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Convex optimization meets nonconvex problems

Convex optimization is accurate and efficient.

Unfortunately, many practical optimization problems are nonconvex.
Binary constraints, sparsity constraints, rank constraints. . .
Generally hard

, but not always!

Some nonconvex problems can be solved using convex optimization.
Today and Tomorrow:

Examine quadratically constrained quadratic programs (QCQPs) and their
semidefinite program (SDPs) relaxations,
Understand structures within QCQPs that enable us to solve them via SDPs,
Exploit structures governing exactness properties to design efficient first-order
methods to solve a class of low rank SDPs.
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Today’s outline

Preliminaries

An introduction to SDPs
An introduction to QCQPs and their SDP relaxations

Rank-one generated (ROG) property of SDPs

Definition
Implications
Examples
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An introduction to SDPs

References:

Ben-Tal, A. and Nemirovski, A. (2001). Lectures on Modern Convex Optimization, volume 2 of MPS-SIAM Ser.

Optim. SIAM
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Basic definitions

Rn = real column vectors of length n

Rm×n = real matrices of size m× n

Sn ⊆ Rn×n = space of n× n real symmetric matrices

=⇒ Symmetry of the matrices ensures that the eigenvalues are all real.
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Basic definitions

In Rn, we use the standard Euclidean inner product given by

⟨x, y⟩ =
∑
i∈[n]

xiyi

and it induces the Euclidean norm: ∥x∥2 :=
√∑

i∈[n] x
2
i .

In Rm×n, we use the trace (Frobenius) inner product given by

⟨X,Y ⟩ =
∑
i∈[m]

∑
j∈[n]

XijYij = tr(X⊤Y )

and it induces the Frobenius norm: ∥X∥2 :=
√
⟨X,X⟩ =

√∑
i∈[m]

∑
j∈[n]X

2
ij .
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Positive semidefiniteness

A matrix X ∈ Sn is positive semidefinite if and only if:

a⊤Xa ≥ 0 for all a ∈ Rn

λmin(X) ≥ 0

X = V V ⊤ for some V ∈ Rn×r (note rank(X) ≤ r)
In particular, X =

∑
k∈[r] xkx

⊤
k where xk ∈ Rn for all k ∈ [r] where rank(X) ≤ r

every principle submatrix of X has nonnegative determinant

Notation

Sn+ = set of n× n positive semidefinite matrices

X ∈ Sn+, or X ⪰ 0, or X is “PSD"
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Positive semidefiniteness

Important properties of Sn+:
It is a cone!

In fact it is a proper, i.e., closed, convex, pointed, full-dimensional, cone
It is self-dual, i.e.,

{
S ∈ Sn : ⟨S,X⟩ ≥ 0, ∀X ∈ Sn+

}
= Sn+

In particular, X,S ∈ Sn+ =⇒ ⟨S,X⟩ ≥ 0
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PSD practice

What is the dimension of Sn+?

Ambient dimension is n2

But, symmetry takes away
(
n
2

)
degrees of freedom

So, its dimension is
(
n+ 1
2

)
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PSD practice

When is a diagonal matrix in Sn+?

D :=


D11 0 . . . 0
0 D22 . . . 0

. . .
0 0 . . . Dnn


D is a diagonal matrix where diag(D) = (D11, D22, . . . , Dnn)

⊤

Its eigenvalues are D11, D22, . . . , Dnn

So, D ∈ Sn+ iff diag(D) ≥ 0
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PSD practice

Is the following matrix in S3+?  1 −1 0
−1 1 0
0 0 0



Yes, we can check its principal minors. . .

Also, note that it is equal to vv⊤ where v =

 1
−1
0
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PSD practice

Is the following matrix in S3+?  9 −3 −6
−3 1 2
−6 2 4



Yes, because it is equal to vv⊤ where v =

−31
2
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PSD characterization

Theorem
X ∈ Sn+ if and only if there exists

an orthogonal matrix U ∈ Rn×n, and
a nonnegative diagonal matrix D ∈ Sn

such that X = UDU⊤ .

Here, the elements of diag(D) are precisely the eigenvalues of X, and the columns
of U are the corresponding eigenvectors of X.
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A semidefinite program

Primal SDP problem:

Opt(P ) := inf
X∈Sn

{
⟨C,X⟩ :

⟨Ai, X⟩ = bi, ∀i ∈ [m],

X ⪰ 0

}
,

where
the decision variable is X ∈ Sn

the data are the matrices C,A1, . . . , Am ∈ Sn, and the vector b ∈ Rm

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 13 / 41



SDP practice

Specify the data for this problem:

inf
X∈S2

X12 :
X11 +X22 = 1(
X11 X12

X12 X22

)
⪰ 0



n = 2 and m = 1

C = 1
2

(
0 1
1 0

)
and A1 =

(
1 0
0 1

)
b1 = 1
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SDP practice

What is the optimum value of this problem?

Opt∗ := inf
X∈S2

X12 :
X11 +X22 = 1(
X11 X12

X12 X22

)
⪰ 0



Opt∗ = inf
X11,X22,X12

X12 :

X11 +X22 = 1

X11 ≥ 0, X22 ≥ 0

X2
12 ≤ X11X22

 = inf
X11,X12

{
X12 :

X11 ≥ 0, X11 ≤ 1

X2
12 ≤ X11(1−X11)

}

= inf
X11

{
−
√
X11(1−X11) : 0 ≤ X11 ≤ 1

}

Opt∗ = −1

2
and X∗ =

1

2

(
1 −1
−1 1

)
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X11

{
−
√
X11(1−X11) : 0 ≤ X11 ≤ 1

}

Opt∗ = −1

2
and X∗ =

1

2

(
1 −1
−1 1

)
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What can be expressed as an SDP?

LP is a special case of SDP:

inf
x∈Rn

{
⟨c, x⟩ :

⟨ai, x⟩ = bi, ∀i ∈ [m],

x ≥ 0

}

⇐⇒ inf
X∈Sn

{
⟨Diag(c), X⟩ :

⟨Diag(ai), X⟩ = bi, ∀i ∈ [m],

X ⪰ 0

}
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What can be expressed as an SDP?

Second-order cone programs (SOCPs) are a special case of SDPs:

∥x∥2 ≤ t ⇐⇒
(
t x⊤

x tIn

)
⪰ 0

This is based on the following very useful result:

Theorem (Schur Complement Lemma)

Consider a symmetric matrix M :=

(
P Q⊤

Q R

)
such that R is positive definite. Then,

M ⪰ 0 iff P −Q⊤R−1Q ⪰ 0.
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What can be expressed as an SDP?

Many nice functions of eigenvalues (or singular values) of matrices admit SDP
representations. . .

Theorem
Let f : Rn → R be a convex, SDP representable, permutation invariant function,
i.e., f(x) = f(Px) for every permutation matrix P .
Let λ(X) denote the vector of eigenvalues of matrix X ∈ Sn.

Then, the epigraph of the function F (X) = f(λ(X)) : Sn → R admits an SDP
representation.

λmax(X),
∑

i∈[n] λi(X),

∥X∥p := ∥λ(X)∥p =
(∑

i∈[n] |λi(X)|p
)1/p

for p ∈ Q and p ≥ 1,

− log det(X) = −
∑

i∈[n] log(λi(X)) for X ≻ 0, . . .
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Conic problems and their duals

Consider the conic optimization problem is

Opt(P ) := inf
X

{
⟨C,X⟩ :

⟨Ai, X⟩ = bi, ∀i ∈ [m],

X ∈ K

}
.

where K is a proper cone.

Given a cone K, define the dual cone as

K∗ := {ξ : ⟨ξ,X⟩ ≥ 0, ∀X ∈ K} .

Then, the dual conic problem is given by

Opt(D) := sup
y∈Rm,S

{
⟨b, y⟩ :

∑
i∈[m]Aiyi + S = C,

S ∈ K∗

}
.
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Conic duality

Theorem (Weak Duality Theorem)
Let (P ) and (D) be any pair of primal and dual conic programs, where the
primal (P ) is in minimization form.
Let X̄ be a primal feasible solution, and (ȳ, S̄) be a dual feasible solution.

Then, 〈
C, X̄

〉
− ⟨b, ȳ⟩ =

〈
S̄, X̄

〉
≥ 0.

Proof.
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Conic duality

Corollary (Weak Duality Theorem)
Let X̄ be a primal feasible solution to (P ) (in minimization form), and (ȳ, S̄) be a
dual feasible solution to its dual (D). Then,〈

C, X̄
〉
≥ Opt(P ) ≥ Opt(D) ≥ ⟨b, ȳ⟩ .

Corollary

Let X̄ be a primal feasible solution to (P ) (in minimization form), and (ȳ, S̄) be a
dual feasible solution to its dual (D).
If
〈
C, X̄

〉
= ⟨b, ȳ⟩, then X̄ is primal optimum and (ȳ, S̄) is dual optimum.

Moreover, in the case of SDPs,
〈
X̄, S̄

〉
= 0 iff X̄S̄ = 0.
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Dual SDP

Recall our primal SDP:

Opt(P ) := inf
X∈Sn

{
⟨C,X⟩ :

⟨Ai, X⟩ = bi, ∀i ∈ [m],

X ⪰ 0

}
.

Then, the dual SDP is given by

Opt(D) := sup
y∈Rm,S∈Sn

{
⟨b, y⟩ :

∑
i∈[m]Aiyi + S = C,

S ⪰ 0

}

= sup
y∈Rm

⟨b, y⟩ : C −
∑
i∈[m]

Aiyi ⪰ 0

 .
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SDP practice example

What is the dual of the following SDP?

inf
X∈S2

X12 :
X11 +X22 = 1(
X11 X12

X12 X22

)
⪰ 0


Dual SDP: Opt(D) = sup

y1∈R

{
y1 :

(
−y1 1/2
1/2 −y1

)
⪰ 0

}

Opt(D) = −1
2

y∗1 = −1
2 and S∗ = 1

2

(
1 1
1 1

)
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SDP practice example

Let’s verify. . .

X∗ =
1

2

(
1 −1
−1 1

)
and S∗ =

1

2

(
1 1
1 1

)

X∗S∗ =
1

4

(
1 −1
−1 1

)(
1 1
1 1

)
=

(
0 0
0 0

)
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Strong duality?

Do we always have strong duality, i.e., Opt(P ) = Opt(D)?
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SDP strong duality counter example

Consider

Opt(P ) = inf
X∈S3

X11 :

X22 = 0,

X11 + 2X23 = 1,

X ⪰ 0



and its dual

Opt(D) = sup
y1,y2∈R

−y2 :
1 + y2

y1 y2
y2

 ⪰ 0


Opt(P ) = 1 while Opt(D) = 0.
Positive and finite duality gap ?!?!?!
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Strong conic duality

Theorem (Strong conic duality)

Let (P ) and (D) be a pair of feasible primal and dual conic programs, where the
primal (P ) is in minimization form.

If ∃ a primal feasible X̄ with X̄ ∈ int(K) (i.e., primal strict feas. holds), then
Opt(P ) = Opt(D) and Opt(D) is attained.
If ∃ a dual feasible (ȳ, S̄) with S̄ ∈ int(K) (i.e., dual strict feas. holds), then
Opt(P ) = Opt(D) and Opt(P ) is attained.
If both primal and dual strict feas. hold, then ∃ primal-dual optimal solutions
(X̄, ȳ, S̄) s.t.

Opt(P ) =
〈
C, X̄

〉
= ⟨b, ȳ⟩ = Opt(D) (and for SDPs X̄S̄ = 0).
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What is the interior of the PSD cone?

A matrix X ∈ Sn is positive definite if and only if:

a⊤Xa > 0 for all a ∈ Rn \ {0}

λmin(X) > 0

X = V V ⊤ for some invertible V ∈ Rn×n (note rank(X) = n)

In particular, X =
∑

k∈ [n]
xkx

⊤
k where each xk ∈ Rn is orthogonal to each xj

for all k, j ∈ [n]

every principle submatrix of X has positive determinant

Notation

Sn++ = set of n× n positive definite matrices

X ∈ Sn++, or X ≻ 0, or X is “PD"
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SDP in practice

Remark
Be careful about strict feasibility and attainment conditions when applying conic
duality!

Papers (especially the ones focusing on algorithms) often assume that both (P )
and (D) have nonempty interior. But, it is best to double check in any given
application!
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How do we solve an SDP?

Even if the data is rational, an SDP may have an irrational optimum solution:

e.g.,

−
√
5 = inf

X∈S2

{〈(
1 2
2 −1

)
, X

〉
:

tr(X) = 1,

X ⪰ 0

}

By specifying a tolerance ϵ > 0, we seek an ϵ-optimal primal (or dual) solution.
Theoretically, ellipsoid algorithm is applicable (under strict feasibility
assumptions) and guarantees ≈ O(m2 log(1/ϵ)) iterations to return an ϵ-optimal
solution to (D), where each iteration requires O(m2 +mn2 + n3) floating point
operations.
Modern (primal-dual) interior point methods do much better in practice. . .
For software package, Mosek has a very reliable implementation based on a
specific P-D interior point method.
More on solving SDPs tomorrow. . .
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solution to (D), where each iteration requires O(m2 +mn2 + n3) floating point
operations.
Modern (primal-dual) interior point methods do much better in practice. . .
For software package, Mosek has a very reliable implementation based on a
specific P-D interior point method.
More on solving SDPs tomorrow. . .
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An introduction to QCQPs

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 30 / 41



Quadratically constrained quadratic programs (QCQPs)

qobj, q1, . . . , qm : Rn → R quadratic (possibly nonconvex!)

Opt := inf
x∈Rn

{
qobj(x) : qi(x) ≤ 0, ∀i ∈ [m]

}
qi(x) = x⊤Aix+ 2b⊤i x+ ci

Highly expressive:

optimization (MAX-CUT, MAX-CLIQUE,. . . )

, control, ML+statistics (clustering,
sparse regression,. . . )

binary programs x1(1− x1) = 0

polynomial optimization problems x1x2 = z12

NP-hard in general
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Semidefinite program (SDP) relaxation of a QCQP

qi(x) := x⊤Aix+ 2b⊤i x+ ci

=

(
x
1

)⊤(
Ai bi
b⊤i ci

)
︸ ︷︷ ︸
=: Mi

(
x
1

)
=

〈
Mi,

(
xx⊤ x
x⊤ 1

)〉

Opt = inf
x∈Rn

{〈
Mobj,

(
xx⊤ x

x⊤ 1

)〉
:

〈
Mi,

(
xx⊤ x

x⊤ 1

)〉
≤ 0, ∀i ∈ [m]

}

≥ inf
x∈Rn, X∈Sn, Z∈Sn+1

⟨Mobj, Z⟩ :
⟨Mi, Z⟩ ≤ 0, ∀i ∈ [m]

Z =

(
X x

x⊤ 1

)
⪰ 0

 = OptSDP
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SDP Relaxation

QCQPs are highly expressive but NP-hard in general

Use SDP to get tractable convex relaxation
Vast literature on approximation guarantees: MAX-CUT, Nesterov’s π/2, Matrix
Cube, . . .

NP-hard to decide Opt
?
= OptSDP

[Laurent and Poljak, 1995]

Interested in sufficient (and perhaps also necessary) conditions for SDP
exactness.
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Forms of exactness

What does exactness mean?

Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP

←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗ Conv. hull ex. ✓

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP

←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗ Conv. hull ex. ✓

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP

←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗ Conv. hull ex. ✓

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP

←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗ Conv. hull ex. ✓

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP ←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗ Conv. hull ex. ✓

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP ←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗ Conv. hull ex. ✓

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP ←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗

Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗ Conv. hull ex. ✓

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP ←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓

Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗ Conv. hull ex. ✓

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP ←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗ Conv. hull ex. ✓

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP ←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗

Conv. hull ex. ✗ Conv. hull ex. ✓

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP ←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗

Conv. hull ex. ✓

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP ←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗ Conv. hull ex. ✓

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP ←− convexification of substructures

Rank-one generated (ROG) property:

“SDP exactness that is oblivious to the objective function”

−→ exactness in the lifted SDP space

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP ←− convexification of substructures

Rank-one generated (ROG) property:

“SDP exactness that is oblivious to the objective function”
−→ exactness in the lifted SDP space

Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 34 / 41



Exactness in the lifted SDP space: ROG property
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ROG

GivenM⊆ Sn+1, define S(M) :=
{
Z ∈ Sn+1

+ : ⟨M,Z⟩ ≤ 0, ∀M ∈M
}

Definition
A closed cone S ⊆ Sn+1

+ is rank-one generated (ROG) if

S = conv
(
S ∩

{
zz⊤ : z ∈ Rn+1

})
.

Equivalently, if all extreme rays are generated by rank-one matrices.

Analogy: (Integer programs, integral polyhedra) ≈ (QCQPs, ROG)
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Motivation: ROG =⇒ exactness

For any M ⊆ Sn+1, Opt = inf
x∈Rn

{
( x
1 )

⊤ Mobj (
x
1 ) : ( x

1 ) (
x
1 )

⊤ ∈ S(M)
}

≥ inf
Z∈Sn+1

{
⟨Mobj, Z⟩ :

Z ∈ S(M)〈
en+1e

⊤
n+1, Z

〉
= 1

}
= OptSDP .

S(M) is ROG =⇒ objective value exactness.

S(M) is ROG =⇒ closed convex hull exactness via projected SDP set.
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x
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{
⟨Mobj, Z⟩ :

Z ∈ S(M)〈
en+1e

⊤
n+1, Z

〉
= 1

}
= OptSDP .

S(M) is ROG =⇒ objective value exactness.

Proposition

S(M) is ROG iff for all Mobj ∈ Sn+1,

inf
z∈Rn+1

{〈
Mobj, zz

⊤
〉
: zz⊤ ∈ S(M)

}
= inf

Z∈Sn+1
{⟨Mobj, Z⟩ : Z ∈ S(M)} .

If S(M) is ROG, then for all B,Mobj ∈ Sn+1 s.t. OptSDP > −∞,

inf
z∈Rn+1

{〈
Mobj, zz

⊤
〉
:
zz⊤ ∈ S(M)〈
B, zz⊤

〉
= 1

}
= inf

Z∈Sn+1

{
⟨Mobj, Z⟩ :

Z ∈ S(M)

⟨B,Z⟩ = 1

}
.

Related: Hildebrand [2016, Lemma 1.2]

S(M) is ROG =⇒ closed convex hull exactness via projected SDP set.
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S(M) is ROG =⇒ objective value exactness.

S(M) is ROG =⇒ closed convex hull exactness via projected SDP set.

Theorem
Given M = [m], let X :=

{
x ∈ Rn : ( x

1 ) (
x
1 )

⊤ ∈ S(M)
}

. and A(γ∗) :=
∑

i∈[m] γ
∗
i Ai.

If S(M) is ROG and ∃γ∗ ∈ Rm
+ s.t. A(γ∗) ≻ 0, then conv(X ) = projected SDP domain, i.e.,

conv(X ) =

{
x ∈ Rn :

∃X,Z s.t. Z =
(

X x
x⊤ 1

)
Z ∈ S(M)

}
.

If S(M) is ROG and ∃γ∗ ∈ Rm
+ s.t. Aobj +A(γ∗) ≻ 0, then

cl conv
({

(x, t) ∈ Rn+1 : qobj(x) ≤ t , x ∈ X
})

= cl(DSDP).
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Applications

Exactness
objective value and convex hull exactness
variants of the S-lemma
minimizing a ratio of quadratic functions

Applications when |M| is finite
PSD matrix completion
[Grone et al., 1984], [Agler et al., 1988], [Paulsen et al., 1989]
Statistics applications + real algebraic geometry view
[Hildebrand, 2016], [Blekherman et al., 2017]

Applications when |M| is not finite
Trust-region subproblem and its variants
[Sturm and Zhang, 2003], [Burer, 2015] and references therein, [Yang et al., 2018]
Intersection of two Euclidean balls
[Kelly et al., 2022, Burer, 2023]
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ROG

S(M) :=
{
Z ∈ Sn+1

+ : ⟨M,Z⟩ ≤ 0, ∀M ∈M
}

Well-known ROG sets:
Positive semidefinite cone Sn+1

+ itself!

Any single linear matrix inequality (LMI) or equation (LME):

Theorem (S-lemma)
S({M}) for any M ∈ Sn+1 is ROG.
[Fradkov and Yakubovich, 1979, Sturm and Zhang, 2003]
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S-lemma

Corollary (Homogeneous S-lemma)
For any Mobj,M ∈ Sn+1, we have

inf
z∈Rn+1

{
z⊤Mobjz : z⊤Mz ≤ 0

}
= inf

Z∈Sn+1

{
⟨Mobj, Z⟩ : ⟨M,Z⟩ ≤ 0

}
.

Equivalently, suppose ∃z̄ s.t. z̄⊤Mz̄ < 0. Then,[
z⊤Mz ≤ 0 =⇒ z⊤Mobjz ≤ 0

]
iff [∃α ∈ R+ s.t. αM ⪰Mobj ] .

Corollary (Inhomogeneous S-lemma)
For any Aobj, A ∈ Sn, any bobj, b ∈ Rn and c ∈ R s.t. ∃x̄ satisfying x̄⊤Ax̄+ b⊤x̄+ c < 0 and
Opt > −∞, we have

Opt = inf
x∈Rn

{
x⊤Aobjx+ b⊤objx : x⊤Ax+ b⊤x+ c ≤ 0

}
= inf

x∈Rn,X∈Sn

{
⟨Aobj, X⟩+ b⊤objx : ⟨A,X⟩+ b⊤x+ c ≤ 0, X ⪰ xx⊤} .
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When is S(M) ROG?

Question: for whatM⊆ Sn+1 is S(M) ROG?
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Thank you!
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Questions?
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