Monoidal Strengthening and Unique Lifting in MIQCPs

Antonia Chmiela, Gonzalo Muñoz, Felipe Serrano

IPCO 2023 — June 23, 2023

Formalization

• S closed set, $0 \not\in S$ and

$$\sum r^i x_i \in S, \ x_i \ge 0$$

Formalization

• S closed set, $0 \not\in S$ and

$$\sum r^i x_i \in S, \ x_i \ge 0$$

• C convex, S-free, $0 \in int(C)$, and

$$C = \{x \mid \phi(x) \le 1\}$$

with ϕ sublinear

Formalization

• S closed set, $0 \not\in S$ and

$$\sum r^i x_i \in S, \ x_i \ge 0$$

• C convex, S-free, $0 \in int(C)$, and

$$C = \{x \mid \phi(x) \le 1\}$$

with ϕ sublinear

Intersection cut:

$$\sum \phi(r^i)x_i \ge 1$$

Formalization

ullet S closed set, $0 \not\in S$ and

$$\sum r^i x_i \in S, \ x_i \ge 0$$

• C convex, S-free, $0 \in int(C)$, and

$$C = \{x \mid \phi(x) \le 1\}$$

with ϕ sublinear

$$\phi(x) \ge 1, \, \forall x \in S$$

$$\Rightarrow \phi(\sum r^i x_i) \ge 1, \, \forall x \in S$$

• Intersection cut:

$$\sum \phi(r^i)x_i \ge 1$$

Monoidal strengthening*

Assume $x_i \in \mathbb{Z}_+$. Let M be a monoid such that C is (S + M)-free

^{*}E. Balas, R. Jeroslow, Strengthening cuts for mixed integer programs, 1980

Monoidal strengthening

closed under addition and contains a neutral element

Assume $x_i \in \mathbb{Z}_+$. Let M be a monoid such that C is (S + M)-free

Monoidal strengthening

closed under addition and contains a neutral element

Assume $x_i \in \mathbb{Z}_+$. Let M be a monoid such that C is (S + M)-free, then we can improve the cut:

$$\sum_{m \in M} \inf \phi(r^i + m) x_i \ge 1$$

Monoidal strengthening

closed under addition and contains a neutral element

Assume $x_i \in \mathbb{Z}_+$. Let M be a monoid such that C is (S + M)-free, then we can improve the cut:

$$\sum_{m \in M} \inf \phi(r^i + m) x_i \ge 1$$

Why? Since $S \subseteq S + M$, the constraint $\sum r^i x_i \in S$ can be relaxed to

$$\sum r^i x_i \in S + M$$

Monoidal strengthening

closed under addition and contains a neutral element

Assume $x_i \in \mathbb{Z}_+$. Let M be a monoid such that C is (S + M)-free, then we can improve the cut:

$$\sum_{m \in M} \inf \phi(r^i + m) x_i \ge 1$$

Why? Since $S \subseteq S + M$, the constraint $\sum r^i x_i \in S$ can be relaxed to

$$\sum r^{i}x_{i} \in S + M \implies \sum (r^{i} + m^{i})x_{i} \in S + M + \sum m^{i}x_{i}$$
add
$$\sum m^{i}x_{i}$$
to both sides

Monoidal strengthening

closed under addition and contains a neutral element

Assume $x_i \in \mathbb{Z}_+$. Let M be a monoid such that C is (S + M)-free, then we can improve the cut:

$$\sum_{m \in M} \inf \phi(r^i + m) x_i \ge 1$$

Why? Since $S \subseteq S + M$, the constraint $\sum r^i x_i \in S$ can be relaxed to

$$\sum r^{i}x_{i} \in S + M \implies \sum (r^{i} + m^{i})x_{i} \in S + M + \sum m^{i}x_{i}$$

$$\text{add } \sum m^{i}x_{i}$$

$$\text{to both sides}$$

integer and non-negative

Monoidal strengthening

closed under addition and contains a neutral element

Assume $x_i \in \mathbb{Z}_+$. Let M be a monoid such that C is (S + M)-free, then we can improve the cut:

$$\sum_{m \in M} \inf \phi(r^i + m) x_i \ge 1$$

Why? Since $S \subseteq S + M$, the constraint $\sum r^i x_i \in S$ can be relaxed to $\in M$

$$\sum r^{i}x_{i} \in S + M \implies \sum (r^{i} + m^{i})x_{i} \in S + M + \sum m^{i}x_{i}$$

$$\implies \sum (r^{i} + m^{i})x_{i} \in S + M$$

$$M + M = M$$

Intersection Cuts for MIQCPs

Maximal quadratic-free sets*

^{*}G. Muñoz and F. Serrano, Maximal quadratic-free sets, 2021

Applying Monoidal Strengthening

Next steps

- 1. Find a monoid M such that C is (S + M)-free
- 2. Find the best cut coefficient by solving

$$\inf_{m \in M} \phi(r+m)$$

Applying Monoidal Strengthening

Next steps

1. Find a monoid M such that C is (S + M)-free

2. Find the best cut coefficient by solving

$$\inf_{m \in M} \phi(r+m)$$

Looking at monoidal strengthening from another perspective

We need a monoid M such that C is is (S+M)-free

Looking at monoidal strengthening from another perspective

We need a monoid M such that C is is (S+M)-free

 \Rightarrow C-M needs to be S-free

Looking at monoidal strengthening from another perspective

We need a monoid M such that C is is (S+M)-free

- \Rightarrow C-M needs to be S-free
- \Rightarrow -M gives us directions by which we can translate C without intersecting S

Looking at monoidal strengthening from another perspective

We need a monoid M such that C is is (S+M)-free

- \Rightarrow C-M needs to be S-free
- \Rightarrow -M gives us directions by which we can translate C without intersecting S

Observation: We can find the monoid by identifying points we can move the apex of C to without intersecting S

Looking at monoidal strengthening from another perspective

We need a monoid M such that C is is (S+M)-free

- \Rightarrow C-M needs to be S-free
- \Rightarrow -M gives us directions by which we can translate C without intersecting S

Observation: We can find the monoid by identifying points we can move the apex of C to without intersecting S

Looking at monoidal strengthening from another perspective

We need a monoid M such that C is is (S+M)-free

- \Rightarrow C-M needs to be S-free
- \Rightarrow -M gives us directions by which we can translate C without intersecting S

Observation: We can find the monoid by identifying points we can move the apex of C to without intersecting S

Applying Monoidal Strengthening

Next steps

1. Find a monoid M such that C is (S + M)-free

2. Find the best cut coefficient by solving

$$\inf_{m \in M} \phi(r+m)$$

Applying Monoidal Strengthening

Next steps

1. Find a monoid M such that C is (S + M)-free

2. Find the best cut coefficient by solving

$$\inf_{m \in M} \phi(r+m)$$

Solving the Monoidal Strengthening Problem

The quadratic case

```
\inf_{m} \phi(r+m)
```

s.t. $m \in M$

Solving the Monoidal Strengthening Problem

The quadratic case

s.t. $m \in M$

$$\inf_{\tau} \quad \tau$$

s.t.
$$r + \nu + \tau(f - \nu) \in C - M$$

Solving the Monoidal Strengthening Problem

The quadratic case

$$\inf_{\tau} \tau$$
s.t. $r + \nu + \tau(f - \nu) \in C - M$

Easy to compute!

Introduction to the lifting function

Assume
$$\sum \phi(r^i)x_i + \phi(r)\omega \ge 1$$
 is a valid cut with $\sum r^ix_i + r\omega \in S$ and $\omega \in \mathbb{Z}_{\ge 1}$.

Introduction to the lifting function

Assume
$$\sum \phi(r^i)x_i + \phi(r)\omega \ge 1$$
 is a valid cut with $\sum r^ix_i + r\omega \in S$ and $\omega \in \mathbb{Z}_{\ge 1}$.

Introduction to the lifting function

Assume
$$\sum \phi(r^i)x_i + \phi(r)\omega \ge 1$$
 is a valid cut with $\sum r^ix_i + r\omega \in S$ and $\omega \in \mathbb{Z}_{\ge 1}$.

$$\sum \phi(r^i)x_i + \pi(r)\omega \ge 1$$

Introduction to the lifting function

Assume
$$\sum \phi(r^i)x_i + \phi(r)\omega \ge 1$$
 is a valid cut with $\sum r^ix_i + r\omega \in S$ and $\omega \in \mathbb{Z}_{\ge 1}$.

$$\sum \phi(r^i)x_i + \pi(r)\omega \ge 1 \iff \pi(r) \ge \frac{1 - \sum \phi(r^i)x_i}{\omega}$$

Introduction to the lifting function

Assume
$$\sum \phi(r^i)x_i + \phi(r)\omega \ge 1$$
 is a valid cut with $\sum r^ix_i + r\omega \in S$ and $\omega \in \mathbb{Z}_{\ge 1}$.

$$\sum \phi(r^{i})x_{i} + \pi(r)\omega \geq 1 \iff \pi(r) \geq \frac{1 - \sum \phi(r^{i})x_{i}}{\omega}$$

$$\Rightarrow \pi(r) = \sup_{s,\omega} \frac{1 - \phi(s)}{\omega}$$

$$\text{s.t. } \omega r + s \in S$$

$$\omega \in \mathbb{Z}_{\geq 1}$$

Solving the Lifting Problem

The quadratic case

$$\sup_{s,\omega} \frac{1-\phi(s)}{\omega}$$

s.t. $\omega r + s \in S$, $\omega \in \mathbb{Z}_{\geq 1}$

Solving the Lifting Problem

The quadratic case

$$\sup_{s,\omega} \frac{1-\phi(s)}{\omega}$$
s.t. $\omega r + s \in S$, $\omega \in \mathbb{Z}_{\geq 1}$

$$\sup_{\tau} \tau$$
s.t. $r + \nu + \tau(f - \nu) \in S - rec(C)$

Comparing Monoidal and Lifting

... and realizing that they are the same

Monoidal Strengthening Problem

Lifting Problem

Comparing Monoidal and Lifting

... and realizing that they are the same

Comparing Monoidal and Lifting

... and realizing that they are the same

How Does It Perform in Practice?

Branch-and-Bound Experiments

relative shifted geometric mean of B&B using monoidal w.r.t. pure intersection cuts

Contributions

Overview

In this talk:

- We found a suitable monoid for (special) quadratic sets
- We showed that the monoidal strengthening problem can be solved easily and even works in practice
- We prove that we have unique lifting

Contributions

Overview

In this talk:

- We found a suitable monoid for (special) quadratic sets
- We showed that the monoidal strengthening problem can be solved easily and even works in practice
- We prove that we have unique lifting

Additional contributions:

- We show when monoidal strengthening is actually possible
- We find a minimal representation of C

How Does It Perform in Practice?

Branch-and-Bound Experiments

	pure intersection cuts			monoidal			relative		
set	instances	solved	time	nodes	solved	time	nodes	time	nodes
clean	189	113	221.87	5282	115	214.63	5321	0.97	0.97
[0,7200]	115	113	22.81	936	115	21.56	883	0.95	0.94
[1,7200]	83	81	67.62	2377	83	62.40	2184	0.92	0.92
[10,7200]	81	79	72.54	2574	81	66.56	2341	0.92	0.91
[100,7200]	23	21	724.66	186545	23	565.24	144747	0.78	0.78
[1000,7200]	10	8	2475.04	631764	10	1252.96	307639	0.51	0.49