

Constrained Sparse Approximation Over the Cube

Sabrina Bruckmeier Christoph Hunkenschröder Robert Weismantel

Sparse Approximation is the problem of identifying a subset that most accurately models an observation. (Sebastian Ament and Carla Gomes)

(Signal Recovery)

(Pattern Recognition) (Machine Learning)

(Computed Tomography)

(Portfolio Selection)

< ロト < 同ト < 三ト < 三ト

Mathematical Description.

Given:

- Matrix $A \in \mathbb{Z}^{m \times n}$,
- Vector $b \in \mathbb{Z}^m$,
- Integer $\sigma \in [n]$.

Task:

$$\min\{\|b - Ax\|_2 : x \in [0,1]^n, \|x\|_0 \le \sigma\}.$$
 (P₀)

In General: NP-Hard ¹

Idea: Let's fix *m*.

¹Tropp, J.A. (2004). "Greed is good: Algorithmic results for sparse approximation". IEEE Transactions on Information Theory 50 (10): \$231=2242= 500

UNRENT BURN

Mathematical Description.

Given:

- Matrix $A \in \mathbb{Z}^{m \times n}$,
- Vector $b \in \mathbb{Z}^m$,
- Integer $\sigma \in [n]$.

Task:

$$\min\{\|b - Ax\|_2 : x \in [0,1]^n, \|x\|_0 \le \sigma\}.$$
 (P₀)

In General: NP-Hard ¹

Idea: Let's fix *m*.

¹Tropp, J.A. (2004). "Greed is good: Algorithmic results for sparse approximation". IEEE Transactions on Information Theory. 50 (10): 2231-2242

ub mb man an

Mathematical Description.

Given:

- Matrix $A \in \mathbb{Z}^{m \times n}$,
- Vector $b \in \mathbb{Z}^m$,
- Integer $\sigma \in [n]$.

Task:

$$\min\{\|b - Ax\|_2 : x \in [0,1]^n, \|x\|_0 \le \sigma\}.$$
 (P₀)

In General: NP-Hard ¹

Idea: Let's fix m.

¹Tropp, J.A. (2004). "Greed is good: Algorithmic results for sparse approximation". IEEE Transactions on Information Theory. 50 (10): 2231-2242

That's easy!

$$\min\{\|b - Ax\|_2 : x \in [0,1]^n, \|x\|_0 \le \sigma\}.$$

4 / 37

3

メロト メポト メヨト メヨト

$$\min\{\|b - Ax\|_2 : x \in [0,1]^n, \|x\|_0 \le \sigma\}.$$

5 / 37

= 990

イロト イヨト イヨト イヨト

Or not?

Or not?

■ *m* = 2

n

·b

Theorem

(P_0) is NP-hard, even if m = 2.

Assumptions

- $\|A\|_{\infty}$ bounded
- m bounded
- **■** *m* ≪ *n*

$$A = \begin{bmatrix} * & * & * & * & \dots & * & * & * \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ * & * & * & * & \dots & * & * & * \end{bmatrix}$$

ℓ_1 -Relaxation.

$$\min\{\|b - Ax\|_2 : x \in [0, 1]^n, \|x\|_0 \le \sigma\}$$
 (P₀)

$$\min\{\|b - Ax\|_2 : x \in [0, 1]^n, \|x\|_1 \le \sigma\}$$
 (P₁)

・ロト・日本・日本・日本・日本・今日・

8 / 37

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of *A* we give

- Probabilistic analysis for random targets b.
- Proximity result between (P₀) and (P₁).
- Deterministic algorithm polynomial in *n* provided *m* and ||*A*||_∞ constant.

9 / 37

UN RET HER WORK

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of A we give

- Probabilistic analysis for random targets b.
- Proximity result between (P₀) and (P₁).
- Deterministic algorithm polynomial in n provided m and ||A||_∞ constant.

9 / 37

UD REM HANDEN

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of *A* we give

- Probabilistic analysis for random targets b.
- Proximity result between (P₀) and (P₁).
- Deterministic algorithm polynomial in *n* provided *m* and ||*A*||_∞ constant.

9 / 37

UD REM HANDEN

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of *A* we give

- Probabilistic analysis for random targets b.
- Proximity result between (P₀) and (P₁).
- Deterministic algorithm polynomial in n provided m and ||A||_∞ constant.

9 / 37

UNRENT BURN

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of A we give

- Probabilistic analysis for random targets b.
- Proximity result between (P₀) and (P₁).
- Deterministic algorithm polynomial in *n* provided *m* and ||*A*||_∞ constant.

9 / 37

ub mb man an

Algorithms

- need A to satisfy (hard to verify) properties.
- depend highly on the input.
- succeed only with a certain probability.

Our contribution

Independent of A we give

- Probabilistic analysis for random targets b.
- Proximity result between (P₀) and (P₁).
- Deterministic algorithm polynomial in *n* provided *m* and ||*A*||_∞ constant.

Feasible vector *x* with support *S*.

■ Set of (*P*₀)-feasible points with same objective value:

$$P_{S}(x) := \{ y \in \mathbb{R}^{|S|} : Ax = A_{S}y, 0 \le y \le 1 \}.$$

- $\blacksquare P_S(x):$
 - polyhedron,
 - non-empty,
 - has at least one vertex *v*.

• At v at least |S| - m inequalities of the form $0 \le y \le 1$ are tight.

(日) (同) (三) (三)

Feasible vector *x* with support *S*.

■ Set of (*P*₀)-feasible points with same objective value:

$$P_{S}(x) := \{ y \in \mathbb{R}^{|S|} : Ax = A_{S}y, 0 \le y \le 1 \}.$$

• $P_S(x)$:

polyhedron,

- non-empty,
- has at least one vertex *v*.

At v at least |S| - m inequalities of the form $0 \le y \le 1$ are tight.

■ Feasible vector *x* with support *S*.

■ Set of (*P*₀)-feasible points with same objective value:

$$P_{S}(x) := \{ y \in \mathbb{R}^{|S|} : Ax = A_{S}y, 0 \le y \le 1 \}.$$

• $P_S(x)$:

polyhedron,

- non-empty,
- has at least one vertex v.

• At v at least |S| - m inequalities of the form $0 \le y \le 1$ are tight.

■ Feasible vector *x* with support *S*.

■ Set of (*P*₀)-feasible points with same objective value:

$$P_{S}(x) := \{ y \in \mathbb{R}^{|S|} : Ax = A_{S}y, 0 \le y \le 1 \}.$$

- $P_S(x)$:
 - polyhedron,
 - non-empty,
 - has at least one vertex v.

• At v at least |S| - m inequalities of the form $0 \le y \le 1$ are tight.

Image: Image:

.

■ Feasible vector *x* with support *S*.

■ Set of (*P*₀)-feasible points with same objective value:

$$P_{S}(x) := \{ y \in \mathbb{R}^{|S|} : Ax = A_{S}y, 0 \le y \le 1 \}.$$

- $P_S(x)$:
 - polyhedron,
 - non-empty,
 - has at least one vertex v.

• At v at least |S| - m inequalities of the form $0 \le y \le 1$ are tight.

Lemma

There exists a solution of (P_0) that has at most m fractional entries.

UNRY HARDING

Lemma

There exists a solution of (P_1) that has at most m fractional entries.

UNRY BARDING

Section 1

The l_1 -relaxation for Random Targets *b*.

The ℓ_1 -relaxation for Random Targets b

Set of points representable with the ℓ_1 -relaxation

 $Q := \{ Ax \in \mathbb{R}^m : x \in [0, 1]^n, \|x\|_1 \le \sigma \}.$

If b is "deep" inside Q, then (P_0) is easy.

Theorem

If $b \in \frac{\sigma-m+1}{\sigma}Q$, then an optimal solution of (P_1) solves (P_0) .

イロト イヨト イヨト

UD REAL PROPERTY.

 \blacksquare Set of points representable with the $\ell_1\text{-relaxation}$

$$Q := \{ Ax \in \mathbb{R}^m : x \in [0,1]^n, \|x\|_1 \le \sigma \}.$$

If b is "deep" inside Q, then
$$(P_0)$$
 is easy.

Theorem

If $b\in rac{\sigma-m+1}{\sigma}Q$, then an optimal solution of (P_1) solves $(P_0).$

(日) (同) (三) (三)

UD REM HANDEN

Set of points representable with the ℓ_1 -relaxation

$$Q := \{Ax \in \mathbb{R}^m : x \in [0,1]^n, \|x\|_1 \le \sigma\}.$$

If b is "deep" inside Q, then (P_0) is easy.

Theorem If $b \in \frac{\sigma-m+1}{\sigma}Q$, then an optimal solution of (P_1) solves (P_0) .

u bieb it a main

Set of points representable with the ℓ_1 -relaxation

$$Q := \{ Ax \in \mathbb{R}^m : x \in [0,1]^n, \|x\|_1 \le \sigma \}.$$

If b is "deep" inside Q, then (P_0) is easy.

Theorem

If $b \in \frac{\sigma-m+1}{\sigma}Q$, then an optimal solution of (P_1) solves (P_0) .

•
$$Q := \{Ax \in \mathbb{R}^m : x \in [0,1]^n, \|x\|_1 \le \sigma\}.$$

Theorem

If $b \in \frac{\sigma-m+1}{\sigma}Q$, then an optimal solution of (P_1) solves (P_0) .

Proof (Sketch).

- Polyhedron $\{x \in [0,1]^n : Ax = b, ||x||_1 \le \sigma m + 1\}.$
- Vertex v has at most $\sigma m + 1$ integral non-zero entries.
- v has at most m fractional entries.

$$||v||_0 \le \sigma$$

• v is optimal for (P_0) .

•
$$Q := \{Ax \in \mathbb{R}^m : x \in [0,1]^n, \|x\|_1 \le \sigma\}.$$

Theorem

If $b \in \frac{\sigma-m+1}{\sigma}Q$, then an optimal solution of (P_1) solves (P_0) .

Proof (Sketch).

- Polyhedron $\{x \in [0,1]^n : Ax = b, ||x||_1 \le \sigma m + 1\}.$
- Vertex v has at most $\sigma m + 1$ integral non-zero entries.
- v has at most m fractional entries.
- $||v||_0 \leq \sigma.$
- v is optimal for (P_0) .

•
$$Q := \{Ax \in \mathbb{R}^m : x \in [0,1]^n, \|x\|_1 \le \sigma\}.$$

Theorem

If $b \in \frac{\sigma-m+1}{\sigma}Q$, then an optimal solution of (P_1) solves (P_0) .

Proof (Sketch).

- Polyhedron $\{x \in [0,1]^n : Ax = b, \|x\|_1 \le \sigma m + 1\}.$
- Vertex v has at most $\sigma m + 1$ integral non-zero entries.
- v has at most m fractional entries.
- $||v||_0 \le \sigma.$
- v is optimal for (P_0) .

•
$$Q := \{Ax \in \mathbb{R}^m : x \in [0,1]^n, \|x\|_1 \le \sigma\}.$$

Theorem

If $b \in \frac{\sigma-m+1}{\sigma}Q$, then an optimal solution of (P_1) solves (P_0) .

Proof (Sketch).

- Polyhedron $\{x \in [0,1]^n : Ax = b, \|x\|_1 \le \sigma m + 1\}.$
- Vertex v has at most $\sigma m + 1$ integral non-zero entries.
- v has at most m fractional entries.

$$||v||_0 \le \sigma.$$

• v is optimal for (P_0) .

•
$$Q := \{Ax \in \mathbb{R}^m : x \in [0,1]^n, \|x\|_1 \le \sigma\}.$$

Theorem

If $b \in \frac{\sigma-m+1}{\sigma}Q$, then an optimal solution of (P_1) solves (P_0) .

Proof (Sketch).

- Polyhedron $\{x \in [0,1]^n : Ax = b, \|x\|_1 \le \sigma m + 1\}.$
- Vertex v has at most $\sigma m + 1$ integral non-zero entries.
- v has at most m fractional entries.

$$||v||_0 \le \sigma.$$

• v is optimal for (P_0) .

•
$$Q := \{Ax \in \mathbb{R}^m : x \in [0,1]^n, \|x\|_1 \le \sigma\}.$$

э

UNRY HARDING

Figure: The sampling of the vector *b* from $Q + \lambda B$

If b is far outside of Q, then (P_0) is easy with high probability.

Figure: The sampling of the vector *b* from $Q + \lambda B$

Image: Image:

- ∢ ∃ →

Theorem

If b is sampled uniformly at random from the convex set $Q + \lambda B$, then with probability at least

$$\rho = \left(\frac{\lambda}{\lambda + \sigma m \|A\|_{\infty}}\right)^m$$

there exists an optimal solution of (P_1) that is optimal for (P_0) .

• Example: If $\lambda = 2m^2 \sigma ||A||_{\infty}$, then $\rho \geq \frac{1}{2}$ by Bernoulli's inequality.

• Conversely, if b is close to the boundary of Q, then the probability that an optimal solution of (P_1) solves (P_0) is almost 0.

Figure: The sampling of the vector *b* from $Q + \lambda B$

Section 2

Proximity between (P_1) and (P_0) .

Proximity between (P_1) and (P_0)

21 / 37

• \hat{x} optimal solution of (P_1) .

æ

• \hat{x} optimal solution of (P_1) .

æ

- \hat{x} optimal solution of (P_1) .
- x feasible point of (P_0) .

UNRININI MIL

Lemma

H separates b from all vectors Ax with x feasible for (P_0) .

э

Lemma

H separates b from all vectors Ax with x feasible for (P_0) .

æ

< □ > < 同 > < 回 > < 回 > < 回 >

Perturbation Lemma.

Lemma

If we perturb \hat{x} along the fractional entries, we will remain in H.

æ

Theorem

For an optimal solution x^* to (P_0) we have

$$\|Ax^{\star} - A\hat{x}\|_{2} \le 2m^{3/2}\|A\|_{\infty}$$

æ

(日) (四) (日) (日) (日)

Theorem

For an optimal solution x^* to (P_0) we have

$$\|Ax^{\star} - A\hat{x}\|_{2} \leq 2m^{3/2}\|A\|_{\infty}$$

Proof (Sketch)

Reduce support of \hat{x} by "filling up" the fractional entries $\rightarrow y$.

- y is feasible for (P_0) .
- By the Perturbation Lemma $Ay \in H$.
- Separation Lemma + Standard Linear Algebra yields the result.

3

ub mb man an

Theorem

For an optimal solution x^* to (P_0) we have

$$\|Ax^{\star} - A\hat{x}\|_{2} \le 2m^{3/2}\|A\|_{\infty}$$

Proof (Sketch)

Reduce support of \hat{x} by "filling up" the fractional entries $\rightarrow y$.

- y is feasible for (P_0) .
- By the Perturbation Lemma $Ay \in H$.
- Separation Lemma + Standard Linear Algebra yields the result.

3

Theorem

For an optimal solution x^* to (P_0) we have

$$\|Ax^{\star} - A\hat{x}\|_{2} \le 2m^{3/2}\|A\|_{\infty}$$

Proof (Sketch)

- Reduce support of \hat{x} by "filling up" the fractional entries $\rightarrow y$.
- y is feasible for (P_0) .
- By the Perturbation Lemma $Ay \in H$.
- Separation Lemma + Standard Linear Algebra yields the result.

3

Theorem

For an optimal solution x^* to (P_0) we have

$$\|Ax^{\star} - A\hat{x}\|_{2} \le 2m^{3/2}\|A\|_{\infty}$$

Proof (Sketch)

- Reduce support of \hat{x} by "filling up" the fractional entries $\rightarrow y$.
- y is feasible for (P_0) .
- By the Perturbation Lemma $Ay \in H$.
- Separation Lemma + Standard Linear Algebra yields the result.

Section 3

A Deterministic Algorithm.

A Deterministic Algorithm

29 / 37

æ

b

Ŵ

イロト イヨト イヨト イヨト

1. Guess support supp (f^*) of fractional entries.

э

▶ < ∃ ▶</p>

UNRY BARDING

1. Guess support supp (f^*) of fractional entries.

э

Ubiebillau ami

2. Establish candidate set Z^* for z^* .

э

글 제 제 글 제

UNRY BARD

3. Match each $z \in Z^*$ with its fractional part f.

UD REAL PROPERTY.

Guess support supp(f^{*}) of fractional entries.

- supp $(f^*) \leq m$.
- Minimal index set of fractional entries uses distinct columns of A.
- There are at most $(2||A||_{\infty} + 1)^m$ distinct columns.

Lemma

Guess support supp(f^{*}) of fractional entries.

- $supp(f^*) \leq m$.
- Minimal index set of fractional entries uses distinct columns of A.
- There are at most $(2||A||_{\infty} + 1)^m$ distinct columns.

Lemma

Guess support supp(f^{*}) of fractional entries.

- $supp(f^{\star}) \leq m$.
- Minimal index set of fractional entries uses distinct columns of A.
- There are at most $(2||A||_{\infty} + 1)^m$ distinct columns.

Lemma

■ Guess support supp(f^{*}) of fractional entries.

- $supp(f^{\star}) \leq m$.
- Minimal index set of fractional entries uses distinct columns of A.
- There are at most $(2||A||_{\infty} + 1)^m$ distinct columns.

Lemma

■ Guess support supp(*f*^{*}) of fractional entries.

- $supp(f^*) \leq m$.
- Minimal index set of fractional entries uses distinct columns of A.
- There are at most $(2||A||_{\infty} + 1)^m$ distinct columns.

Lemma

• Establish candidate set Z^* for z^* .

Theorem

Compute Z^* by solving at most $\mathcal{O}(m^{\frac{3}{2}} \|A\|_{\infty})^m$ LIPs $A_{\setminus f^*} y = b',$ $\sum_{i=1}^{n-m} y_i \leq \sigma - m,$

$$y\in\{0,1\}^{n-m}$$

・ロト ・回ト ・ヨト ・ヨト

UNRENT BURN

э

• Match each $z \in Z^*$ with its fractional part f.

Theorem A solution of $\min\{\|(b - A_{\setminus f^*}z^*) - A_{f^*}g\|_2 : g \in [0,1]^m\}$ can be computed in $\mathcal{O}(3^mm^3)$ arithmetic operations.

イロト イヨト イヨト

э

Theorem

The arithmetic cost of finding an optimal solution to (P_0) is

$$(m\|A\|_{\infty})^{\mathcal{O}(m^2)} \cdot poly(n, \ln(\|b\|_1)).$$

æ

→ ∢ ∃ →

Image: Image: