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Sparse Approximation is the problem of identifying a subset that most
accurately models an observation.

(Sebastian Ament and Carla Gomes)

(Signal Recovery) (Pattern Recognition) (Machine Learning)

(Computed Tomography) (Portfolio Selection)
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Mathematical Description.

Given:
Matrix A ∈ Zm×n,
Vector b ∈ Zm,
Integer σ ∈ [n].

Task:

min{‖b − Ax‖2 : x ∈ [0, 1]n, ‖x‖0 ≤ σ}. (P0)

In General: NP-Hard 1

Idea: Let’s fix m.

1Tropp, J.A. (2004). ”Greed is good: Algorithmic results for sparse
approximation”. IEEE Transactions on Information Theory. 50 (10): 2231–2242
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That’s easy!

min{‖b − Ax‖2 : x ∈ [0, 1]n, ‖x‖0 ≤ σ}.

m = 1

b0 ?
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Or not?

m = 2

b

0

Theorem
(P0) is NP-hard, even if m = 2.
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Or not?

m = 2

b

0

Theorem
(P0) is NP-hard, even if m = 2.
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Assumptions

‖A‖∞ bounded
m bounded
m� n

A =

? ? ? ? . . . ? ? ?
...

...
...

...
...

...
...

? ? ? ? . . . ? ? ?
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`1-Relaxation.

min{‖b − Ax‖2 : x ∈ [0, 1]n, ‖x‖0 ≤ σ} (P0)

min{‖b − Ax‖2 : x ∈ [0, 1]n, ‖x‖1 ≤ σ} (P1)
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So far
Algorithms

need A to satisfy (hard
to verify) properties.
depend highly on the
input.
succeed only with a
certain probability.

Our contribution
Independent of A we give

Probabilistic analysis
for random targets b.
Proximity result
between (P0) and (P1).
Deterministic algorithm
polynomial in n
provided m and ‖A‖∞
constant.
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Few fractional entries for (P0).

Feasible vector x with support S.
Set of (P0)-feasible points with same objective value:

PS(x) := {y ∈ R|S| : Ax = ASy , 0 ≤ y ≤ 1}.

PS(x):
polyhedron,
non-empty,
has at least one vertex v .

At v at least |S| −m inequalities of the form 0 ≤ y ≤ 1 are tight.
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Few fractional entries for (P0).

Lemma
There exists a solution of (P0) that has at most m fractional entries.
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Few fractional entries for (P1).

Lemma
There exists a solution of (P1) that has at most m fractional entries.
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Section 1

The `1-relaxation for Random Targets b.

The `1-relaxation for Random Targets b 13 / 37



Which vectors b are ”easy” target vectors?

Set of points representable with the `1-relaxation

Q := {Ax ∈ Rm : x ∈ [0, 1]n, ‖x‖1 ≤ σ}.

If b is ”deep” inside Q, then (P0) is easy.

Theorem
If b ∈ σ−m+1

σ Q, then an optimal solution of (P1) solves (P0).
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Which vectors b are ”easy” target vectors?

Q := {Ax ∈ Rm : x ∈ [0, 1]n, ‖x‖1 ≤ σ}.

Theorem
If b ∈ σ−m+1

σ Q, then an optimal solution of (P1) solves (P0).

Proof (Sketch).

Polyhedron {x ∈ [0, 1]n : Ax = b, ‖x‖1 ≤ σ −m + 1}.
Vertex v has at most σ −m + 1 integral non-zero entries.
v has at most m fractional entries.
‖v‖0 ≤ σ.
v is optimal for (P0).
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Which vectors b are ”easy” target vectors?

Q := {Ax ∈ Rm : x ∈ [0, 1]n, ‖x‖1 ≤ σ}.

Q
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Which vectors b are ”easy” target vectors?

Ax̂ x b

Q

Figure: The sampling of the vector b from Q + λB
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Which vectors b are ”easy” target vectors?

If b is far outside of Q, then (P0) is easy with high probability.

Ax̂ x b

Q

Figure: The sampling of the vector b from Q + λB

The `1-relaxation for Random Targets b 18 / 37



Which vectors b are ”easy” target vectors?

Theorem
If b is sampled uniformly at random from the convex set Q + λB, then
with probability at least

ρ =
(

λ

λ+ σm‖A‖∞

)m

there exists an optimal solution of (P1) that is optimal for (P0).

Example: If λ = 2m2σ‖A‖∞, then ρ ≥ 1
2 by Bernoulli’s inequality.

The `1-relaxation for Random Targets b 19 / 37



Which vectors b are ”easy” target vectors?

Conversely, if b is close to the boundary of Q, then the probability
that an optimal solution of (P1) solves (P0) is almost 0.

x Qb Ax̂

Figure: The sampling of the vector b from Q + λB

The `1-relaxation for Random Targets b 20 / 37



Section 2

Proximity between (P1) and (P0).
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Separation Lemma.

x̂ optimal solution of (P1).

b
Ax̂
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Separation Lemma.
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Ax̂

H
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Separation Lemma.

x̂ optimal solution of (P1).
x feasible point of (P0).

b
Ax̂

H
Ax
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Separation Lemma.

b
Ax̂

H
Ax

p

Lemma
H separates b from all vectors Ax with x feasible for (P0).
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Perturbation Lemma.

b
Ax̂

H
Ax

p

Lemma
If we perturb x̂ along the fractional entries, we will remain in H.
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Proximity Result.

Theorem
For an optimal solution x? to (P0) we have

‖Ax? − Ax̂‖2 ≤ 2m3/2‖A‖∞.

Proximity between (P1) and (P0) 27 / 37



Proximity Result.

Theorem
For an optimal solution x? to (P0) we have

‖Ax? − Ax̂‖2 ≤ 2m3/2‖A‖∞.

Proof (Sketch)

Reduce support of x̂ by ”filling up” the fractional entries → y .
y is feasible for (P0).
By the Perturbation Lemma Ay ∈ H.
Separation Lemma + Standard Linear Algebra yields the result.
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Section 3

A Deterministic Algorithm.

A Deterministic Algorithm 29 / 37



b

Ax?

Ax̂
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Main Idea: Decompose x ? = z? + f ?.

b

Az?

Ax̂

1. Guess support supp(f ?) of fractional entries.
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Main Idea: Decompose x ? = z? + f ?.

b

Az?

Ax̂

2. Establish candidate set Z ? for z?.
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Main Idea: Decompose x ? = z? + f ?.

b

Az?

Ax̂

3. Match each z ∈ Z ? with its fractional part f .
A Deterministic Algorithm 33 / 37



Arithmetic Cost

Guess support supp(f ?) of fractional entries.
supp(f ?) ≤ m.
Minimal index set of fractional entries uses distinct columns of A.
There are at most (2‖A‖∞ + 1)m distinct columns.

Lemma
There are at most (2‖A‖∞ + 1)m2 potentially different index sets
supp(f ?).
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Arithmetic Cost

Establish candidate set Z ? for z?.

b

Az?

Ax̂

Theorem
Compute Z ? by solving at most
O(m 3

2 ‖A‖∞)m LIPs

A\f ?y = b′,
n−m∑
i=1

yi ≤ σ −m,

y ∈ {0, 1}n−m.

A Deterministic Algorithm 35 / 37



Arithmetic Cost

Match each z ∈ Z ? with its fractional part f .
b

Az?

Ax̂

Theorem
A solution of

min{‖(b − A\f ?z?)− Af ?g‖2 : g ∈ [0, 1]m}

can be computed in O(3mm3) arithmetic
operations.
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Arithmetic Cost.

Theorem
The arithmetic cost of finding an optimal solution to (P0) is

(m‖A‖∞)O(m2) · poly(n, ln(‖b‖1)).
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