Complexity of convex mixed-integer optimization

Amitabh Basu
Johns Hopkins University

$24^{\text {th }}$ Conference on Integer Programming and Combinatorial Optimization (IPCO)

Summer School, June 2023

Algorithms for optimization

Algorithms for optimization

- Algorithm for class of optimization problems.

Algorithms for optimization

- Algorithm for class of optimization problems.

Photo courtesy Bill Cook's TSP page at U. Waterloo

Algorithms for optimization

- Algorithm for class of optimization problems.

Photo courtesy Google

Algorithms for optimization

- Algorithm for class of optimization problems.
- Gather information and perform computations.

Algorithms for optimization

- Algorithm for class of optimization problems.
- Gather information and perform computations.

One-shot, or in stages.

Algorithms for optimization

- Gather information and perform computations.

One-shot, or in stages.

Example: Traveling Salesperson Problem (TSP)

Information: Distances between cities (edge lengths)

Algorithms for optimization

- Gather information and perform computations.

One-shot, or in stages.

Example: Numerical optimization

Information: Function values and (sub)gradients

Oracles for information gathering

\mathcal{I} : set of problem instances
\mathcal{Q} : set of queries
H : information (response) set

$$
q: \mathcal{I} \rightarrow H .
$$

Oracle ambiguity and information complexity

Oracle ambiguity and information complexity

Notion of ϵ-approximate solutions

Information complexity: Minimum number of queries needed to distinguish between instances with disjoint ϵ-approximate solutions.

Oracle ambiguity and information complexity

Notion of ϵ-approximate solutions

Information complexity: Minimum number of queries needed to distinguish between instances with disjoint ϵ-approximate solutions.

Algorithmic complexity: Total amount of computation needed to report ϵ-approximate solutions.

Oracle ambiguity and information complexity

Notion of ϵ-approximate solutions

Information complexity: Minimum number of queries needed to distinguish between instances with disjoint ϵ-approximate solutions.

Algorithmic complexity: Total amount of computation needed to report ϵ-approximate solutions.

Information complexity \leq Algorithmic complexity

Parameterized complexity

Parameters: values associated with every instance.

Examples: Dimension, binary encoding size, bound on Lipschitz constants, bound on norms of feasible solutions ...

Convex optimization with integer variables ϵ - approx. sols.
$(\hat{x}, \hat{y}) \in C$
$\hat{x} \in \pi^{n}$
minimize $f(x, y)$
subject to $(x, y) \in C$,
$f(\hat{x}, \hat{y}) \leqslant$ OPT $+\epsilon \quad x \in \mathbb{Z}^{n}, y \in \mathbb{R}^{d}$
$C \subseteq \mathbb{R}^{n} \times \mathbb{R}^{d}$ closed, convex.
Contained in ℓ_{∞} ball of radius $R>0$.
Contains ℓ_{∞} ball of radius $\rho>0$ in the optimal fiber.
$f: \mathbb{R}^{n} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ convex, Lipschitz continuous with constant M over $C . \quad x, y \quad \mid f l e)-f(y) \mid \leqslant M\|x-y\|$

First order oracle: separation for C, value + subgradient for f

Complexity of convex optimization with integer variables
Information complexity:
Lower bounds
$n=\#$ integer vars. d - \#\# of cont.

$$
\begin{aligned}
& d \log \frac{M R}{\rho \epsilon} \leftarrow d \geq 1: \Omega\left(d 2^{n} \log \left(\frac{M R}{\rho \epsilon}\right)\right) \\
& \text { Upper bounds } \longrightarrow d=0: \frac{\Omega\left(2^{n} \log (R)\right)}{\longrightarrow 2^{d+1}} \longrightarrow 2^{0(n)} \log R
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\frac{\psi R}{d \epsilon}\right)\right) \quad \frac{n=0}{d=0} \quad O\left(d^{2}\right) \\
& 2^{O(x)}
\end{aligned}
$$

pore cont. $\rightarrow n=0: O\left(d \log \left(\frac{M R}{\rho \epsilon}\right)\right)$

Complexity of convex optimization with integer variables

Information complexity:
Lower bounds

$$
\begin{aligned}
& d \geq 1: \quad \Omega\left(d 2^{n} \log \left(\frac{M R}{\rho \epsilon}\right)\right) \\
& d=0: \quad \Omega\left(2^{n} \log (R)\right)
\end{aligned}
$$

Upper bounds

$$
\begin{aligned}
n, d \geq 1: & O\left(d(n+d) 2^{n} \log \left(\frac{M R}{\rho \epsilon}\right)\right) \\
d=0: & O\left(n 2^{n} \log (R)\right) \\
n=0: & O\left(d \log \left(\frac{M R}{\rho \epsilon}\right)\right)
\end{aligned}
$$

Overall (worst case) complexity:

$$
O\left(2 \dot{O}(n \log (n)) \operatorname{poly}\left(d, \log \left(\frac{M R}{\rho \epsilon}\right)\right)\right)
$$

Information complexity lower bounds
$n=$ \# int. mar.

$$
\Omega\left(d 2^{n} \log \frac{M R}{\rho \epsilon}\right)
$$

Information complexity lower bounds
Feasibility

Information complexity lower bounds

Information complexity lower bounds

$$
n=0
$$

Pure optimization $f(x)=\max ^{n} \overline{f_{i j}\left(x_{j}\right)}$

Information complexity upper bounds

Feasibility problem with separation oracle for C
\rightleftarrows -

Information complexity upper bounds

Feasibility problem with separation oracle for C Assume we have queried at $x_{1}, x_{2}, \ldots, x_{N}$.

Information complexity upper bounds

Feasibility problem with separation oracle for C Assume we have queried at $x_{1}, x_{2}, \ldots, x_{N}$.

Information complexity upper bounds

Feasibility problem with separation oracle for C
Assume we have queried at $x_{1}, x_{2}, \ldots, x_{N}$.

Information complexity upper bounds

Feasibility problem with separation oracle for C
Assume we have queried at $x_{1}, x_{2}, \ldots, x_{N}$.
How should we choose x_{N+1} ?

Information complexity upper bounds

Feasibility problem with separation oracle for C
Assume we have queried at $x_{1}, x_{2}, \ldots, x_{N}$.
How should we choose x_{N+1} ?

Information complexity upper bounds

Feasibility problem with separation oracle for C
Assume we have queried at $x_{1}, x_{2}, \ldots, x_{N}$.
How should we choose x_{N+1} ?

Helly numbers and centerpoints

THEOREM Helly 1923, Doignon-Bell-Scarf 1970s, Averkov-Weismantel 2012
$C_{1}, \ldots, C_{k} \subseteq \mathbb{R}^{n} \times \mathbb{R}^{d}$ convex. If

$$
C_{1} \cap C_{2} \cap \ldots C_{k} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\emptyset
$$

then $\exists i_{1}, \ldots, i_{2^{n}(d+1)}$ such that

$$
C_{i_{1}} \cap C_{i_{2}} \cap \ldots C_{i_{k}} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\emptyset
$$

$$
2^{\prime \prime}(4,1)
$$

Helly numbers and centerpoints

THEOREM Helly 1923, Doignon-Bell-Scarf 1970s,
Averkov-Weismantel 2012
$C_{1}, \ldots, C_{k} \subseteq \mathbb{R}^{n} \times \mathbb{R}^{d}$ convex. If

$$
C_{1} \cap C_{2} \cap \ldots C_{k} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\emptyset
$$

then $\exists i_{1}, \ldots, i_{2^{n}(d+1)}$ such that

$$
C_{i_{1}} \cap C_{i_{2}} \cap \ldots C_{i_{k}} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\emptyset
$$

THEOREM Grünbaum 1960, Oertel 2013, B.-Oertel 2017 Probability measure μ supported on $\mathbb{Z}^{n} \times \mathbb{R}^{d}$. There exists $z^{\mu} \in \mathbb{Z}^{n} \times \mathbb{R}^{d}$ such that for all halfspaces H containing z^{μ},

$$
\mu(H) \geq \frac{1}{2^{n}(d+1)}
$$

Helly numbers and centerpoints

Definition $Q \subseteq \mathbb{R}^{n} \times \mathbb{R}^{d}$ convex, μ_{Q} uniform measure on $Q \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)$. The centerpoints of Q :

$$
\sup _{x \in Q \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)} \inf _{\substack{\text { halfpsace } \\
x \in H}}^{x \in H} \begin{aligned}
& \mu_{Q}(H)
\end{aligned}
$$

Centerpoint based algorithm

- Let $\left.P_{0}:=-R, R\right]^{n+d}$.
- Compute centerpoint z^{i} of P_{i-1}.
- If $z^{i} \in C$, then return z^{i} and STOP.
- Else, let H be a separating halfspace
- Define $P_{i}=P_{i-1} \cap H$.
- Return "INFEASIBLE".

Centerpoint based algorithm

- Let $P_{0}:=[-R, R]^{n+d}$.
- For $i=1$ to N
- Compute centerpoint z^{i} of P_{i-1}.
- If $z^{i} \in C$, then return z^{i} and STOP.
- Else, let H be a separating halfspace
- Define $P_{i}=P_{i-1} \cap H$.
- Return "INFEASIBLE".

Centerpoint based algorithm

- Let $P_{0}:=[-R, R]^{n+d}$.
- For $i=1$ to N
- Compute centerpoint z^{i} of P_{i-1}.
- If $z^{i} \in C$, then return z^{i} and STOP.
- Else, let H be a separating halfspace
- Define $P_{i}=P_{i-1} \cap H$.
- Return "INFEASIBLE".

Centerpoint based algorithm

- Let $P_{0}:=[-R, R]^{n+d}$.
- For $i=1$ to N
- Compute centerpoint z^{i} of P_{i-1}.
- If $z^{i} \in C$, then return z^{i} and STOP.
- Else, let H be a separating halfspace
- Define $P_{i}=P_{i-1} \cap H$.
- Return "INFEASIBLE".

Centerpoint based algorithm

- Let $P_{0}:=[-R, R]^{n+d}$.
- For $i=1$ to N
- Compute centerpoint z^{i} of P_{i-1}.
- If $z^{i} \in C$, then return z^{i} and STOP.
- Else, let H be a separating halfspace
- Define $P_{i}=P_{i-1} \cap H$.
- Return "INFEASIBLE".

Centerpoint based algorithm

- Let $P_{0}:=[-R, R]^{n+d}$.
- For $i=1$ to N
- Compute centerpoint z^{i} of P_{i-1}.
- If $z^{i} \in C$, then return z^{i} and STOP.
- Else, let H be a separating halfspace
- Define $P_{i}=P_{i-1} \cap H$.
- Return "INFEASIBLE".

Centerpoint based algorithm

- Let $P_{0}:=[-R, R]^{n+d}$.
- For $i=1$ to N
- Compute centerpoint z^{i} of P_{i-1}.
- If $z^{i} \in C$, then return z^{i} and STOP.
- Else, let H be a separating halfspace
- Define $P_{i}=P_{i-1} \cap H$.
- Return "INFEASIBLE".

Centerpoint based algorithm

- Let $P_{0}:=[-R, R]^{n+d}$.
- For $i=1$ to N
- Compute centerpoint z^{i} of P_{i-1}.

If $z^{i} \in C$, then return z^{i} and STOP.
Else, let H be a separating halfspace $\geqslant \frac{1}{2^{n}}$
Define $P_{i}=P_{i-1} \cap H$.

$$
\frac{1}{2^{n}(d+1)}
$$

Return "INFEASIBLE".

Centerpoint based algorithm

- Let $P_{0}:=[-R, R]^{n+d}$.
- For $i=1$ to N
- Compute centerpoint z^{i} of P_{i-1}.
- If $z^{i} \in C$, then return z^{i} and STOP.
- Else, let H be a separating halfspace
\rightarrow Define $P_{i}=P_{i-1} \cap H$.
- Return "INFEASIBLE".

Complexity of convex optimization with integer variables

 Information complexity:Lower bounds

Complexity of convex optimization with integer variables

Complexity of convex optimization with integer variables

Information complexity:
Lower bounds

$$
\begin{aligned}
& d \geq 1: \quad \Omega\left(d 2^{n} \log \left(\frac{M R}{\rho \epsilon}\right)\right) \\
& d=0: \quad \Omega\left(2^{n} \log (R)\right)
\end{aligned}
$$

Upper bounds

$$
\begin{aligned}
& n, d \geq 1: O\left(d(n+d) 2^{n} \log \left(\frac{M R}{\rho \epsilon}\right)\right) \\
& d=0: \quad O\left(n 2^{n} \log (R)\right) \\
& n=0: \quad O\left(d \log \left(\frac{M R}{\rho \epsilon}\right)\right)
\end{aligned}
$$

Complexity of convex mixed-integer optimization

Amitabh Basu
Johns Hopkins University

$24^{\text {th }}$ Conference on Integer Programming and Combinatorial Optimization (IPCO)

Summer School, June 2023

Complexity of convex optimization with integer variables

Information complexity:
Lower bounds

$$
\begin{aligned}
& d \geq 1: \quad \Omega\left(d 2^{n} \log \left(\frac{M R}{\rho \epsilon}\right)\right) \\
& d=0: \quad \Omega\left(2^{n} \log (R)\right)
\end{aligned}
$$

Upper bounds

$$
\begin{aligned}
& n, d \geq 1: O\left(d(n+d) 2^{n} \log \left(\frac{M R}{\rho \epsilon}\right)\right) \\
& d=0: \quad O\left(n 2^{n} \log (R)\right) \\
& n=0: \quad O\left(d \log \left(\frac{M R}{\rho \epsilon}\right)\right)
\end{aligned}
$$

Complexity of convex optimization with integer variables

Information complexity:
Lower bounds

$$
\begin{aligned}
& d \geq 1: \Omega\left(d 2^{n} \log \left(\frac{M R}{\rho \epsilon}\right)\right) \\
& d=0: \Omega\left(2^{n} \log (R)\right)
\end{aligned} 2^{0(n)}
$$

Upper bounds

$$
\begin{array}{rl}
n, d \geq 1: & O\left(d(n+d) 2^{n} \log \left(\frac{M R}{\rho \epsilon}\right)\right) \\
d & =0: O\left(\frac{\left.O 2^{n} \log (R)\right)}{n} \quad n^{O(n)} \text { poly }(d, \log \ldots)\right. \\
n & O\left(d \log \left(\frac{M R}{\rho \epsilon}\right)\right) \quad(n+d)^{O(n)} \text { poly }(d, \log)
\end{array}
$$

Overall (worst case) complexity:

Unconstrained quadratic minimization

$$
\begin{array}{ll}
\text { minimize } & f(z):=\frac{1}{2} z^{T} Q z-c^{T} z \\
\text { subject to } & z \in \mathbb{Z}^{n} \times \mathbb{R}^{d}
\end{array} \quad[-R, R]^{n+d}
$$

Unconstrained quadratic minimization

$$
\|x\|_{g}=\sqrt{x^{\top} \varphi_{x}}
$$

$$
\begin{aligned}
& \text { minimize } f(z):=\frac{1}{2} z^{\top} Q z-c^{\top} z \\
& \text { subject to } z \in \mathbb{Z}^{n} \times \mathbb{R}^{d}
\end{aligned}
$$

Equivalently, find closest point to $Q^{-1} c$ in Q-norm. Level sets: Ellipsoids centered at $Q^{-1} c$.

Unconstrained quadratic minimization

$$
\begin{array}{ll}
\text { minimize } & f(z):=\frac{1}{2} z^{T} Q z-c^{T} z \\
\text { subject to } & z \in \mathbb{Z}^{n} \times \mathbb{R}^{d}
\end{array}
$$

Equivalently, find closest point to $Q^{-1} c$ in Q-norm.
Level sets: Ellipsoids centered at $Q^{-1} c$.
$n=0$ (no integer variables): $z=Q^{-1} c$, Conjugate Gradients.
Complexity $O\left(d^{3}\right)$.

Unconstrained quadratic minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f(z):=\frac{1}{2} z^{T} Q z-c^{T} z \\
\text { subject to } & z \in \mathbb{Z}^{n} \times \mathbb{R}^{d}
\end{array}
$$

Equivalently, find closest point to $Q^{-1} c$ in Q-norm.
Level sets: Ellipsoids centered at $Q^{-1} c$.
$n=0$ (no integer variables): $z=Q^{-1} c$, Conjugate Gradients.
Complexity $O\left(d^{3}\right)$.
$d=0$ (no continuous variables): Closest lattice vector problem.
Complexity $2^{O(n)}$ poly $\left(\log \left(\frac{\lambda_{\max }(Q)}{\lambda_{\min }(Q)} \max \left\{\frac{2\|c\|}{\lambda_{\min }(Q)}, 1\right\}\right)\right)$

Unconstrained quadratic minimization

Unconstrained quadratic minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f(z):=\frac{1}{2} z^{T} Q z-c^{T} z \\
\text { subject to } & z \in \mathbb{Z}^{n} \times \mathbb{R}^{d}
\end{array}
$$

Equivalently, find closest point to $Q^{-1} c$ in Q-norm.
Level sets: Ellipsoids centered at $Q^{-1} c$.
$n=0$ (no integer variables): $z=Q^{-1} c$, Conjugate Gradients.
Complexity $O\left(d^{3}\right)$.
$d=0$ (no continuous variables): Closest lattice vector problem.
Complexity $2^{O(n)}$ poly $\left(\log \left(\frac{\lambda_{\max }(Q)}{\lambda_{\min }(Q)} \max \left\{\frac{2\|c\|}{\lambda_{\min }(Q)}, 1\right\}\right)\right)$
Overall complexity: $O\left(d^{3}\right)+2^{O(n)}$ (ignoring Q, c terms)

Ellipsoids

THEOREM Nemirovski-Yudin 1976
Ellipsoid $E \subseteq \mathbb{R}^{k}$ centered at c, halfspace H does not contain $c+\frac{1}{k+1}(E-c)$. Then, there exists another ellipsoid E^{\prime} such that

$$
E \cap H \subseteq E^{\prime}
$$

and

$$
\operatorname{vol}\left(E^{\prime}\right) \leq \exp \left(-\frac{1}{5 k(k+1)^{2}}\right) \operatorname{vol}(E)
$$

Ellipsoids

$$
o(k \operatorname{polg}(\log (k)))
$$

THEOREM Khinchine 1948, Lagarias-Lenstra-Schnorr 1990, Banaszczyk 1996 Ellipsoid $E \subseteq \mathbb{R}^{k}$ with $E \cap \mathbb{Z}^{k}=\emptyset$. Then, there exists a direction $w \in \mathbb{R}^{k}$ such that E intersects at most k lattice hyperplanes orthogonal to $w \in \mathbb{R}^{k}$.

Rogers-Shephard inequality

THEOREM Rogers-Shephard 1958
Compact, convex body $C \subseteq \mathbb{R}^{(P}$, subspace $L \subseteq \mathbb{R}^{p}$ with $\operatorname{dim}(L)=q$. Then,
$\operatorname{vol}(C) \geq \frac{\operatorname{vol}\left(C \cap L^{\perp}\right) \operatorname{vol}\left(\operatorname{Proj}_{L}(C)\right)}{\binom{p}{q}} \geq \frac{\operatorname{vol}\left(C \cap L^{\perp}\right) \operatorname{vol}\left(\operatorname{Proj}_{L}(C)\right)}{2^{p}}$

Lenstra style algorithm $\quad C \subseteq[-R, R]^{n+d}$ $\left(x^{*}, y^{*}\right)$ optimal point.

$25 / 32$

Lenstra style algorithm

1. Initialize ellipsoid $E=B(0, R \sqrt{n+d})$.
2. While $\operatorname{vol}(E) \geq\left(\frac{\epsilon \rho}{2 M R}\right)^{n+d}$
2.1 Compute closest mixed-integer point z^{\star} to center c of E.
2.2 If $z^{\star} \notin c+\frac{1}{n+d+1}(E-c)$, then find "flat" direction for $\operatorname{Proj}_{n}(E)$ and recurse on $O(n(n+d+1))$ subproblems.
2.3 Else, $z^{\star} \in c+\frac{1}{n+d+1}(\overline{E-C)}$. Consider separating naitspace if $z^{\star} \notin C$, else consider subgradient halfspace at z^{\star}. Intersect E with this halfspace and update with smaller ellipsoid.
3. If no integer variables, then report feasible point with smallest value. STOP.
4. Else, compute $\operatorname{Proj}_{n}(E)$.
5. If $\operatorname{vol}\left(\operatorname{Proj}_{n}(E)\right) \geq 1$, then report feasible point with smallest value. STOP.
6. Else, $\operatorname{vol}\left(\operatorname{Proj}_{n}(E)\right)<1$ then find "flat" direction for $\operatorname{Proj}_{n}(E)$ and recurse on $O(n)$ subproblems.

Lenstra style algorithm: complexity analysis

Convex optimization with integer variables

$$
\begin{aligned}
\operatorname{minimize} & f(x, y) \\
\text { subject to } & (x, y) \in C, \\
& x \in \mathbb{Z}^{n}, y \in \mathbb{R}^{d}
\end{aligned}
$$

$C \subseteq \mathbb{R}^{n} \times \mathbb{R}^{d}$, closed, convex.
Contained in ℓ_{∞} ball of radius $R>0$.
Contains ℓ_{∞} ball of radius $\rho>0$ in the optimal fiber.
$f: \mathbb{R}^{n} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, convex, Lipschitz continuous with constant M over C

First order oracle: separation for C, value + subgradient for f

Complexity of convex optimization with integer variables

Information complexity:
Lower bounds

$$
\begin{aligned}
& d \geq 1: \quad \Omega\left(d 2^{n} \log \left(\frac{M R}{\rho \epsilon}\right)\right) \\
& d=0: \quad \Omega\left(2^{n} \log (R)\right)
\end{aligned}
$$

Upper bounds

$$
\begin{aligned}
& n, d \geq 1: \quad O\left(d(n+d) 2^{n} \log \left(\frac{M R}{\rho \epsilon}\right)\right) \\
& d=0: \quad O\left(n 2^{n} \log (R)\right) \\
& n=0: \quad O\left(d \log \left(\frac{M R}{\rho \epsilon}\right)\right)
\end{aligned}
$$

Overall (worst case) complexity:

$$
O\left(2^{O(n \log (n))} \text { poly }\left(d, \log \left(\frac{M R}{\rho \epsilon}\right)\right)\right)
$$

Some open questions

Some open questions

Conjecture on mixed-integer centerpoints: improve bound from $\frac{1}{2^{n}(d+1)}$ to $\frac{1}{2^{n} e}$.

Unify upper bounds, remove gap between lower and upper bounds

Some open questions

What about other oracles?

Some open questions

What about other oracles?

Example: Oracle returns requested bit of any coordinate of (sub)gradient, or sign of directional derivative

Some open questions

What about other oracles?

Example: Oracle returns requested bit of any coordinate of (sub)gradient, or sign of directional derivative

IPCO 2023 paper: talk by Phillip Kerger

Some open questions

What about other oracles?

Example: Oracle returns requested bit of any coordinate of (sub)gradient, or sign of directional derivative

IPCO 2023 paper: talk by Phillip Kerger

Family of all possible binary queries: $\Theta\left((n+d) \log \left(\frac{M R}{\rho \epsilon}\right)\right)$ information complexity.

Some open questions

Improve dependence on n from $2^{O(n \log (n))}$ to $2^{O(n)}$.

Some open questions

Improve dependence on n from $2^{O(n \log (n))}$ to $2^{O(n)}$.

$$
\text { Lenstra } 183 \quad 2^{0\left(n^{3}\right)} \mathrm{n}(n)
$$

Recurse on lower dimensional lattice subspaces, as opposed to lattice hyperplanes. Kannan, Lovasz-Kannan, Dadush

$$
\text { Reis-Rothwoss } 23 \rightarrow(\log n)^{0(n)}
$$

Some open questions

Understand information and overall complexity of specific branch-and-cut algorithms.

Some open questions

Understand information and overall complexity of specific branch-and-cut algorithms.

Improve information complexity from $2^{O(n)}$ to $2^{O(n \log (n))}$

Accompanying paper

https://arxiv.org/abs/2110.06172
also in MPB special issue for ISMP 2022

THANK YOU!

Questions/Comments ?

