An Introduction to Semidefinite Program Relaxations of Quadratically Constrained Quadratic Programs

Fatma Kılınç-Karzan
Carnegie Mellon University
Tepper School of Business

IPCO Summer School
June 19-20, 2023

Convex optimization meets nonconvex problems

- Convex optimization is accurate and efficient.

Convex optimization meets nonconvex problems

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.

Convex optimization meets nonconvex problems

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints...

Convex optimization meets nonconvex problems

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints. . .
- Generally hard

Convex optimization meets nonconvex problems

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints. . .
- Generally hard, but not always!

Convex optimization meets nonconvex problems

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints. . .
- Generally hard, but not always!
- Some nonconvex problems can be solved using convex optimization.

Convex optimization meets nonconvex problems

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints. . .
- Generally hard, but not always!
- Some nonconvex problems can be solved using convex optimization.
- Today and Tomorrow:

Convex optimization meets nonconvex problems

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints. . .
- Generally hard, but not always!
- Some nonconvex problems can be solved using convex optimization.
- Today and Tomorrow:
- Examine quadratically constrained quadratic programs (QCQPs) and their semidefinite program (SDPs) relaxations,

Convex optimization meets nonconvex problems

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints. . .
- Generally hard, but not always!
- Some nonconvex problems can be solved using convex optimization.
- Today and Tomorrow:
- Examine quadratically constrained quadratic programs (QCQPs) and their semidefinite program (SDPs) relaxations,
- Understand structures within QCQPs that enable us to solve them via SDPs,

Convex optimization meets nonconvex problems

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints. . .
- Generally hard, but not always!
- Some nonconvex problems can be solved using convex optimization.
- Today and Tomorrow:
- Examine quadratically constrained quadratic programs (QCQPs) and their semidefinite program (SDPs) relaxations,
- Understand structures within QCQPs that enable us to solve them via SDPs,
- Exploit structures governing exactness properties to design efficient first-order methods to solve a class of low rank SDPs.

Today's outline

- Preliminaries

Today's outline

- Preliminaries
- An introduction to SDPs

Today's outline

- Preliminaries
- An introduction to SDPs
- An introduction to QCQPs and their SDP relaxations

Today's outline

- Preliminaries
- An introduction to SDPs
- An introduction to QCQPs and their SDP relaxations
- Rank-one generated (ROG) property of SDPs

Today's outline

- Preliminaries
- An introduction to SDPs
- An introduction to QCQPs and their SDP relaxations
- Rank-one generated (ROG) property of SDPs
- Definition

Today's outline

- Preliminaries
- An introduction to SDPs
- An introduction to QCQPs and their SDP relaxations
- Rank-one generated (ROG) property of SDPs
- Definition
- Implications

Today's outline

- Preliminaries
- An introduction to SDPs
- An introduction to QCQPs and their SDP relaxations
- Rank-one generated (ROG) property of SDPs
- Definition
- Implications
- Examples

An introduction to SDPs

References:
Ben-Tal, A. and Nemirovski, A. (2001). Lectures on Modern Convex Optimization, volume 2 of MPS-SIAM Ser. Optim. SIAM

Basic definitions

- $\mathbb{R}^{n}=$ real column vectors of length n
- $\mathbb{R}^{m \times n}=$ real matrices of size $m \times n$
- $\mathbb{S}^{n} \subseteq \mathbb{R}^{n \times n}=$ space of $n \times n$ real symmetric matrices

Basic definitions

- $\mathbb{R}^{n}=$ real column vectors of length n
- $\mathbb{R}^{m \times n}=$ real matrices of size $m \times n$
- $\mathbb{S}^{n} \subseteq \mathbb{R}^{n \times n}=$ space of $n \times n$ real symmetric matrices
\Longrightarrow Symmetry of the matrices ensures that the eigenvalues are all real.

Basic definitions

- In \mathbb{R}^{n}, we use the standard Euclidean inner product given by

$$
\langle x, y\rangle=\sum_{i \in[n]} x_{i} y_{i}
$$

Basic definitions

- In \mathbb{R}^{n}, we use the standard Euclidean inner product given by

$$
\langle x, y\rangle=\sum_{i \in[n]} x_{i} y_{i}
$$

and it induces the Euclidean norm: $\|x\|_{2}:=\sqrt{\sum_{i \in[n]} x_{i}^{2}}$.

Basic definitions

- In \mathbb{R}^{n}, we use the standard Euclidean inner product given by

$$
\langle x, y\rangle=\sum_{i \in[n]} x_{i} y_{i}
$$

and it induces the Euclidean norm: $\|x\|_{2}:=\sqrt{\sum_{i \in[n]} x_{i}^{2}}$.

- In $\mathbb{R}^{m \times n}$, we use the trace (Frobenius) inner product given by

$$
\langle X, Y\rangle=\sum_{i \in[m]} \sum_{j \in[n]} X_{i j} Y_{i j}=\operatorname{tr}\left(X^{\top} Y\right)
$$

Basic definitions

- In \mathbb{R}^{n}, we use the standard Euclidean inner product given by

$$
\langle x, y\rangle=\sum_{i \in[n]} x_{i} y_{i}
$$

and it induces the Euclidean norm: $\|x\|_{2}:=\sqrt{\sum_{i \in[n]} x_{i}^{2}}$.

- In $\mathbb{R}^{m \times n}$, we use the trace (Frobenius) inner product given by

$$
\langle X, Y\rangle=\sum_{i \in[m]} \sum_{j \in[n]} X_{i j} Y_{i j}=\operatorname{tr}\left(X^{\top} Y\right)
$$

and it induces the Frobenius norm: $\|X\|_{2}:=\sqrt{\langle X, X\rangle}=\sqrt{\sum_{i \in[m]} \sum_{j \in[n]} X_{i j}^{2}}$.

Positive semidefiniteness

A matrix $X \in \mathbb{S}^{n}$ is positive semidefinite if and only if:

- $a^{\top} X a \geq 0$ for all $a \in \mathbb{R}^{n}$

Positive semidefiniteness

A matrix $X \in \mathbb{S}^{n}$ is positive semidefinite if and only if:

- $a^{\top} X a \geq 0$ for all $a \in \mathbb{R}^{n}$
- $\lambda_{\min }(X) \geq 0$

Positive semidefiniteness

A matrix $X \in \mathbb{S}^{n}$ is positive semidefinite if and only if:

- $a^{\top} X a \geq 0$ for all $a \in \mathbb{R}^{n}$
- $\lambda_{\min }(X) \geq 0$
- $X=V V^{\top}$ for some $V \in \mathbb{R}^{n \times r}$ (note $\left.\operatorname{rank}(X) \leq r\right)$

Positive semidefiniteness

A matrix $X \in \mathbb{S}^{n}$ is positive semidefinite if and only if:

- $a^{\top} X a \geq 0$ for all $a \in \mathbb{R}^{n}$
- $\lambda_{\min }(X) \geq 0$
- $X=V V^{\top}$ for some $V \in \mathbb{R}^{n \times r}$ (note $\operatorname{rank}(X) \leq r$) In particular, $X=\sum_{k \in[r]} x_{k} x_{k}^{\top}$ where $x_{k} \in \mathbb{R}^{n}$ for all $k \in[r]$ where $\operatorname{rank}(X) \leq r$

Positive semidefiniteness

A matrix $X \in \mathbb{S}^{n}$ is positive semidefinite if and only if:

- $a^{\top} X a \geq 0$ for all $a \in \mathbb{R}^{n}$
- $\lambda_{\min }(X) \geq 0$
- $X=V V^{\top}$ for some $V \in \mathbb{R}^{n \times r}$ (note $\operatorname{rank}(X) \leq r$) In particular, $X=\sum_{k \in[r]} x_{k} x_{k}^{\top}$ where $x_{k} \in \mathbb{R}^{n}$ for all $k \in[r]$ where $\operatorname{rank}(X) \leq r$
- every principle submatrix of X has nonnegative determinant

Positive semidefiniteness

A matrix $X \in \mathbb{S}^{n}$ is positive semidefinite if and only if:

- $a^{\top} X a \geq 0$ for all $a \in \mathbb{R}^{n}$
- $\lambda_{\min }(X) \geq 0$
- $X=V V^{\top}$ for some $V \in \mathbb{R}^{n \times r}$ (note $\operatorname{rank}(X) \leq r$) In particular, $X=\sum_{k \in[r]} x_{k} x_{k}^{\top}$ where $x_{k} \in \mathbb{R}^{n}$ for all $k \in[r]$ where $\operatorname{rank}(X) \leq r$
- every principle submatrix of X has nonnegative determinant

Positive semidefiniteness

A matrix $X \in \mathbb{S}^{n}$ is positive semidefinite if and only if:

- $a^{\top} X a \geq 0$ for all $a \in \mathbb{R}^{n}$
- $\lambda_{\text {min }}(X) \geq 0$
- $X=V V^{\top}$ for some $V \in \mathbb{R}^{n \times r}$ (note $\left.\operatorname{rank}(X) \leq r\right)$ In particular, $X=\sum_{k \in[r]} x_{k} x_{k}^{\top}$ where $x_{k} \in \mathbb{R}^{n}$ for all $k \in[r]$ where $\operatorname{rank}(X) \leq r$
- every principle submatrix of X has nonnegative determinant

Notation

- $\mathbb{S}_{+}^{n}=$ set of $n \times n$ positive semidefinite matrices
- $X \in \mathbb{S}_{+}^{n}$, or $X \succeq 0$, or X is "PSD"

Positive semidefiniteness

Important properties of \mathbb{S}_{+}^{n} :

- It is a cone!

Positive semidefiniteness

Important properties of \mathbb{S}_{+}^{n} :

- It is a cone!
- In fact it is a proper, i.e., closed, convex, pointed, full-dimensional, cone

Positive semidefiniteness

Important properties of \mathbb{S}_{+}^{n} :

- It is a cone!
- In fact it is a proper, i.e., closed, convex, pointed, full-dimensional, cone
- It is self-dual, i.e., $\left\{S \in \mathbb{S}^{n}:\langle S, X\rangle \geq 0, \forall X \in \mathbb{S}_{+}^{n}\right\}=\mathbb{S}_{+}^{n}$

Positive semidefiniteness

Important properties of \mathbb{S}_{+}^{n} :

- It is a cone!
- In fact it is a proper, i.e., closed, convex, pointed, full-dimensional, cone
- It is self-dual, i.e., $\left\{S \in \mathbb{S}^{n}:\langle S, X\rangle \geq 0, \forall X \in \mathbb{S}_{+}^{n}\right\}=\mathbb{S}_{+}^{n}$ In particular, $X, S \in \mathbb{S}_{+}^{n} \Longrightarrow\langle S, X\rangle \geq 0$

PSD practice

What is the dimension of \mathbb{S}_{+}^{n} ?

PSD practice

What is the dimension of \mathbb{S}_{+}^{n} ?

- Ambient dimension is n^{2}

PSD practice

What is the dimension of \mathbb{S}_{+}^{n} ?

- Ambient dimension is n^{2}
- But, symmetry takes away $\binom{n}{2}$ degrees of freedom

PSD practice

What is the dimension of \mathbb{S}_{+}^{n} ?

- Ambient dimension is n^{2}
- But, symmetry takes away $\binom{n}{2}$ degrees of freedom
- So, its dimension is $\binom{n+1}{2}$

PSD practice

When is a diagonal matrix in \mathbb{S}_{+}^{n} ?

$$
D:=\left(\begin{array}{cccc}
D_{11} & 0 & \ldots & 0 \\
0 & D_{22} & \ldots & 0 \\
& & \ldots & \\
0 & 0 & \ldots & D_{n n}
\end{array}\right)
$$

- D is a diagonal matrix where $\operatorname{diag}(D)=\left(D_{11}, D_{22}, \ldots, D_{n n}\right)^{\top}$

PSD practice

When is a diagonal matrix in \mathbb{S}_{+}^{n} ?

$$
D:=\left(\begin{array}{cccc}
D_{11} & 0 & \ldots & 0 \\
0 & D_{22} & \ldots & 0 \\
& & \ldots & \\
0 & 0 & \ldots & D_{n n}
\end{array}\right)
$$

- D is a diagonal matrix where $\operatorname{diag}(D)=\left(D_{11}, D_{22}, \ldots, D_{n n}\right)^{\top}$
- Its eigenvalues are $D_{11}, D_{22}, \ldots, D_{n n}$

PSD practice

When is a diagonal matrix in \mathbb{S}_{+}^{n} ?

$$
D:=\left(\begin{array}{cccc}
D_{11} & 0 & \ldots & 0 \\
0 & D_{22} & \ldots & 0 \\
& & \ldots & \\
0 & 0 & \ldots & D_{n n}
\end{array}\right)
$$

- D is a diagonal matrix where $\operatorname{diag}(D)=\left(D_{11}, D_{22}, \ldots, D_{n n}\right)^{\top}$
- Its eigenvalues are $D_{11}, D_{22}, \ldots, D_{n n}$
- So, $D \in \mathbb{S}_{+}^{n}$ iff $\operatorname{diag}(D) \geq 0$

PSD practice

Is the following matrix in \mathbb{S}_{+}^{3} ?

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

PSD practice

Is the following matrix in \mathbb{S}_{+}^{3} ?

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- Yes, we can check its principal minors. . .

PSD practice

Is the following matrix in \mathbb{S}_{+}^{3} ?

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- Yes, we can check its principal minors. . .
- Also, note that it is equal to $v v^{\top}$ where $v=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$

PSD practice

Is the following matrix in \mathbb{S}_{+}^{3} ?

$$
\left(\begin{array}{ccc}
9 & -3 & -6 \\
-3 & 1 & 2 \\
-6 & 2 & 4
\end{array}\right)
$$

PSD practice

Is the following matrix in \mathbb{S}_{+}^{3} ?

$$
\left(\begin{array}{ccc}
9 & -3 & -6 \\
-3 & 1 & 2 \\
-6 & 2 & 4
\end{array}\right)
$$

- Yes, because it is equal to $v v^{\top}$ where $v=\left(\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right)$

PSD characterization

Theorem

$X \in \mathbb{S}_{+}^{n}$ if and only if there exists

- an orthogonal matrix $U \in \mathbb{R}^{n \times n}$, and
- a nonnegative diagonal matrix $D \in \mathbb{S}^{n}$
such that $X=U D U^{\top}$.

PSD characterization

Theorem

$X \in \mathbb{S}_{+}^{n}$ if and only if there exists

- an orthogonal matrix $U \in \mathbb{R}^{n \times n}$, and
- a nonnegative diagonal matrix $D \in \mathbb{S}^{n}$
such that $X=U D U^{\top}$.
Here, the elements of $\operatorname{diag}(D)$ are precisely the eigenvalues of X, and the columns of U are the corresponding eigenvectors of X.

A semidefinite program

Primal SDP problem:

$$
\operatorname{Opt}(P):=\inf _{X \in \mathbb{S}^{n}}\left\{\begin{array}{ll}
\langle C, X\rangle: & \left\langle A_{i}, X\right\rangle=b_{i}, \quad \forall i \in[m], \\
& X \succeq 0
\end{array}\right\}
$$

where

- the decision variable is $X \in \mathbb{S}^{n}$
- the data are the matrices $C, A_{1}, \ldots, A_{m} \in \mathbb{S}^{n}$, and the vector $b \in \mathbb{R}^{m}$

SDP practice

Specify the data for this problem:

$$
\inf _{X \in \mathbb{S}^{2}}\left\{\begin{array}{l}
X_{11}+X_{22}=1 \\
X_{12}: \\
\binom{X_{11} X_{12}}{X_{12} X_{22}} \succeq 0
\end{array}\right\}
$$

SDP practice

Specify the data for this problem:

$$
\left.\inf _{X \in \mathbb{S}^{2}}\left\{\begin{array}{l}
X_{11}+X_{22}=1 \\
X_{12}: \\
\left(\begin{array}{l}
X_{11} \\
X_{12} \\
X_{12}
\end{array} X_{22}\right.
\end{array}\right) \succeq 0\right\}
$$

- $n=2$ and $m=1$
- $C=\frac{1}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $A_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
- $b_{1}=1$

SDP practice

What is the optimum value of this problem?

$$
\mathrm{Opt}^{*}:=\inf _{X \in \mathbb{S}^{2}}\left\{\begin{array}{ll}
X_{11}+X_{22}=1 \\
X_{12}: & \left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{12} & X_{22}
\end{array}\right) \succeq 0
\end{array}\right\}
$$

SDP practice

What is the optimum value of this problem?

$$
\left.\begin{array}{c}
\text { Opt }^{*}:=\inf _{X \in \mathbb{S}^{2}}\left\{X_{12}: \begin{array}{l}
X_{11}+X_{22}=1 \\
\left(\begin{array}{l}
X_{11} \\
X_{12} \\
X_{12}
\end{array} X_{22}\right.
\end{array}\right) \succeq 0
\end{array}\right\}
$$

SDP practice

What is the optimum value of this problem?

$$
\begin{aligned}
& \text { Opt }^{*}:=\inf _{X \in \mathbb{S}^{2}}\left\{\begin{array}{l}
X_{11}+X_{22}=1 \\
X_{12}: \\
\binom{X_{11} X_{12}}{X_{12} X_{22}} \succeq 0
\end{array}\right\} \\
& \text { Opt }^{*}=\inf _{X_{11}, X_{22}, X_{12}}\left\{\begin{array}{l}
X_{11}+X_{22}=1 \\
X_{11} \geq 0, X_{22} \geq 0 \\
X_{12}^{2} \leq X_{11} X_{22}
\end{array}\right\}=\inf _{X_{11}, X_{12}}\left\{\begin{array}{ll}
X_{12}: & X_{11} \geq 0, X_{11} \leq 1 \\
X_{12}^{2} \leq X_{11}\left(1-X_{11}\right)
\end{array}\right\}
\end{aligned}
$$

SDP practice

What is the optimum value of this problem?

$$
\begin{gathered}
\text { Opt }^{*}:=\inf _{X \in \mathbb{S}^{2}}\left\{X_{12}: \begin{array}{l}
X_{11}+X_{22}=1 \\
\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{12} & X_{22}
\end{array}\right) \succeq 0
\end{array}\right\} \\
\text { Opt }^{*}=\inf _{X_{11}, X_{22}, X_{12}}\left\{\begin{array}{c}
X_{11}+X_{22}=1 \\
X_{12}: \quad X_{11} \geq 0, X_{22} \geq 0 \\
X_{12}^{2} \leq X_{11} X_{22}
\end{array}\right\}=\inf _{X_{11}, X_{12}}\left\{\begin{array}{l}
\left.X_{12}: \begin{array}{l}
X_{11} \geq 0, X_{11} \leq 1 \\
X_{12}^{2} \leq X_{11}\left(1-X_{11}\right)
\end{array}\right\} \\
=\inf _{X_{11}}\left\{-\sqrt{X_{11}\left(1-X_{11}\right)}: \quad 0 \leq X_{11} \leq 1\right.
\end{array}\right\}
\end{gathered}
$$

SDP practice

What is the optimum value of this problem?

$$
\begin{gathered}
\text { Opt }^{*}:=\inf _{X \in \mathbb{S}^{2}}\left\{\begin{array}{l}
X_{11}+X_{22}=1 \\
\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{12} & X_{22}
\end{array}\right) \succeq 0
\end{array}\right\} \\
\text { Opt }^{*}=\inf _{X_{11}, X_{22}, X_{12}}\left\{\begin{array}{c}
X_{11}+X_{22}=1 \\
X_{12}: \quad X_{11} \geq 0, X_{22} \geq 0 \\
X_{12}^{2} \leq X_{11} X_{22}
\end{array}\right\}=\inf _{X_{11}, X_{12}}\left\{\begin{array}{l}
\left.X_{12}: \begin{array}{l}
X_{11} \geq 0, X_{11} \leq 1 \\
X_{12}^{2} \leq X_{11}\left(1-X_{11}\right)
\end{array}\right\} \\
=\inf _{X_{11}}\left\{-\sqrt{X_{11}\left(1-X_{11}\right)}: 0 \leq X_{11} \leq 1\right.
\end{array}\right\} \\
\mathrm{Opt}^{*}=-\frac{1}{2} \text { and } X^{*}=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
\end{gathered}
$$

What can be expressed as an SDP?

LP is a special case of SDP:

$$
\begin{aligned}
& \inf _{x \in \mathbb{R}^{n}}\left\{\begin{array}{ll}
\langle c, x\rangle: & \left.\begin{array}{l}
\left\langle a_{i}, x\right\rangle=b_{i}, \quad \forall i \in[m], \\
x \geq 0
\end{array}\right\} \\
\Longleftrightarrow & \inf _{X \in \mathbb{S}^{n}}\{\langle\operatorname{Diag}(c), X\rangle:
\end{array} \begin{array}{l}
\left\langle\operatorname{Diag}\left(a_{i}\right), X\right\rangle=b_{i}, \quad \forall i \in[m], \\
X \succeq 0
\end{array}\right\}
\end{aligned}
$$

What can be expressed as an SDP?

Second-order cone programs (SOCPs) are a special case of SDPs:

$$
\|x\|_{2} \leq t \quad \Longleftrightarrow \quad\left(\begin{array}{ll}
t & x^{\top} \\
x & t I_{n}
\end{array}\right) \succeq 0
$$

What can be expressed as an SDP?

Second-order cone programs (SOCPs) are a special case of SDPs:

$$
\|x\|_{2} \leq t \quad \Longleftrightarrow \quad\left(\begin{array}{ll}
t & x^{\top} \\
x & t I_{n}
\end{array}\right) \succeq 0
$$

What can be expressed as an SDP?

Second-order cone programs (SOCPs) are a special case of SDPs:

$$
\|x\|_{2} \leq t \quad \Longleftrightarrow \quad\left(\begin{array}{cc}
t & x^{\top} \\
x & t I_{n}
\end{array}\right) \succeq 0
$$

This is based on the following very useful result:

Theorem (Schur Complement Lemma)

Consider a symmetric matrix $M:=\left(\begin{array}{cc}P & Q^{\top} \\ Q & R\end{array}\right)$ such that R is positive definite. Then, $M \succeq 0$ iff $P-Q^{\top} R^{-1} Q \succeq 0$.

What can be expressed as an SDP?

Many nice functions of eigenvalues (or singular values) of matrices admit SDP representations...

What can be expressed as an SDP?

Many nice functions of eigenvalues (or singular values) of matrices admit SDP representations. . .

Theorem

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex, SDP representable, permutation invariant function, i.e., $f(x)=f(P x)$ for every permutation matrix P.
- Let $\lambda(X)$ denote the vector of eigenvalues of matrix $X \in \mathbb{S}^{n}$.

Then, the epigraph of the function $F(X)=f(\lambda(X)): \mathbb{S}^{n} \rightarrow \mathbb{R}$ admits an SDP representation.

What can be expressed as an SDP?

Many nice functions of eigenvalues (or singular values) of matrices admit SDP representations. . .

Theorem

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex, SDP representable, permutation invariant function, i.e., $f(x)=f(P x)$ for every permutation matrix P.
- Let $\lambda(X)$ denote the vector of eigenvalues of matrix $X \in \mathbb{S}^{n}$.

Then, the epigraph of the function $F(X)=f(\lambda(X)): \mathbb{S}^{n} \rightarrow \mathbb{R}$ admits an SDP representation.

- $\lambda_{\max }(X), \sum_{i \in[n]} \lambda_{i}(X)$,
- $\|X\|_{p}:=\|\lambda(X)\|_{p}=\left(\sum_{i \in[n]}\left|\lambda_{i}(X)\right|^{p}\right)^{1 / p}$ for $p \in \mathbb{Q}$ and $p \geq 1$,
- $-\log \operatorname{det}(X)=-\sum_{i \in[n]} \log \left(\lambda_{i}(X)\right)$ for $X \succ 0, \ldots$

Conic problems and their duals

Consider the conic optimization problem is

$$
\operatorname{Opt}(P):=\inf _{X}\left\{\begin{array}{ll}
\langle C, X\rangle: & \begin{array}{l}
\left\langle A_{i}, X\right\rangle=b_{i}, \quad \forall i \in[m], \\
X \in \mathbb{K}
\end{array}
\end{array}\right\} .
$$

where \mathbb{K} is a proper cone.

Conic problems and their duals

Consider the conic optimization problem is

$$
\operatorname{Opt}(P):=\inf _{X} \begin{cases}\langle C, X\rangle: & \left.\begin{array}{l}
\left\langle A_{i}, X\right\rangle=b_{i}, \quad \forall i \in[m], \\
X \in \mathbb{K}
\end{array}\right\} .\end{cases}
$$

where \mathbb{K} is a proper cone.
Given a cone \mathbb{K}, define the dual cone as

$$
\mathbb{K}_{*}:=\{\xi:\langle\xi, X\rangle \geq 0, \forall X \in \mathbb{K}\} .
$$

Conic problems and their duals

Consider the conic optimization problem is

$$
\operatorname{Opt}(P):=\inf _{X} \begin{cases}\langle C, X\rangle: & \left.\begin{array}{l}
\left\langle A_{i}, X\right\rangle=b_{i}, \quad \forall i \in[m], \\
X \in \mathbb{K}
\end{array}\right\} .\end{cases}
$$

where \mathbb{K} is a proper cone.
Given a cone \mathbb{K}, define the dual cone as

$$
\mathbb{K}_{*}:=\{\xi:\langle\xi, X\rangle \geq 0, \forall X \in \mathbb{K}\} .
$$

Then, the dual conic problem is given by

$$
\operatorname{Opt}(D):=\sup _{y \in \mathbb{R}^{m}, S}\left\{\langle b, y\rangle: \sum_{\substack{i \in[m] \\ S \in \mathbb{K}_{*}}} A_{i} y_{i}+S=C,\right.
$$

Conic duality

Theorem (Weak Duality Theorem)

- Let (P) and (D) be any pair of primal and dual conic programs, where the primal (P) is in minimization form.
- Let \bar{X} be a primal feasible solution, and (\bar{y}, \bar{S}) be a dual feasible solution. Then,

$$
\langle C, \bar{X}\rangle-\langle b, \bar{y}\rangle=\langle\bar{S}, \bar{X}\rangle \geq 0
$$

Conic duality

Theorem (Weak Duality Theorem)

- Let (P) and (D) be any pair of primal and dual conic programs, where the primal (P) is in minimization form.
- Let \bar{X} be a primal feasible solution, and (\bar{y}, \bar{S}) be a dual feasible solution. Then,

$$
\langle C, \bar{X}\rangle-\langle b, \bar{y}\rangle=\langle\bar{S}, \bar{X}\rangle \geq 0
$$

Proof.

Conic duality

Corollary (Weak Duality Theorem)

Let \bar{X} be a primal feasible solution to (P) (in minimization form), and (\bar{y}, \bar{S}) be a dual feasible solution to its dual (D). Then,

$$
\langle C, \bar{X}\rangle \geq \operatorname{Opt}(P) \geq \operatorname{Opt}(D) \geq\langle b, \bar{y}\rangle .
$$

Conic duality

Corollary (Weak Duality Theorem)

Let \bar{X} be a primal feasible solution to (P) (in minimization form), and (\bar{y}, \bar{S}) be a dual feasible solution to its dual (D). Then,

$$
\langle C, \bar{X}\rangle \geq \operatorname{Opt}(P) \geq \operatorname{Opt}(D) \geq\langle b, \bar{y}\rangle .
$$

Corollary

Let \bar{X} be a primal feasible solution to (P) (in minimization form), and (\bar{y}, \bar{S}) be a dual feasible solution to its dual (D).
If $\langle C, \bar{X}\rangle=\langle b, \bar{y}\rangle$, then \bar{X} is primal optimum and (\bar{y}, \bar{S}) is dual optimum.
Moreover, in the case of SDPs, $\langle\bar{X}, \bar{S}\rangle=0$ iff $\bar{X} \bar{S}=0$.

Dual SDP

Recall our primal SDP:

$$
\operatorname{Opt}(P):=\inf _{X \in \mathbb{S}^{n}}\left\{\langle C, X\rangle: \begin{array}{ll}
& \left\langle A_{i}, X\right\rangle=b_{i}, \quad \forall i \in[m], \\
& X \succeq 0
\end{array}\right\}
$$

Dual SDP

Recall our primal SDP:

$$
\operatorname{Opt}(P):=\inf _{X \in \mathbb{S}^{n}}\left\{\langle C, X\rangle: \begin{array}{ll}
& \left\langle A_{i}, X\right\rangle=b_{i}, \quad \forall i \in[m], \\
& X \succeq 0
\end{array}\right\}
$$

Then, the dual SDP is given by

$$
\begin{aligned}
\operatorname{Opt}(D) & :=\sup _{y \in \mathbb{R}^{m}, S \in \mathbb{S}^{n}}\left\{\langle b, y\rangle: \begin{array}{l}
\sum_{i \in[m]} A_{i} y_{i}+S=C, \\
S \succeq 0
\end{array}\right\} \\
& =\sup _{y \in \mathbb{R}^{m}}\left\{\langle b, y\rangle: C-\sum_{i \in[m]} A_{i} y_{i} \succeq 0\right\}
\end{aligned}
$$

SDP practice example

What is the dual of the following SDP?

$$
\left.\inf _{X \in \mathbb{S}^{2}}\left\{\begin{array}{l}
X_{11}+X_{22}=1 \\
X_{12}: \\
\left(\begin{array}{l}
X_{11} \\
X_{12} \\
X_{12}
\end{array} X_{22}\right.
\end{array}\right) \succeq 0\right\}
$$

- Dual SDP:

$$
\operatorname{Opt}(D)=\sup _{y_{1} \in \mathbb{R}}\left\{y_{1}:\left(\begin{array}{cc}
-y_{1} & 1 / 2 \\
1 / 2 & -y_{1}
\end{array}\right) \succeq 0\right\}
$$

SDP practice example

What is the dual of the following SDP?

$$
\inf _{X \in \mathbb{S}^{2}}\left\{\begin{array}{ll}
X_{11}+X_{22}=1 \\
X_{12}: & \left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{12} & X_{22}
\end{array}\right) \succeq 0
\end{array}\right\}
$$

- Dual SDP:

$$
\operatorname{Opt}(D)=\sup _{y_{1} \in \mathbb{R}}\left\{y_{1}:\left(\begin{array}{cc}
-y_{1} & 1 / 2 \\
1 / 2 & -y_{1}
\end{array}\right) \succeq 0\right\}
$$

- $\operatorname{Opt}(D)=-\frac{1}{2}$

SDP practice example

What is the dual of the following SDP?

$$
\inf _{X \in \mathbb{S}^{2}}\left\{\begin{array}{l}
X_{11}+X_{22}=1 \\
X_{12}: \\
\binom{X_{11} X_{12}}{X_{12} X_{22}} \succeq 0
\end{array}\right\}
$$

- Dual SDP:

$$
\operatorname{Opt}(D)=\sup _{y_{1} \in \mathbb{R}}\left\{y_{1}:\left(\begin{array}{cc}
-y_{1} & 1 / 2 \\
1 / 2 & -y_{1}
\end{array}\right) \succeq 0\right\}
$$

- $\operatorname{Opt}(D)=-\frac{1}{2}$
- $y_{1}^{*}=-\frac{1}{2} \quad$ and $\quad S^{*}=\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$

SDP practice example

Let's verify...

$$
X^{*}=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \quad \text { and } \quad S^{*}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

SDP practice example

Let's verify...

$$
\begin{gathered}
X^{*}=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \quad \text { and } \quad S^{*}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
X^{*} S^{*}=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

Strong duality?

Do we always have strong duality, i.e., $\operatorname{Opt}(P)=\operatorname{Opt}(D)$?

SDP strong duality counter example

Consider

$$
\operatorname{Opt}(P)=\inf _{X \in \mathbb{S}^{3}}\left\{\begin{array}{l}
X_{22}=0 \\
X_{11}: \\
\\
X \succeq 0
\end{array}\right\}
$$

SDP strong duality counter example

Consider

$$
\operatorname{Opt}(P)=\inf _{X \in \mathbb{S}^{3}}\left\{\begin{array}{l}
X_{22}=0 \\
X_{11}: \\
X_{11}+2 X_{23}=1 \\
X \succeq 0
\end{array}\right\}
$$

and its dual

$$
\operatorname{Opt}(D)=\sup _{y_{1}, y_{2} \in \mathbb{R}}\left\{-y_{2}:\left(\begin{array}{cl}
1+y_{2} & \\
& y_{1} y_{2} \\
& y_{2}
\end{array}\right) \succeq 0\right\}
$$

SDP strong duality counter example

Consider

$$
\operatorname{Opt}(P)=\inf _{X \in \mathbb{S}^{3}}\left\{\begin{array}{l}
X_{22}=0 \\
X_{11}: \\
X_{11}+2 X_{23}=1 \\
X \succeq 0
\end{array}\right\}
$$

and its dual

$$
\operatorname{Opt}(D)=\sup _{y_{1}, y_{2} \in \mathbb{R}}\left\{-y_{2}:\left(\begin{array}{cl}
1+y_{2} & \\
& y_{1} y_{2} \\
& y_{2}
\end{array}\right) \succeq 0\right\}
$$

- $\operatorname{Opt}(P)=1$ while $\operatorname{Opt}(D)=0$.
- Positive and finite duality gap ?!?!?!

Strong conic duality

Theorem (Strong conic duality)

Let (P) and (D) be a pair of feasible primal and dual conic programs, where the primal (P) is in minimization form.

- If \exists a primal feasible \bar{X} with $\bar{X} \in \operatorname{int}(\mathbb{K})$ (i.e., primal strict feas. holds), then $\operatorname{Opt}(P)=\operatorname{Opt}(D)$ and $\operatorname{Opt}(D)$ is attained.
- If \exists a dual feasible (\bar{y}, \bar{S}) with $\bar{S} \in \operatorname{int}(\mathbb{K})$ (i.e., dual strict feas. holds), then $\operatorname{Opt}(P)=\operatorname{Opt}(D)$ and $\operatorname{Opt}(P)$ is attained.
- If both primal and dual strict feas. hold, then \exists primal-dual optimal solutions $(\bar{X}, \bar{y}, \bar{S})$ s.t.

$$
\operatorname{Opt}(P)=\langle C, \bar{X}\rangle=\langle b, \bar{y}\rangle=\operatorname{Opt}(D) \quad(\text { and for SDPs } \bar{X} \bar{S}=0)
$$

What is the interior of the PSD cone?

A matrix $X \in \mathbb{S}^{n}$ is positive definite if and only if:

- $a^{\top} X a>0$ for all $a \in \mathbb{R}^{n} \backslash\{0\}$

What is the interior of the PSD cone?

A matrix $X \in \mathbb{S}^{n}$ is positive definite if and only if:

- $a^{\top} X a>0$ for all $a \in \mathbb{R}^{n} \backslash\{0\}$
- $\lambda_{\min }(X)>0$

What is the interior of the PSD cone?

A matrix $X \in \mathbb{S}^{n}$ is positive definite if and only if:

- $a^{\top} X a>0$ for all $a \in \mathbb{R}^{n} \backslash\{0\}$
- $\lambda_{\min }(X)>0$
- $X=V V^{\top}$ for some invertible $V \in \mathbb{R}^{n \times n}($ note $\operatorname{rank}(X)=n)$

What is the interior of the PSD cone?

A matrix $X \in \mathbb{S}^{n}$ is positive definite if and only if:

- $a^{\top} X a>0$ for all $a \in \mathbb{R}^{n} \backslash\{0\}$
- $\lambda_{\min }(X)>0$
- $X=V V^{\top}$ for some invertible $V \in \mathbb{R}^{n \times n}$ (note $\operatorname{rank}(X)=n$) In particular, $X=\sum_{k \in[n]} x_{k} x_{k}^{\top}$ where each $x_{k} \in \mathbb{R}^{n}$ is orthogonal to each x_{j} for all $k, j \in[n]$

What is the interior of the PSD cone?

A matrix $X \in \mathbb{S}^{n}$ is positive definite if and only if:

- $a^{\top} X a>0$ for all $a \in \mathbb{R}^{n} \backslash\{0\}$
- $\lambda_{\min }(X)>0$
- $X=V V^{\top}$ for some invertible $V \in \mathbb{R}^{n \times n}$ (note $\operatorname{rank}(X)=n$) In particular, $X=\sum_{k \in[n]} x_{k} x_{k}^{\top}$ where each $x_{k} \in \mathbb{R}^{n}$ is orthogonal to each x_{j} for all $k, j \in[n]$
- every principle submatrix of X has positive determinant

What is the interior of the PSD cone?

A matrix $X \in \mathbb{S}^{n}$ is positive definite if and only if:

- $a^{\top} X a>0$ for all $a \in \mathbb{R}^{n} \backslash\{0\}$
- $\lambda_{\min }(X)>0$
- $X=V V^{\top}$ for some invertible $V \in \mathbb{R}^{n \times n}$ (note $\operatorname{rank}(X)=n$) In particular, $X=\sum_{k \in[n]} x_{k} x_{k}^{\top}$ where each $x_{k} \in \mathbb{R}^{n}$ is orthogonal to each x_{j} for all $k, j \in[n]$
- every principle submatrix of X has positive determinant

What is the interior of the PSD cone?

A matrix $X \in \mathbb{S}^{n}$ is positive definite if and only if:

- $a^{\top} X a>0$ for all $a \in \mathbb{R}^{n} \backslash\{0\}$
- $\lambda_{\min }(X)>0$
- $X=V V^{\top}$ for some invertible $V \in \mathbb{R}^{n \times n}$ (note $\operatorname{rank}(X)=n$) In particular, $X=\sum_{k \in[n]} x_{k} x_{k}^{\top}$ where each $x_{k} \in \mathbb{R}^{n}$ is orthogonal to each x_{j} for all $k, j \in[n]$
- every principle submatrix of X has positive determinant

Notation

- $\mathbb{S}_{++}^{n}=$ set of $n \times n$ positive definite matrices
- $X \in \mathbb{S}_{++}^{n}$, or $X \succ 0$, or X is "PD"

SDP in practice

Remark

- Be careful about strict feasibility and attainment conditions when applying conic duality!
- Papers (especially the ones focusing on algorithms) often assume that both (P) and (D) have nonempty interior. But, it is best to double check in any given application!

How do we solve an SDP?

- Even if the data is rational, an SDP may have an irrational optimum solution:

How do we solve an SDP?

- Even if the data is rational, an SDP may have an irrational optimum solution: e.g.,

$$
-\sqrt{5}=\inf _{X \in \mathbb{S}^{2}}\left\{\left\langle\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right), X\right\rangle: \begin{array}{l}
\operatorname{tr}(X)=1 \\
X \succeq 0
\end{array}\right\}
$$

How do we solve an SDP?

- Even if the data is rational, an SDP may have an irrational optimum solution: e.g.,

$$
-\sqrt{5}=\inf _{X \in \mathbb{S}^{2}}\left\{\left\langle\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right), X\right\rangle: \begin{array}{l}
\operatorname{tr}(X)=1 \\
X \succeq 0
\end{array}\right\}
$$

- By specifying a tolerance $\epsilon>0$, we seek an ϵ-optimal primal (or dual) solution.

How do we solve an SDP?

- Even if the data is rational, an SDP may have an irrational optimum solution: e.g.,

$$
-\sqrt{5}=\inf _{X \in \mathbb{S}^{2}}\left\{\left\langle\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right), X\right\rangle: \begin{array}{l}
\operatorname{tr}(X)=1 \\
X \succeq 0
\end{array}\right\}
$$

- By specifying a tolerance $\epsilon>0$, we seek an ϵ-optimal primal (or dual) solution.
- Theoretically, ellipsoid algorithm is applicable (under strict feasibility assumptions) and guarantees $\approx O\left(m^{2} \log (1 / \epsilon)\right)$ iterations to return an ϵ-optimal solution to (D), where each iteration requires $O\left(m^{2}+m n^{2}+n^{3}\right)$ floating point operations.

How do we solve an SDP?

- Even if the data is rational, an SDP may have an irrational optimum solution: e.g.,

$$
-\sqrt{5}=\inf _{X \in \mathbb{S}^{2}}\left\{\left\langle\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right), X\right\rangle: \begin{array}{l}
\operatorname{tr}(X)=1 \\
X \succeq 0
\end{array}\right\}
$$

- By specifying a tolerance $\epsilon>0$, we seek an ϵ-optimal primal (or dual) solution.
- Theoretically, ellipsoid algorithm is applicable (under strict feasibility assumptions) and guarantees $\approx O\left(m^{2} \log (1 / \epsilon)\right)$ iterations to return an ϵ-optimal solution to (D), where each iteration requires $O\left(m^{2}+m n^{2}+n^{3}\right)$ floating point operations.
- Modern (primal-dual) interior point methods do much better in practice...

How do we solve an SDP?

- Even if the data is rational, an SDP may have an irrational optimum solution: e.g.,

$$
-\sqrt{5}=\inf _{X \in \mathbb{S}^{2}}\left\{\left\langle\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right), X\right\rangle: \begin{array}{l}
\operatorname{tr}(X)=1 \\
X \succeq 0
\end{array}\right\}
$$

- By specifying a tolerance $\epsilon>0$, we seek an ϵ-optimal primal (or dual) solution.
- Theoretically, ellipsoid algorithm is applicable (under strict feasibility assumptions) and guarantees $\approx O\left(m^{2} \log (1 / \epsilon)\right)$ iterations to return an ϵ-optimal solution to (D), where each iteration requires $O\left(m^{2}+m n^{2}+n^{3}\right)$ floating point operations.
- Modern (primal-dual) interior point methods do much better in practice...
- For software package, Mosek has a very reliable implementation based on a specific P-D interior point method.

How do we solve an SDP?

- Even if the data is rational, an SDP may have an irrational optimum solution: e.g.,

$$
-\sqrt{5}=\inf _{X \in \mathbb{S}^{2}}\left\{\left\langle\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right), X\right\rangle: \begin{array}{l}
\operatorname{tr}(X)=1 \\
X \succeq 0
\end{array}\right\}
$$

- By specifying a tolerance $\epsilon>0$, we seek an ϵ-optimal primal (or dual) solution.
- Theoretically, ellipsoid algorithm is applicable (under strict feasibility assumptions) and guarantees $\approx O\left(m^{2} \log (1 / \epsilon)\right)$ iterations to return an ϵ-optimal solution to (D), where each iteration requires $O\left(m^{2}+m n^{2}+n^{3}\right)$ floating point operations.
- Modern (primal-dual) interior point methods do much better in practice...
- For software package, Mosek has a very reliable implementation based on a specific P-D interior point method.
- More on solving SDPs tomorrow...

An introduction to QCQPs

Quadratically constrained quadratic programs (QCQPs)

- $q_{\text {obj }}, q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic (possibly nonconvex!)

$$
\begin{gathered}
\text { Opt }:=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}
\end{gathered}
$$

Quadratically constrained quadratic programs (QCQPs)

- $q_{\text {obj }}, q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic (possibly nonconvex!)

$$
\begin{gathered}
\text { Opt }:=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}
\end{gathered}
$$

Quadratically constrained quadratic programs (QCQPs)

- $q_{\text {obj }}, q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic (possibly nonconvex!)

$$
\begin{gathered}
\text { Opt }:=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}
\end{gathered}
$$

Quadratically constrained quadratic programs (QCQPs)

- $q_{\mathrm{obj}}, q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic (possibly nonconvex!)

$$
\begin{gathered}
\text { Opt }:=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}
\end{gathered}
$$

- Highly expressive:

Quadratically constrained quadratic programs (QCQPs)

- $q_{\mathrm{obj}}, q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic (possibly nonconvex!)

$$
\begin{aligned}
\text { Opt }:= & \inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
& q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}
\end{aligned}
$$

- Highly expressive:
- optimization (MAX-CUT, MAX-CLIQUE,...)

Quadratically constrained quadratic programs (QCQPs)

- $q_{\text {obj }}, q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic (possibly nonconvex!)

$$
\begin{aligned}
\text { Opt }:= & \inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
& q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}
\end{aligned}
$$

- Highly expressive:
- optimization (MAX-CUT, MAX-CLIQUE,...), control, ML+statistics (clustering, sparse regression,...)

Quadratically constrained quadratic programs (QCQPs)

- $q_{\text {obj }}, q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic (possibly nonconvex!)

$$
\begin{aligned}
\text { Opt }:= & \inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
& q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}
\end{aligned}
$$

- Highly expressive:
- optimization (MAX-CUT, MAX-CLIQUE,...), control, ML+statistics (clustering, sparse regression,...)
- binary programs $x_{1}\left(1-x_{1}\right)=0$

Quadratically constrained quadratic programs (QCQPs)

- $q_{\text {obj }}, q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic (possibly nonconvex!)

$$
\begin{gathered}
\text { Opt }:=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}
\end{gathered}
$$

- Highly expressive:
- optimization (MAX-CUT, MAX-CLIQUE,...), control, ML+statistics (clustering, sparse regression,...)
- binary programs $x_{1}\left(1-x_{1}\right)=0$
- polynomial optimization problems $x_{1} x_{2}=z_{12}$

Quadratically constrained quadratic programs (QCQPs)

- $q_{\text {obj }}, q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic (possibly nonconvex!)

$$
\begin{gathered}
\text { Opt }:=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}
\end{gathered}
$$

- Highly expressive:
- optimization (MAX-CUT, MAX-CLIQUE,...), control, ML+statistics (clustering, sparse regression,...)
- binary programs $x_{1}\left(1-x_{1}\right)=0$
- polynomial optimization problems $x_{1} x_{2}=z_{12}$
- NP-hard in general

Semidefinite program (SDP) relaxation of a QCQP

- $\quad q_{i}(x):=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}$

Semidefinite program (SDP) relaxation of a QCQP

- $\quad q_{i}(x):=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}=\binom{x}{1}^{\top}\left(\begin{array}{ll}A_{i} & b_{i} \\ b_{i}^{\top} & c_{i}\end{array}\right)\binom{x}{1}$

Semidefinite program (SDP) relaxation of a QCQP

$q_{i}(x):=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}=\binom{x}{1}^{\top} \underbrace{\left(\begin{array}{cc}A_{i} & b_{i} \\ b_{i}^{\top} & c_{i}\end{array}\right)}_{=: M_{i}}\binom{x}{1}$

Semidefinite program (SDP) relaxation of a QCQP

$q_{i}(x):=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}=\binom{x}{1}^{\top} \underbrace{\left(\begin{array}{cc}A_{i} & b_{i} \\ b_{i}^{\top} & c_{i}\end{array}\right)}_{=: M_{i}}\binom{x}{1}=\left\langle M_{i},\left(\begin{array}{cc}x x^{\top} & x \\ x^{\top} & 1\end{array}\right)\right\rangle$

Semidefinite program (SDP) relaxation of a QCQP

- $\quad q_{i}(x):=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}=\binom{x}{1}^{\top} \underbrace{\left(\begin{array}{ll}A_{i} & b_{i} \\ b_{i}^{\top} & c_{i}\end{array}\right)}_{=: M_{i}}\binom{x}{1}=\left\langle M_{i},\left(\begin{array}{cc}x x^{\top} & x \\ x^{\top} & 1\end{array}\right)\right\rangle$
- \quad Opt $=\inf _{x \in \mathbb{R}^{n}}\left\{\left\langle M_{\mathrm{obj}},\left(\begin{array}{rr}x x^{\top} & x \\ x^{\top} & 1\end{array}\right)\right\rangle:\left\langle M_{i},\left(\begin{array}{rr}x x^{\top} & x \\ x^{\top} & 1\end{array}\right)\right\rangle \leq 0, \forall i \in[m]\right\}$

Semidefinite program (SDP) relaxation of a QCQP

- $\quad q_{i}(x):=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}=\binom{x}{1}^{\top} \underbrace{\left(\begin{array}{cc}A_{i} & b_{i} \\ b_{i}^{\top} & c_{i}\end{array}\right)}_{=: M_{i}}\binom{x}{1}=\left\langle M_{i},\left(\begin{array}{cc}x x^{\top} & x \\ x^{\top} & 1\end{array}\right)\right\rangle$
- \quad Opt $=\inf _{x \in \mathbb{R}^{n}}\left\{\left\langle M_{\text {obj }},\left(\begin{array}{cc}x x^{\top} & x \\ x^{\top} & 1\end{array}\right)\right\rangle:\left\langle M_{i},\left(\begin{array}{cc}x x^{\top} & x \\ x^{\top} & 1\end{array}\right)\right\rangle \leq 0, \forall i \in[m]\right\}$

$$
\geq \inf _{x \in \mathbb{R}^{n}, X \in \mathbb{S}^{n}, Z \in \mathbb{S}^{n+1}}\left\{\begin{array}{ll}
\left\langle M_{\mathrm{obj}}, Z\right\rangle: & \left\langle M_{i}, Z\right\rangle \leq 0, \forall i \in[m] \\
Z=\left(\begin{array}{cc}
X & x \\
x^{\top} & 1
\end{array}\right) \succeq 0
\end{array}\right\}=\mathrm{Opt}_{\mathrm{sDP}}
$$

SDP Relaxation

- QCQPs are highly expressive but NP-hard in general

SDP Relaxation

- QCQPs are highly expressive but NP-hard in general
- Use SDP to get tractable convex relaxation

SDP Relaxation

- QCQPs are highly expressive but NP-hard in general
- Use SDP to get tractable convex relaxation
- Vast literature on approximation guarantees: MAX-CUT, Nesterov's $\pi / 2$, Matrix Cube, ...

SDP Relaxation

- QCQPs are highly expressive but NP-hard in general
- Use SDP to get tractable convex relaxation
- Vast literature on approximation guarantees: max-Cut, Nesterov's $\pi / 2$, Matrix Cube, ...
- NP-hard to decide Opt $\stackrel{?}{=}$ OptsDP
[Laurent and Poljak, 1995]

SDP Relaxation

- QCQPs are highly expressive but NP-hard in general
- Use SDP to get tractable convex relaxation
- Vast literature on approximation guarantees: MAX-CUT, Nesterov's $\pi / 2$, Matrix Cube, ...
- NP-hard to decide Opt $\stackrel{?}{=}$ OptsDP [Laurent and Poljak, 1995]
- Interested in sufficient (and perhaps also necessary) conditions for SDP exactness.

Forms of exactness

- What does exactness mean?

Forms of exactness

- What does exactness mean?
- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\mathrm{SDP}}$

Forms of exactness

- What does exactness mean?
- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\mathrm{SDP}}$
- Optimizer exactness: $\arg \min \mathrm{Opt}=\arg \min \mathrm{Opt}_{\mathrm{sDP}}$

Forms of exactness

- What does exactness mean?
- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\mathrm{SDP}}$
- Optimizer exactness: arg min Opt $=\arg \min$ Opt $_{\text {sDP }}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }}$

Forms of exactness

- What does exactness mean?
- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\mathrm{SDP}}$
- Optimizer exactness: $\arg \min$ Opt $=\arg \min$ Opt $_{\text {sDP }}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }} \longleftarrow$ convexification of substructures

Forms of exactness

- What does exactness mean?
- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\mathrm{SDP}}$
- Optimizer exactness: arg min Opt $=\arg \min$ Opt $_{\text {SDP }}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }} \longleftarrow$ convexification of substructures

Forms of exactness

- What does exactness mean?
- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\mathrm{SDP}}$
- Optimizer exactness: $\arg \min$ Opt $=\arg \min$ Opt $_{\text {SDP }}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }} \longleftarrow$ convexification of substructures

Obj. val. ex. X

Forms of exactness

- What does exactness mean?
- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\mathrm{sDP}}$
- Optimizer exactness: $\arg \min$ Opt $=\arg \min$ Opt $_{\text {SDP }}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }} \longleftarrow$ convexification of substructures

Forms of exactness

- What does exactness mean?
- Objective value exactness: Opt $=\mathrm{Opt}_{\mathrm{SDP}}$
- Optimizer exactness: $\arg \min$ Opt $=\arg \min$ Opt $_{\text {SDP }}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }} \longleftarrow$ convexification of substructures

Forms of exactness

- What does exactness mean?
- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\text {sDP }}$
- Optimizer exactness: $\arg \min$ Opt $=\arg \min$ Opt $_{\text {sDP }}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }} \longleftarrow$ convexification of substructures

Obj. val. ex. X

Obj. val. ex.

Obj. val. ex.

Conv. hull ex. X

Forms of exactness

- What does exactness mean?
- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\text {sDP }}$
- Optimizer exactness: $\arg \min$ Opt $=\arg \min$ Opt $_{\text {sDP }}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }} \longleftarrow$ convexification of substructures

Obj. val. ex. X
Conv. hull ex. X

Obj. val. ex.
Conv. hull ex. X

Obj. val. ex.

Forms of exactness

- What does exactness mean?
- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\text {sDP }}$
- Optimizer exactness: $\arg \min$ Opt $=\arg \min$ Opt $_{\text {sDP }}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }} \longleftarrow$ convexification of substructures
QCQP
SDP

Obj. val. ex. X
Conv. hull ex. X

Obj. val. ex.
Conv. hull ex.

Obj. val. ex.
Conv. hull ex.

Forms of exactness

- What does exactness mean?
- Objective value exactness: Opt $=$ Optspp
- Optimizer exactness: $\arg \min$ Opt $=\arg \min$ Opt $_{\text {sDP }}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }} \longleftarrow$ convexification of substructures
- Rank-one generated (ROG) property: "SDP exactness that is oblivious to the objective function"

Forms of exactness

- What does exactness mean?
- Objective value exactness: Opt $=$ Opt ${ }_{\text {sDP }}$
- Optimizer exactness: arg min Opt $=\arg \min$ Opt $_{\text {sDP }}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }} \longleftarrow$ convexification of substructures
- Rank-one generated (ROG) property: "SDP exactness that is oblivious to the objective function" \longrightarrow exactness in the lifted SDP space

Exactness in the lifted SDP space: ROG property

References:
Argue, C., K.-K., F., and Wang, A. L. (2022+). Necessary and sufficient conditions for rank-one generated cones. Math. Oper. Res., Forthcoming, (arXiv:2007.07433)
K.-K., F. and Wang, A. L. (2021). Exactness in SDP relaxations of QCQPs: Theory and applications. Tut. in Oper. Res. INFORMS

ROG

- Given $\mathcal{M} \subseteq \mathbb{S}^{n+1}$, define $\mathcal{S}(\mathcal{M}):=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle \leq 0, \forall M \in \mathcal{M}\right\}$

ROG

- Given $\mathcal{M} \subseteq \mathbb{S}^{n+1}$, define $\mathcal{S}(\mathcal{M}):=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle \leq 0, \forall M \in \mathcal{M}\right\}$

Definition

A closed cone $\mathcal{S} \subseteq \mathbb{S}_{+}^{n+1}$ is rank-one generated (ROG) if

$$
\mathcal{S}=\operatorname{conv}\left(\mathcal{S} \cap\left\{z z^{\top}: z \in \mathbb{R}^{n+1}\right\}\right) .
$$

Equivalently, if all extreme rays are generated by rank-one matrices.

ROG

- Given $\mathcal{M} \subseteq \mathbb{S}^{n+1}$, define $\mathcal{S}(\mathcal{M}):=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle \leq 0, \forall M \in \mathcal{M}\right\}$

Definition

A closed cone $\mathcal{S} \subseteq \mathbb{S}_{+}^{n+1}$ is rank-one generated (ROG) if

$$
\mathcal{S}=\operatorname{conv}\left(\mathcal{S} \cap\left\{z z^{\top}: z \in \mathbb{R}^{n+1}\right\}\right) .
$$

Equivalently, if all extreme rays are generated by rank-one matrices.

- Analogy: (Integer programs, integral polyhedra) $\approx($ QCQPs, ROG $)$

Motivation: ROG \Longrightarrow exactness

$$
\text { For any } \begin{aligned}
\mathcal{M} \subseteq \mathbb{S}^{n+1}, \quad \text { Opt } & =\inf _{x \in \mathbb{R}^{n}}\left\{\binom{x}{1}^{\top} M_{\mathrm{obj}}\binom{x}{1}:\binom{x}{1}\binom{x}{1}^{\top} \in \mathcal{S}(\mathcal{M})\right\} \\
& \geq \inf _{Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: \begin{array}{l}
Z \in \mathcal{S}(\mathcal{M}) \\
\left\langle e_{n+1} e_{n+1}^{\top}, Z\right\rangle=1
\end{array}\right\}=\mathrm{Opt}_{\mathrm{SDP}} .
\end{aligned}
$$

Motivation: ROG \Longrightarrow exactness

$$
\text { For any } \mathcal{M} \subseteq \mathbb{S}^{n+1}, \quad \begin{aligned}
\text { Opt } & =\inf _{x \in \mathbb{R}^{n}}\left\{\binom{x}{1}^{\top} M_{\mathrm{obj}}\binom{x}{1}:\binom{x}{1}\binom{x}{1}^{\top} \in \mathcal{S}(\mathcal{M})\right\} \\
& \geq \inf _{Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: \begin{array}{l}
Z \in \mathcal{S}(\mathcal{M}) \\
\left\langle e_{n+1} e_{n+1}^{\top}, Z\right\rangle=1
\end{array}\right\}=\mathrm{Opt}_{\mathrm{SDP}} .
\end{aligned}
$$

- $\mathcal{S}(\mathcal{M})$ is $\mathrm{ROG} \Longrightarrow$ objective value exactness.

Proposition

- $\mathcal{S}(\mathcal{M})$ is ROG iff for all $M_{\text {obj }} \in \mathbb{S}^{n+1}$,

$$
\inf _{z \in \mathbb{R}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z z^{\top} \in \mathcal{S}(\mathcal{M})\right\}=\inf _{Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: Z \in \mathcal{S}(\mathcal{M})\right\}
$$

- If $\mathcal{S}(\mathcal{M})$ is ROG, then for all $B, M_{\mathrm{obj}} \in \mathbb{S}^{n+1}$ s.t. $\mathrm{Opt}_{\mathrm{SDP}}>-\infty$,

Related: Hildebrand [2016, Lemma 1.2]

Motivation: ROG \Longrightarrow exactness

$$
\text { For any } \begin{aligned}
\mathcal{M} \subseteq \mathbb{S}^{n+1}, \quad \text { Opt } & =\inf _{x \in \mathbb{R}^{n}}\left\{\binom{x}{1}^{\top} M_{\mathrm{obj}}\binom{x}{1}:\binom{x}{1}\binom{x}{1}^{\top} \in \mathcal{S}(\mathcal{M})\right\} \\
& \geq \inf _{Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: \begin{array}{l}
Z \in \mathcal{S}(\mathcal{M}) \\
\left\langle e_{n+1} e_{n+1}^{\top}, Z\right\rangle=1
\end{array}\right\}=\mathrm{Opt}_{\mathrm{SDP}} .
\end{aligned}
$$

- $\mathcal{S}(\mathcal{M})$ is ROG \Longrightarrow objective value exactness.
- $\mathcal{S}(\mathcal{M})$ is $\mathrm{ROG} \Longrightarrow$ closed convex hull exactness via projected SDP set.

Theorem

Given $\mathcal{M}=[m]$, let $\mathcal{X}:=\left\{x \in \mathbb{R}^{n}:\binom{x}{1}\binom{x}{1}^{\top} \in \mathcal{S}(\mathcal{M})\right\}$. and $A\left(\gamma^{*}\right):=\sum_{i \in[m]} \gamma_{i}^{*} A_{i}$.

- If $\mathcal{S}(\mathcal{M})$ is ROG and $\exists \gamma^{*} \in \mathbb{R}_{+}^{m}$ s.t. $A\left(\gamma^{*}\right) \succ 0$, then $\operatorname{conv}(\mathcal{X})=$ projected SDP domain, i.e.,

$$
\operatorname{conv}(\mathcal{X})=\left\{x \in \mathbb{R}^{n}: \begin{array}{l}
\exists X, Z \text { s.t. } Z=\left(\begin{array}{ll}
X & x \\
x^{\top} & 1
\end{array}\right) \\
\\
Z \in \mathcal{S}(\mathcal{M})
\end{array}\right\}
$$

- If $\mathcal{S}(\mathcal{M})$ is ROG and $\exists \gamma^{*} \in \mathbb{R}_{+}^{m}$ s.t. $A_{\text {obj }}+A\left(\gamma^{*}\right) \succ 0$, then

$$
\operatorname{cl} \operatorname{conv}\left(\left\{(x, t) \in \mathbb{R}^{n+1}: q_{\mathrm{obj}}(x) \leq t, x \in \mathcal{X}\right\}\right)=\operatorname{cl}\left(\mathcal{D}_{\mathrm{SDP}}\right)
$$

Applications

- Exactness
- objective value and convex hull exactness
- variants of the S-lemma
- minimizing a ratio of quadratic functions

Applications

- Exactness
- objective value and convex hull exactness
- variants of the S-lemma
- minimizing a ratio of quadratic functions
- Applications when $|\mathcal{M}|$ is finite
- PSD matrix completion
[Grone et al., 1984], [Agler et al., 1988], [Paulsen et al., 1989]
- Statistics applications + real algebraic geometry view [Hildebrand, 2016], [Blekherman et al., 2017]

Applications

- Exactness
- objective value and convex hull exactness
- variants of the S-lemma
- minimizing a ratio of quadratic functions
- Applications when $|\mathcal{M}|$ is finite
- PSD matrix completion
[Grone et al., 1984], [Agler et al., 1988], [Paulsen et al., 1989]
- Statistics applications + real algebraic geometry view [Hildebrand, 2016], [Blekherman et al., 2017]
- Applications when $|\mathcal{M}|$ is not finite
- Trust-region subproblem and its variants
[Sturm and Zhang, 2003], [Burer, 2015] and references therein, [Yang et al., 2018]
- Intersection of two Euclidean balls
[Kelly et al., 2022, Burer, 2023]

ROG

$$
\mathcal{S}(\mathcal{M}):=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle \leq 0, \forall M \in \mathcal{M}\right\}
$$

Well-known ROG sets:

- Positive semidefinite cone \mathbb{S}_{+}^{n+1} itself!

ROG

$$
\mathcal{S}(\mathcal{M}):=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle \leq 0, \forall M \in \mathcal{M}\right\}
$$

Well-known ROG sets:

- Positive semidefinite cone \mathbb{S}_{+}^{n+1} itself!
- Any single linear matrix inequality (LMI) or equation (LME):

ROG

$$
\mathcal{S}(\mathcal{M}):=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle \leq 0, \forall M \in \mathcal{M}\right\}
$$

Well-known ROG sets:

- Positive semidefinite cone \mathbb{S}_{+}^{n+1} itself!
- Any single linear matrix inequality (LMI) or equation (LME):

Theorem (S-lemma)
$\mathcal{S}(\{M\})$ for any $M \in \mathbb{S}^{n+1}$ is ROG.
[Fradkov and Yakubovich, 1979, Sturm and Zhang, 2003]

S-lemma

Corollary (Homogeneous S-lemma)

For any $M_{\mathrm{obj}}, M \in \mathbb{S}^{n+1}$, we have

$$
\inf _{z \in \mathbb{R}^{n+1}}\left\{z^{\top} M_{\mathrm{obj}} z: z^{\top} M z \leq 0\right\}=\inf _{Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle:\langle M, Z\rangle \leq 0\right\} .
$$

S-lemma

Corollary (Homogeneous S-lemma)

For any $M_{\mathrm{obj}}, M \in \mathbb{S}^{n+1}$, we have

$$
\inf _{z \in \mathbb{R}^{n+1}}\left\{z^{\top} M_{\mathrm{obj}} z: z^{\top} M z \leq 0\right\}=\inf _{Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle:\langle M, Z\rangle \leq 0\right\} .
$$

Equivalently, suppose $\exists \bar{z}$ s.t. $\bar{z}^{\top} M \bar{z}<0$. Then,

$$
\left[z^{\top} M z \leq 0 \Longrightarrow z^{\top} M_{\mathrm{obj}} z \leq 0\right] \text { iff }\left[\exists \alpha \in \mathbb{R}_{+} \text {s.t. } \alpha M \succeq M_{\mathrm{obj}}\right] \text {. }
$$

S-lemma

Corollary (Homogeneous S-lemma)

For any $M_{\mathrm{obj}}, M \in \mathbb{S}^{n+1}$, we have

$$
\inf _{z \in \mathbb{R}^{n+1}}\left\{z^{\top} M_{\mathrm{obj}} z: z^{\top} M z \leq 0\right\}=\inf _{Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle:\langle M, Z\rangle \leq 0\right\}
$$

Equivalently, suppose $\exists \bar{z}$ s.t. $\bar{z}^{\top} M \bar{z}<0$. Then,

$$
\left[z^{\top} M z \leq 0 \Longrightarrow z^{\top} M_{\mathrm{obj}} z \leq 0\right] \text { iff }\left[\exists \alpha \in \mathbb{R}_{+} \text {s.t. } \alpha M \succeq M_{\mathrm{obj}}\right] \text {. }
$$

Corollary (Inhomogeneous S-Iemma)

For any $A_{\mathrm{obj}}, A \in \mathbb{S}^{n}$, any $b_{\mathrm{obj}}, b \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$ s.t. $\exists \bar{x}$ satisfying $\bar{x}^{\top} A \bar{x}+b^{\top} \bar{x}+c<0$ and Opt $>-\infty$, we have

$$
\begin{aligned}
\text { Opt }= & \inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+b_{\mathrm{obj}}^{\top} x: x^{\top} A x+b^{\top} x+c \leq 0\right\} \\
& =\inf _{x \in \mathbb{R}^{n}, X \in \mathbb{S}^{n}}\left\{\left\langle A_{\mathrm{obj}}, X\right\rangle+b_{\mathrm{obj}}^{\top} x:\langle A, X\rangle+b^{\top} x+c \leq 0, X \succeq x x^{\top}\right\} .
\end{aligned}
$$

When is $\mathcal{S}(\mathcal{M})$ ROG?

- Question: for what $\mathcal{M} \subseteq \mathbb{S}^{n+1}$ is $\mathcal{S}(\mathcal{M}) \mathrm{ROG}$?

Thank you!

Questions?

References I

Agler, J., Helton, W., McCullough, S., and Rodman, L. (1988). Positive semidefinite matrices with a given sparsity pattern. Linear Algebra Appl., 107:101-149.
Argue, C., K.-K., F., and Wang, A. L. (2022+). Necessary and sufficient conditions for rank-one generated cones. Math. Oper. Res., Forthcoming, (arXiv:2007.07433).
Ben-Tal, A. and Nemirovski, A. (2001). Lectures on Modern Convex Optimization, volume 2 of MPS-SIAM Ser. Optim. SIAM.
Blekherman, G., Sinn, R., and Velasco, M. (2017). Do sums of squares dream of free resolutions? SIAM J. Appl. Algebra Geom., 1:175-199.
Burer, S. (2015). A gentle, geometric introduction to copositive optimization. Math. Program., 151:89-116.
Burer, S. (2023). A slightly lifted convex relaxation for nonconvex quadratic programming with ball constraints. arXiv preprint arXiv:2303.01624.
Fradkov, A. L. and Yakubovich, V. A. (1979). The S-procedure and duality relations in nonconvex problems of quadratic programming. Vestnik Leningrad Univ. Math., 6:101-109.
Grone, R., Johnson, C. R., Sá, E. M., and Wolkowicz, H. (1984). Positive definite completions of partial Hermitian matrices. Linear Algebra Appl., 58:109-124.

References II

Hildebrand, R. (2016). Spectrahedral cones generated by rank 1 matrices. J. Global Optim., 64:349-397.
K.-K., F. and Wang, A. L. (2021). Exactness in SDP relaxations of QCQPs: Theory and applications. Tut. in Oper. Res. INFORMS.
Kelly, S., Ouyang, Y., and Yang, B. (2022). A note on semidefinite representable reformulations for two variants of the trust-region subproblem. Manuscript, School of Mathematical and Statistical Sciences, Clemson University, Clemson, South Carolina, USA.
Laurent, M. and Poljak, S. (1995). On a positive semidefinite relaxation of the cut polytope. Linear Algebra Appl., 223-224:439-461.
Paulsen, V. I., Power, S. C., and Smith, R. R. (1989). Schur products and matrix completions. J. Funct. Anal., 85(1):151-178.
Sturm, J. F. and Zhang, S. (2003). On cones of nonnegative quadratic functions. Math. Oper. Res., 28(2):246-267.
Wang, A. L. and K.-K., F. (2022a). Accelerated first-order methods for a class of semidefinite programs. arXiv preprint, 2206.00224.

References III

Wang, A. L. and K.-K., F. (2022b). The generalized trust region subproblem: solution complexity and convex hull results. Math. Program., 191:445-486.

Wang, A. L. and K.-K., F. (2022c). On the tightness of SDP relaxations of QCQPs. Math. Program., 193:33-73.

Wang, A. L., Lu, Y., and K.-K., F. (2023+). Implicit regularity and linear convergence rates for the generalized trust-region subproblem. SIAM J. Optim., Forthcoming, (arXiv:2112.13821).
Yang, B., Anstreicher, K., and Burer, S. (2018). Quadratic programs with hollows. Math. Program., 170:541-553.

