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Convex optimization meets nonconvex problems

@ Convex optimization is accurate and efficient.

@ Unfortunately, many practical optimization problems are nonconvex.
@ Binary constraints, sparsity constraints, rank constraints. . .
@ Generally hard, but not always!
@ Some nonconvex problems can be solved using convex optimization.
@ Today and Tomorrow:
e Examine quadratically constrained quadratic programs (QCQPs) and their
semidefinite program (SDPs) relaxations,

e Understand structures within QCQPs that enable us to solve them via SDPs,
e Exploit structures governing exactness properties to design efficient first-order

methods to solve a class of low rank SDPs.
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Today’s outline

@ Preliminaries

@ An introduction to SDPs

@ An introduction to QCQPs and their SDP relaxations
@ Rank-one generated (ROG) property of SDPs

e Definition
e Implications
e Examples
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An introduction to SDPs J

References:

Ben-Tal, A. and Nemirovski, A. (2001). Lectures on Modern Convex Optimization, volume 2 of MPS-SIAM Ser.
Optim. SIAM
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Basic definitions

@ R"™ = real column vectors of length n
@ R™*™ = real matrices of size m x n
@ S" C R™"™ = space of n x n real symmetric matrices

Kiling-Karzan (CMU) SDP Relaxations of QCQPs 4/41



Basic definitions

@ R"™ = real column vectors of length n
@ R™*™ = real matrices of size m x n
@ S" C R™"™ = space of n x n real symmetric matrices
— Symmetry of the matrices ensures that the eigenvalues are all real.
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Basic definitions
@ In R™, we use the standard Euclidean inner product given by

(@, y) = wiys

i€[n]
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Basic definitions

@ In R™, we use the standard Euclidean inner product given by

Z TilYi

i€[n]
and it induces the Euclidean norm: ||z||2 := | /3" %3-

@ In R™*" we use the trace (Frobenius) inner product given by

=) XV =w(XTY)

i€[m] j€ln]

and it induces the Frobenius norm: || Xz := \/(X, X) = \/zie[m} S et X2
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Positive semidefiniteness

A matrix X € S™ is positive semidefinite if and only if:
@ a'Xa>0forallacR®
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Positive semidefiniteness

A matrix X € S™ is positive semidefinite if and only if:
@ a'Xa>0forallaeR"
@ M\pin(X) >0
@ X =VVT forsome V € R (note rank(X) < r)
In particular, X = >, zxx, where z € R" for all k € [r] where rank(X) < r
@ every principle submatrix of X has nonnegative determinant

@ S = setofn x n positive semidefinite matrices

@ XeS" orX >=0,or X is “PSD"
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Positive semidefiniteness

Important properties of S’} :
@ ltis a conel!
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Positive semidefiniteness

Important properties of S’} :
@ ltis a conel!
@ Infactitis a proper, i.e., closed, convex, pointed, full-dimensional, cone
e ltis self-dual,ie., {SeS": (S,X)>0,VX €St} =87
In particular, X, 5 €S} — (5,X) >0
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PSD practice

What is the dimension of S7} ?
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PSD practice

What is the dimension of S7} ?

@ Ambient dimension is n?

@ But, symmetry takes away <g> degrees of freedom

@ So, its dimension is (n; 1)
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PSD practice

When is a diagonal matrix in S’ ?

Dy 0 0
Do | 0 Dn... 0
0 0 ...Du

@ D is a diagonal matrix where diag(D) = (D11, Daa, ..., Dpn) "
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PSD practice

When is a diagonal matrix in S’ ?

Dy 0 0
D.— 0 Do 0
0 0 ...Dy,

@ D is a diagonal matrix where diag(D) = (D11, Daa, ..., Dpn) "
@ lts eigenvalues are D11, Dag, ..., Dy
@ So, D € §Y iff diag(D) > 0
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PSD practice

Is the following matrix in S3.?

1 -10
-1 10
0 00

Kiling-Karzan (CMU) SDP Relaxations of QCQPs 10/ 41



PSD practice

Is the following matrix in S3.?

1 -10
-1 10
0 00

@ Yes, we can check its principal minors. . .
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PSD practice

Is the following matrix in S3.?

1 -10
-1 10
0 00

@ Yes, we can check its principal minors. . .

1
@ Also, note that it is equal to vo " where v = | —1
0

Kiling-Karzan (CMU) SDP Relaxations of QCQPs 10/41



PSD practice

Is the following matrix in S%.?

9 -3 -6
-3 1 2
-6 2 4
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PSD practice

Is the following matrix in S%.?

9 -3 —6

-3 1 2

-6 2 4
-3
@ Yes, because it is equal to vv" wherev = | 1
2
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PSD characterization

Theorem

X € 8% if and only if there exists
@ an orthogonal matrix U € R™*", and
@ a nonnegative diagonal matrix D € S™

suchthat X =UDU .
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PSD characterization

Theorem

X € 8% if and only if there exists
@ an orthogonal matrix U € R™*", and
@ a nonnegative diagonal matrix D € S™

suchthat X =UDU .

Here, the elements of diag(D) are precisely the eigenvalues of X, and the columns
of U are the corresponding eigenvectors of X.

4
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A semidefinite program

Primal SDP problem:

Ain = biv . )
Opt(P) := in {(C’,X): (A, X) vi € [m] }
XeSn X =0

where
@ the decision variable is X € S™
@ the data are the matrices C, A4, ..., A,, € S™, and the vector b € R™
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SDP practice

Specify the data for this problem:

X1+ Xog=1
inf X9 : X11 X12)
Xes? =0
© <X12 Xoa) —
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SDP practice

Specify the data for this problem:

X1+ X =1
inf X9 : X11 X12)
Xes? =0

<X12 Xoa) —

en=2andm=1

oC:§<?é> andA1:<(1)(1)>

Oblzl
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SDP practice

What is the optimum value of this problem?

X1+ Xoa=1
Opt™ := inf ¢ Xi9: (X4 Xlz)
Xes? =0
N <X12 Xoo ) —
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SDP practice

What is the optimum value of this problem?

X1+ Xoa=1
Opt™:= inf ¢ X1o: (X1 X9
Xes? =0
© <X12 X)) —
X+ Xpp=1
Opt* = inf Xi2: X1120, Xo202>0

X11,X22,X12
2
X12 S X11X22
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SDP practice

What is the optimum value of this problem?

X1+ Xop=1
Opt™ := inf { Xio: X1 X1o
Xes? =0
© X12 Xoa) —
X Xoo =1
Opt* inf X Xlliog} >0 inf <X X120 Xn <1
= in : = in :
P X11,X22,X12 12 =" 422 = X11,X12 12 X122 < X11(1 - XH)

X2 < X11Xa0
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SDP practice

What is the optimum value of this problem?

X1+ Xop=1
Opt™ := inf { Xio: X1 X1o
Xes? =0
© X12 Xoa) —
X Xoo =1
Opt* inf X Xllio2} >0 inf <X X120 Xn <1
= in : = in :
P X11,X22,X12 12 =" 422 = X11,X12 12 X122 < X11(1 - XH)

X2 < X11Xa0

:inf{— X11(1—Xq11) 0§X11§1}

X11
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SDP practice

What is the optimum value of this problem?

X1+ Xop=1
Opt™ := inf { Xio: X1 X1o
Xes? =0

© X12 Xoa) —

X X9 =1
. . A . X120, X1 <1
Opt™ = inf Xi2: X11 20, Xoo >0 = inf X9 : )
X11,X22,X12 9 X11,X12 Xis < X11(1 - XH)

Xip < X1 X9

:inf{— X11(1—Xq11) 0§X11§1}

X11

. 1 L 11 -1
Opt =-3 and X _2<_1 1)
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What can be expressed as an SDP?

LP is a special case of SDP:

inf {(c,x) : (a;,x) =b;, Vi€ [m], }

TER™ x>0

< inf {(Diag(c),X> :

(Diag(ai), X) = b;, Vie [m], }
XeS

X =0
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What can be expressed as an SDP?

Second-order cone programs (SOCPs) are a special case of SDPs:

t x’
< = -
lall> <t (l, Hn) =0
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What can be expressed as an SDP?

Second-order cone programs (SOCPs) are a special case of SDPs:

t T
lzllo <t = (xg”)»o

This is based on the following very useful result:

Theorem (Schur Complement Lemma)

PQT
Q R

Consider a symmetric matrix M := ( ) such that R is positive definite. Then,

M=0iffP—Q"R'Q > 0.
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What can be expressed as an SDP?

Many nice functions of eigenvalues (or singular values) of matrices admit SDP
representations. ..
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What can be expressed as an SDP?

Many nice functions of eigenvalues (or singular values) of matrices admit SDP
representations. ..
Theorem

@ Let f: R™ — R be a convex, SDP representable, permutation invariant function,
i.e., f(z) = f(Pz) for every permutation matrix P.

@ Let A\(X) denote the vector of eigenvalues of matrix X € S™.

Then, the epigraph of the function F(X) = f(A(X)) : S” — R admits an SDP
representation.
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What can be expressed as an SDP?

Many nice functions of eigenvalues (or singular values) of matrices admit SDP
representations. ..
Theorem

@ Let f: R™ — R be a convex, SDP representable, permutation invariant function,
i.e., f(z) = f(Pz) for every permutation matrix P.

@ Let A\(X) denote the vector of eigenvalues of matrix X € S™.

Then, the epigraph of the function F(X) = f(A(X)) : S” — R admits an SDP
representation.

® Amax(X), Eie[n} Ai(X),

1/p
o || X|l, = [[AX)Il, = <Zz’e[n} \)\i(X)|p> forpe Qandp > 1,
@ —logdet(X) = = cpy log(Xi(X)) for X -0, ...
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Conic problems and their duals
Consider the conic optimization problem is

(A, X) =b;, Vi€ [m] }

Opt(P) := igl(f {(C,X} D Y ek

where K is a proper cone.
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Consider the conic optimization problem is
(A, X) = b;, Vi€ [m], }

Opt(P) := igl(f {(C,X} D Y ek

where K is a proper cone.

Given a cone K, define the dual cone as

Ki:={¢: ({(,X) >0, VX € K}.
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Conic problems and their duals

Consider the conic optimization problem is

Opt(P) := igl(f {(QX) : ;1167?[? =b;, Vi€ [m], }

where K is a proper cone.
Given a cone K, define the dual cone as

Ki:={¢: ({(,X) >0, VX € K}.

Then, the dual conic problem is given by

yERM S S e K,

ietm) Aiyi +8 = C,
Opt(D) := sup {(b,y>: Licim At + }
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Conic duality

Theorem (Weak Duality Theorem)
@ Let (P) and (D) be any pair of primal and dual conic programs, where the
primal (P) is in minimization form.
@ Let X be a primal feasible solution, and (7, S) be a dual feasible solution.
Then,

(C,X) - (b,g) = (S, X) >0.
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Conic duality

Theorem (Weak Duality Theorem)
@ Let (P) and (D) be any pair of primal and dual conic programs, where the
primal (P) is in minimization form.
@ Let X be a primal feasible solution, and (7, S) be a dual feasible solution.
Then,

(C,X) - (b,g) = (S, X) >0.

Proof.
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Conic duality

Corollary (Weak Duality Theorem)

Let X be a primal feasible solution to (P) (in minimization form), and (7, S) be a
dual feasible solution to its dual (D). Then,

(C,X) > Opt(P) > Opt(D) > (b,7) -
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Conic duality

Corollary (Weak Duality Theorem)

Let X be a primal feasible solution to (P) (in minimization form), and (7, S) be a
dual feasible solution to its dual (D). Then,

(C,X) > Opt(P) > Opt(D) > (b,7) -

Let X be a primal feasible solution to (P) (in minimization form), and (7, S) be a
dual feasible solution to its dual (D).

If (C,X) = (b, ), then X is primal optimum and (7, S) is dual optimum.
Moreover, in the case of SDPs, (X, S) = 0iff X5 = 0.
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Dual SDP

Recall our primal SDP:

Opt(P) = Xigén{w,X); (i, X) = bi, Vi€ [m], }

X >0
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Dual SDP

Recall our primal SDP:

Opt(P) := _XiIGIS" {(C,X) : ;4:—)(? =b;, Vie[m], }

Then, the dual SDP is given by

Z'e[ ]Aiyi +85=C,
Opt(D) := su b,y) : velm
pi(D) yERm,gES” {< y) S0

= sup {<b,y>: -y Aiwo}.

yer™ ie[m]
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SDP practice example

What is the dual of the following SDP?

X1 +Xop=1
inf Xq9: X11 X12>
Xes? =0
© (X12 X2
@ Dual SDP: Opt(D) = sup {y1 : <Iy1 1/2) - 0}
y1€R /2 =
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SDP practice example

What is the dual of the following SDP?

@ Dual SDP:

@ Opt(D) = -4

Kiling-Karzan (CMU)

Xii+Xp=1
Xes? =0
© (X12 Xoo) —

v = o (113 1) =0y

SDP Relaxations of QCQPs
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SDP practice example

What is the dual of the following SDP?

X1 +Xop=1
inf Xq9: X11 X12>
Xes? =0
© (X12 X2
@ Dual SDP: Opt(D) = sup {y1 : <Iy1 1/2) - 0}
y1€R /2 =y
® Opt(D) = —3
11
® yi=—3 and S*:%(l 1)
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SDP practice example

Let’s verify. ..
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SDP practice example

Let’s verify. ..

ver L1 =1\ (11) (00
XS _4<—1 1><11)_(00>
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Strong duality?

Do we always have strong duality, i.e., Opt(P) = Opt(D)?
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SDP strong duality counter example

Consider
Xoo =0,

Opt(P) = )}ggg X1t Xp1+2Xp3 =1,
X >0
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SDP strong duality counter example

Consider

Xoo =0,
Opt(P) = inf < Xy1: X1 +2X93=1,
Xes3

X >0

and its dual

1+y2
Opt(D) = sup < —y2: y1y2| =0
y1,y2€R Yo

Kiling-Karzan (CMU) SDP Relaxations of QCQPs 26/ 41



SDP strong duality counter example

Consider

Xoo =0,
Opt(P) = inf < Xy1: X1 +2X93=1,
Xes3

X >0

and its dual

1+y2
Opt(D) = sup < —y2: y1y2| =0
y1,y2€R Yo

@ Opt(P) = 1 while Opt(D) = 0.

Kiling-Karzan (CMU) SDP Relaxations of QCQPs
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Strong conic duality

Theorem (Strong conic duality)
Let (P) and (D) be a pair of feasible primal and dual conic programs, where the
primal (P) is in minimization form.
@ If 3 a primal feasible X with X ¢ int(K) (i.e., primal strict feas. holds), then
Opt(P) = Opt(D) and Opt(D) is attained.
e If 3 a dual feasible (7, S) with S € int(K) (i.e., dual strict feas. holds), then
Opt(P) = Opt(D) and Opt(P) is attained.
@ If both primal and dual strict feas. hold, then 3 primal-dual optimal solutions
(X,y,9) s.t.

Opt(P) = (C,X) = (b,y) = Opt(D) (and for SDPs XS = 0).
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What is the interior of the PSD cone?

A matrix X € S™ is positive definite if and only if:
@ a'Xa>0 foralla e R*\ {0}
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@ a'Xa>0 foralla e R*\ {0}
()] )\min(X)>0
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What is the interior of the PSD cone?

A matrix X € S™ is positive definite if and only if:
@ a'Xa>0 foralla e R*\ {0}
® Amin(X) >0
@ X =VVT for some invertible V € R"*" (note rank(X) = n)

In particular, X = Zk a xkx; where each z;, € R" is orthogonal to each z;
(S

forall k,j5 € [n]
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What is the interior of the PSD cone?

A matrix X € S™ is positive definite if and only if:
@ a'Xa>0 foralla e R*\ {0}
@ \pin(X) >0
@ X =VVT for some invertible V € R"*" (note rank(X) = n)

In particular, X = Zk a xkz; where each z;, € R" is orthogonal to each z;
(S

forall k,j5 € [n]
@ every principle submatrix of X has positive determinant
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What is the interior of the PSD cone?

A matrix X € S™ is positive definite if and only if:
@ a'Xa>0 foralla e R*\ {0}
@ A\min(X) >0
@ X =VVT for some invertible V € R"*" (note rank(X) = n)

In particular, X = Zk a W; where each z;, € R" is orthogonal to each z;
(S

forall k,j5 € [n]
@ every principle submatrix of X has positive determinant

@ S, = setofn xn positive definite matrices

@ XcSh, ,orX >0,orXis“PD"
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SDP in practice

@ Be careful about strict feasibility and attainment conditions when applying conic
duality!

@ Papers (especially the ones focusing on algorithms) often assume that both (P)
and (D) have nonempty interior. But, it is best to double check in any given
application!
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How do we solve an SDP?

@ Even if the data is rational, an SDP may have an irrational optimum solution:
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@ Even if the data is rational, an SDP may have an irrational optimum solution:

e.g.,
V= (G 2) ) K5

Kiling-Karzan (CMU) SDP Relaxations of QCQPs 30/ 41



How do we solve an SDP?

@ Even if the data is rational, an SDP may have an irrational optimum solution:

e.g.,
V= (G 2) ) K5

@ By specifying a tolerance ¢ > 0, we seek an e-optimal primal (or dual) solution.
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How do we solve an SDP?

@ Even if the data is rational, an SDP may have an irrational optimum solution:

e.g.,
V= (G 2) ) K5

@ By specifying a tolerance ¢ > 0, we seek an e-optimal primal (or dual) solution.

@ Theoretically, ellipsoid algorithm is applicable (under strict feasibility
assumptions) and guarantees ~ O(m?log(1/e¢)) iterations to return an e-optimal
solution to (D), where each iteration requires O(m? + mn? + n?) floating point
operations.
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assumptions) and guarantees ~ O(m?log(1/e¢)) iterations to return an e-optimal
solution to (D), where each iteration requires O(m? + mn? + n?) floating point
operations.

@ Modern (primal-dual) interior point methods do much better in practice. ..

Kiling-Karzan (CMU) SDP Relaxations of QCQPs 30/ 41



How do we solve an SDP?

@ Even if the data is rational, an SDP may have an irrational optimum solution:

e.g.,
V= (G 2) ) K5

@ By specifying a tolerance ¢ > 0, we seek an e-optimal primal (or dual) solution.

@ Theoretically, ellipsoid algorithm is applicable (under strict feasibility
assumptions) and guarantees ~ O(m?log(1/e¢)) iterations to return an e-optimal
solution to (D), where each iteration requires O(m? + mn? + n?) floating point
operations.

@ Modern (primal-dual) interior point methods do much better in practice. ..

@ For software package, Mosek has a very reliable implementation based on a
specific P-D interior point method.
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How do we solve an SDP?

@ Even if the data is rational, an SDP may have an irrational optimum solution:

e.g.,
V= (G 2) ) K5

@ By specifying a tolerance ¢ > 0, we seek an e-optimal primal (or dual) solution.

@ Theoretically, ellipsoid algorithm is applicable (under strict feasibility
assumptions) and guarantees ~ O(m?log(1/e¢)) iterations to return an e-optimal
solution to (D), where each iteration requires O(m? + mn? + n?) floating point
operations.

@ Modern (primal-dual) interior point methods do much better in practice. ..

@ For software package, Mosek has a very reliable implementation based on a
specific P-D interior point method.

@ More on solving SDPs tomorrow. . .
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An introduction to QCQPs J

Kiling-Karzan (CMU) SDP Relaxations of QCQPs 30/ 41



Quadratically constrained quadratic programs (QCQPs)

® qobj, q1,- - -, qm : R — R quadratic (possibly nonconvex!)

Opt = inf {qobj(2) = qi(z) <0, Vi e [m]}

gi(x) = " Ay + 2b) & + ¢
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Quadratically constrained quadratic programs (QCQPs)

@ qobj, 1, - - -, 4m : R™ — R quadratic (possibly nonconvex!)

Opt = xieanf” {qovj(z) : ¢i(x) <0, Vi € [m]}

gi(z) =z Az +2b] 2 + ¢
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e optimization (MAX-CUT, MAX-CLIQUE,...)
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® qobj, q1,- - -, qm : R — R quadratic (possibly nonconvex!)
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Quadratically constrained quadratic programs (QCQPs)

® qobj, q1,- - -, qm : R — R quadratic (possibly nonconvex!)

Opt = ziean” {qobj(x) D qi(z) <0, Vi € [m]}

gi(x) = " Ay + 2b) & + ¢

@ Highly expressive:
e optimization (MAX-CUT, MAX-CLIQUE,...), control, ML+statistics (clustering,
sparse regression,. . .)
e binary programs x;(1 — ;) =0
e polynomial optimization problems  xix5 = 215

@ NP-hard in general
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Semidefinite program (SDP) relaxation of a QCQP

o qi(z) = ! A + 2b;rx + ¢

Kiling-Karzan (CMU) SDP Relaxations of QCQPs 32/ 41



Semidefinite program (SDP) relaxation of a QCQP

T T x A; b T
) — ) | - i U5
1 gi(z) =z Az +2b, 2+ ¢ (1> <b;'— Ci) (1>
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Semidefinite program (SDP) relaxation of a QCQP

T T x A; b T
) — ) | - i U5
1 gi(z) =z Az +2b, 2+ ¢ (1> <b;'— Ci) (1>

——
= Mz
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Semidefinite program (SDP) relaxation of a QCQP

T TrA b T zx' x
s T T o i 04 _ )
o am=cawsalrea=(7) (o)1) = (% (5 1))

——
= Mz
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Semidefinite program (SDP) relaxation of a QCQP

T TrA b T zx' x
s T T o i 04 _ )
o am=cawsalrea=(7) (o)1) = (% (5 1))

——
= Mz

T T
° Opt = inf {<Mobj, (wxﬂ "f)> : <M <"”wa f)> <0,Vie [m]}
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Semidefinite program (SDP) relaxation of a QCQP

T TrA b T zx' x
s T T o i 04 _ )
o am=cawsalrea=(7) (o)1) = (% (5 1))

——r
= Mz
T T
zx T zx' T
[* ] =i - : f < )
- (o () (o (7 D)
(M;, Z) <0, Vi e [m]
> inf Mos;, Z) : — Opt
- zERn,Xelgn,ZES’"“ Wi, 2) Z= (XV :‘f) =0 SEh
x
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SDP Relaxation

@ QCQPs are highly expressive but NP-hard in general
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SDP Relaxation

@ QCQPs are highly expressive but NP-hard in general
@ Use SDP to get tractable convex relaxation

@ Vast literature on approximation guarantees: MAX-cUT, Nesterov’s /2, Matrix
Cube, ...

@ NP-hard to decide Opt Z Optgpp

@ Interested in sufficient (and perhaps also necessary) conditions for SDP
exactness.
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Forms of exactnhess

@ What does exactness mean?
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Forms of exactnhess

@ What does exactness mean?
e Objective value exactness: Opt = Optgpp

@ Optimizer exactness: arg min Opt = arg min Optgpp

e Convex hull exactness: conv(D) = Dgpp +— convexification of substructures

, QCQP » QCQP SDP

, 1
\ ' 1
N N ,

- spP T~ SDP
Obj. val. ex. X Obj. val. ex. v/
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Forms of exactnhess

@ What does exactness mean?
e Objective value exactness: Opt = Optgpp

@ Optimizer exactness: arg min Opt = arg min Optgpp

e Convex hull exactness: conv(D) = Dgpp +— convexification of substructures

, QCQP » QCQP SDP
Q SDP —’\\_', SDP
Obj. val. ex. X Obj. val. ex. v/ Obj. val. ex. v/
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Forms of exactnhess

@ What does exactness mean?
e Objective value exactness: Opt = Optgpp

@ Optimizer exactness: arg min Opt = arg min Optgpp

e Convex hull exactness: conv(D) = Dgpp <« convexification of substructures

QCQP SDP
SDP
Obj. val. ex. X Obj. val. ex. v/ Obj. val. ex. v/
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Forms of exactness

@ What does exactness mean?
e Objective value exactness: Opt = Optgpp

@ Optimizer exactness: arg min Opt = arg min Optgpp

e Convex hull exactness: conv(D) = Dgpp <« convexification of substructures

QCQP QCQP SDP
Sbp SDP
Obj. val. ex. X Obj. val. ex. v/ Obj. val. ex. v/
Conv. hull ex. X Conv. hull ex. X
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Forms of exactness

@ What does exactness mean?
e Objective value exactness: Opt = Optgpp
@ Optimizer exactness: arg min Opt = arg min Optgpp

e Convex hull exactness: conv(D) = Dgpp <« convexification of substructures

QCQP - QCQP '

SDP
Obj. val. ex. X Obj. val. ex. Obj. val. ex.
Conv. hull ex. X Conv. hull ex. X Conv. hull ex. v’
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Forms of exactnhess

@ What does exactness mean?
e Objective value exactness: Opt = Optgpp
@ Optimizer exactness: arg min Opt = arg min Optgpp
e Convex hull exactness: conv(D) = Dgpp <+— convexification of substructures
e Rank-one generated (ROG) property:
“SDP exactness that is oblivious to the objective function”
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Forms of exactnhess

@ What does exactness mean?
e Objective value exactness: Opt = Optgpp
@ Optimizer exactness: arg min Opt = arg min Optgpp

e Convex hull exactness: conv(D) = Dgpp <+— convexification of substructures

e Rank-one generated (ROG) property:

“SDP exactness that is oblivious to the objective function”
— exactness in the lifted SDP space
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Exactness in the lifted SDP space: ROG property J

References:

Argue, C., K.-K., F., and Wang, A. L. (2022+). Necessary and sufficient conditions for rank-one generated cones.
Math. Oper. Res., Forthcoming, (arXiv:2007.07433)

K.-K., F. and Wang, A. L. (2021). Exactness in SDP relaxations of QCQPs: Theory and applications. Tut. in Oper.
Res. INFORMS
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ROG

@ Given M C S"*!, define S(M) ={Z e St : (M, Z) <0,VM € M}
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ROG

@ Given M C S"*!, define S(M) ={Z e ST : (M,Z) <0,VM € M}

Definition
A closed cone S C S’}jl is rank-one generated (ROG) if
S = conv (S N {zzT Pz € R”+1}> .

Equivalently, if all extreme rays are generated by rank-one matrices.
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ROG

@ Given M C S"*!, define S(M) ={Z e ST : (M,Z) <0,VM € M}

Definition
A closed cone S C St is rank-one generated (ROG) if
S = conv (S N {zzT Pz € R”+1}> .

Equivalently, if all extreme rays are generated by rank-one matrices.

@ Analogy: (Integer programs, integral polyhedra) ~ (QCQPs, ROG)
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Motivation: ROG — exactness

Forany M C 8™, Opt=inf {(1)" M ({): (1)(1)7 €S(M)]

I€R7L
Z e S(M)

T Zesntl <en+1ez+1,Z> =1

> inf {(Mobj7 Z> : } = Optgpp -
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Motivation: ROG — exactness
Forany MC 8™, Opt=inf {(1)" May(%): (1)(1)T eSM)}

Z € S(M)

Zesn+l <en+1ez+1, Z> =1

Z inf {(Mobj7 Z> : } = OptSDp .

@ S(M)is ROG = objective value exactness.

o S(M) is ROG iff for all Myy € S,

inf {<M0bj,zzT> cz2z' € S(M)} = inf {(Mob,,Z) : ZeSWM)}.

zeRn+1 Zesnt

@ If S(M) is ROG, then for all B, Mobj € S"*! s.t. Optgpp > —00,

| 2T € S(M) . Z e S(M)
zél?anrl {<Mobj7zz > : <B s > 1} = Zelélg;rl {<MobjaZ> 8 <B,Z> _ 1}.

Related: Hildebrand [2016, Lemma 1.2]
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Motivation: ROG — exactness
Forany MC 8™, Opt=inf {(1)" May(%): (1)(1)T eSM)}

Z € S(M)

T Zesntl <en+1ez+1,Z> =1

> inf {(Mobj7 Z): } = Optgpp -

@ S(M)is ROG = objective value exactness.
@ S(M)is ROG — closed convex hull exactness via projected SDP set.

Given M = [m], let X = {x eR™: (2)(2)" € S(M)}. and A(y") 1= e 75 Aie
o If S(M) is ROG and 3v* € R s.t. A(y™) = 0, then conv(X) = projected SDP domain, i.e.,

ax,Zst. Z = (%) }

X) = R" : @V 1
conv(X) {x € 7 € S(M)

o If S(M) is ROG and 3v* € RT s.t. Aowj + A(7") > 0, then

clconv ({(x,t) e R qobj(z) <t , x € X}) = cl(Dspp).
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Applications

@ Exactness

e objective value and convex hull exactness
e variants of the S-lemma
e minimizing a ratio of quadratic functions
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Applications

@ Exactness
e objective value and convex hull exactness
e variants of the S-lemma
e minimizing a ratio of quadratic functions

@ Applications when | M| is finite
e PSD matrix completion
[Grone et al., 1984], [Agler et al., 1988], [Paulsen et al., 1989]
e Statistics applications + real algebraic geometry view
[Hildebrand, 2016], [Blekherman et al., 2017]
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Applications

@ Exactness
@ objective value and convex hull exactness
e variants of the S-lemma
e minimizing a ratio of quadratic functions
@ Applications when | M| is finite
e PSD matrix completion
[Grone et al., 1984], [Agler et al., 1988], [Paulsen et al., 1989]
e Statistics applications + real algebraic geometry view
[Hildebrand, 2016], [Blekherman et al., 2017]
@ Applications when | M| is not finite
e Trust-region subproblem and its variants
[Sturm and Zhang, 2003], [Burer, 2015] and references therein, [Yang et al., 2018]
e Intersection of two Euclidean balls
[Kelly et al., 2022, Burer, 2023]
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ROG

SM) ={ZeSt: (M, Z)<0,VM € M}

Well-known ROG sets:
@ Positive semidefinite cone S7 itself!
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ROG

SM) ={ZeSt: (M, Z)<0,VM € M}

Well-known ROG sets:
@ Positive semidefinite cone S7 itself!
@ Any single linear matrix inequality (LMI) or equation (LME):
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ROG

SM) ={ZeSt: (M, Z)<0,VM € M}

Well-known ROG sets:
@ Positive semidefinite cone S7 itself!
@ Any single linear matrix inequality (LMI) or equation (LME):

Theorem (S-lemma)

S({M}) for any M € S**!is ROG.
[Fradkov and Yakubovich, 1979, Sturm and Zhang, 2003]
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S-lemma

Corollary (Homogeneous S-lemma)
For any Moyj, M € S™™!, we have

inf {ZTMoij t 2T Mz < 0} = inf (Mo, Z): (M, Z) < O}.

z€ERM+1 ZeSn+1
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S-lemma

Corollary (Homogeneous S-lemma)
For any Moyj, M € S™™!, we have

inf {ZTMoijI 2T Mz < 0} = inf {(Mobj,Z> (M, Z) < O}.

ZERN+1 Zesn+1
Equivalently, suppose 3z s.t. 2T Mz < 0. Then,
[2TMz<0 = 2" Moz < 0] iff [3a€Ry st aM = Moy].
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S-lemma

Corollary (Homogeneous S-lemma)
For any Moyj, M € S™™!, we have

inf {ZTMobsz 2T Mz < 0} = inf {(Mobj,Z> (M, Z) < O}.

ZERN+1 Zesn+1
Equivalently, suppose 3z s.t. 2T Mz < 0. Then,
[2TMz<0 = 2" Moz < 0] iff [3a€Ry st aM = Moy].

Corollary (Inhomogeneous S-lemma)

For any Aopj, A € S™, any boyj, b € R™ and ¢ € R s.t. 3z satisfying Z Az +b"Z+c<0and
Opt > —o0, we have
Opt = glﬂ{n {xTAobjx + bejx cxTAz4+b'z4c< 0}

= 1 . T. : U < = T o
xevatI})f(GSH{<A°b"X>+b°be (A, X)+b'a4+c¢<0, X =zz'}
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When is S(M) ROG?

@ Question: for what M C S*! is S(M) ROG?
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Thank you!
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Questions?
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