3 / 2}\|A\|_{\infty}
$$

Proof (Sketch)

- Reduce support of \hat{x} by "filling up" the fractional entries $\rightarrow y$.
- y is feasible for $\left(P_{0}\right)$.
- By the Perturbation Lemma $A y \in H$.
- Separation Lemma + Standard Linear Algebra yields the result.

Proximity Result.

Theorem

For an optimal solution x^{\star} to $\left(P_{0}\right)$ we have

$$
\left\|A x^{\star}-A \hat{x}\right\|_{2} \leq 2 m^{3 / 2}\|A\|_{\infty}
$$

Proof (Sketch)

■ Reduce support of \hat{x} by "filling up" the fractional entries $\rightarrow y$.
■ y is feasible for $\left(P_{0}\right)$.

- By the Perturbation Lemma $A y \in H$.
- Separation Lemma + Standard Linear Algebra yields the result.

Proximity Result.

Theorem

For an optimal solution x^{\star} to $\left(P_{0}\right)$ we have

$$
\left\|A x^{\star}-A \hat{x}\right\|_{2} \leq 2 m^{3 / 2}\|A\|_{\infty}
$$

Proof (Sketch)

- Reduce support of \hat{x} by "filling up" the fractional entries $\rightarrow y$.
- y is feasible for $\left(P_{0}\right)$.
- By the Perturbation Lemma $A y \in H$.

■ Separation Lemma + Standard Linear Algebra yields the result.

Section 3

A Deterministic Algorithm.

Main Idea: Decompose $x^{\star}=z^{\star}+f^{\star}$.

1. Guess support $\operatorname{supp}\left(f^{\star}\right)$ of fractional entries.

Main Idea: Decompose $x^{\star}=z^{\star}+f^{\star}$.

1. Guess support $\operatorname{supp}\left(f^{\star}\right)$ of fractional entries.

Main Idea: Decompose $x^{\star}=z^{\star}+f^{\star}$.

2. Establish candidate set Z^{\star} for z^{\star}.

Main Idea: Decompose $x^{\star}=z^{\star}+f^{\star}$.

3. Match each $z \in Z^{\star}$ with its fractional part f.

Arithmetic Cost

- Guess support $\operatorname{supp}\left(f^{\star}\right)$ of fractional entries.
- supp(r) -
- Minimal index set of fractional entries uses distinct columns of A.
- There are at most $\left(2\|A\|_{\infty}+1\right)^{m}$ distinct columns.

Lemma

There are at most $\left(2\|A\|_{\infty}+1\right)^{m^{2}}$ potentially different index sets $\operatorname{supp}\left(f^{\star}\right)$.

Arithmetic Cost

■ Guess support $\operatorname{supp}\left(f^{\star}\right)$ of fractional entries.
■ $\operatorname{supp}\left(f^{\star}\right) \leq m$.

- Minimal index set of fractional entries uses distinct columns of A.
- There are at most $\left(2\|A\|_{\infty}+1\right)^{m}$ distinct columns.

Lemma

There are at most $(2\|A\| \infty+1)^{m^{2}}$ potentially different index sets $\operatorname{supp}\left(f^{\star}\right)$.

Arithmetic Cost

■ Guess support $\operatorname{supp}\left(f^{\star}\right)$ of fractional entries.

- $\operatorname{supp}\left(f^{\star}\right) \leq m$.

■ Minimal index set of fractional entries uses distinct columns of A.

- There are at most $\left(2\|A\|_{\infty}+1\right)^{m}$ distinct columns.

Lemma

There are at most $(2\|A\| \infty+1)^{m^{2}}$ potentially different index sets $\operatorname{supp}\left(f^{\star}\right)$

Arithmetic Cost

■ Guess support $\operatorname{supp}\left(f^{\star}\right)$ of fractional entries.

- $\operatorname{supp}\left(f^{\star}\right) \leq m$.

■ Minimal index set of fractional entries uses distinct columns of A.

- There are at most $\left(2\|A\|_{\infty}+1\right)^{m}$ distinct columns.

Lemma

There are at most $(2\|A\| \infty+1)^{m^{2}}$ potentially different index sets $\operatorname{supp}\left(f^{\star}\right)$

Arithmetic Cost

■ Guess support $\operatorname{supp}\left(f^{\star}\right)$ of fractional entries.
■ $\operatorname{supp}\left(f^{\star}\right) \leq m$.

- Minimal index set of fractional entries uses distinct columns of A.
- There are at most $\left(2\|A\|_{\infty}+1\right)^{m}$ distinct columns.

Lemma

There are at most $\left(2\|A\|_{\infty}+1\right)^{m^{2}}$ potentially different index sets $\operatorname{supp}\left(f^{\star}\right)$.

Arithmetic Cost

■ Establish candidate set Z^{\star} for z^{\star}.

Theorem

Compute Z^{\star} by solving at most $\mathcal{O}\left(m^{\frac{3}{2}}\|A\|_{\infty}\right)^{m}$ LIPs

$$
\begin{aligned}
A_{\backslash f \star} y & =b^{\prime}, \\
\sum_{i=1}^{n-m} y_{i} & \leq \sigma-m, \\
y & \in\{0,1\}^{n-m} .
\end{aligned}
$$

Arithmetic Cost

■ Match each $z \in Z^{\star}$ with its fractional part f.

b

Theorem

A solution of

$$
\min \left\{\left\|\left(b-A_{\backslash f \star z^{\star}}\right)-A_{f \star} g\right\|_{2}: g \in[0,1]^{m}\right\}
$$

can be computed in $\mathcal{O}\left(3^{m} m^{3}\right)$ arithmetic operations.

Arithmetic Cost.

Theorem

The arithmetic cost of finding an optimal solution to $\left(P_{0}\right)$ is

$$
\left(m\|A\|_{\infty}\right)^{\mathcal{O}\left(m^{2}\right)} \cdot \operatorname{poly}\left(n, \ln \left(\|b\|_{1}\right)\right)
$$

[^0]: ${ }^{1}$ Tropp, J.A. (2004). "Greed is good: Algorithmic results for sparse approximation". IEEE Transactions on Information Theory 50 (10): 2231-2242

[^1]: ${ }^{1}$ Tropp, J.A. (2004). "Greed is good: Algorithmic results for sparse approximation". IEEE Transactions on Information Theory 50 (10): 2231-2242

