# An Introduction to Semidefinite Program Relaxations of Quadratically Constrained Quadratic Programs

# Fatma Kılınç-Karzan

**Carnegie Mellon University** Tepper School of Business

**IPCO Summer School** 

June 19-20, 2023

Convex optimization is accurate and efficient.

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints...

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints...
- Generally hard

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints...
- Generally hard, but not always!

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints...
- Generally hard, but not always!
- Some nonconvex problems can be solved using convex optimization.

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints...
- Generally hard, but not always!
- Some nonconvex problems can be solved using convex optimization.
- Today and Tomorrow:

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints...
- Generally hard, but not always!
- Some nonconvex problems can be solved using convex optimization.
- Today and Tomorrow:
  - Examine quadratically constrained quadratic programs (QCQPs) and their semidefinite program (SDPs) relaxations,

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints...
- Generally hard, but not always!
- Some nonconvex problems can be solved using convex optimization.
- Today and Tomorrow:
  - Examine quadratically constrained quadratic programs (QCQPs) and their semidefinite program (SDPs) relaxations,
  - Understand structures within QCQPs that enable us to solve them via SDPs,

- Convex optimization is accurate and efficient.
- Unfortunately, many practical optimization problems are nonconvex.
- Binary constraints, sparsity constraints, rank constraints...
- Generally hard, but not always!
- Some nonconvex problems can be solved using convex optimization.
- Today and Tomorrow:
  - Examine quadratically constrained quadratic programs (QCQPs) and their semidefinite program (SDPs) relaxations,
  - Understand structures within QCQPs that enable us to solve them via SDPs,
  - Exploit structures governing exactness properties to design efficient first-order methods to solve a class of low rank SDPs.

• An introduction to SDPs

- An introduction to SDPs
- An introduction to QCQPs and their SDP relaxations

- An introduction to SDPs
- An introduction to QCQPs and their SDP relaxations

#### • Rank-one generated (ROG) property of SDPs

- An introduction to SDPs
- An introduction to QCQPs and their SDP relaxations

#### Rank-one generated (ROG) property of SDPs

Definition

- An introduction to SDPs
- An introduction to QCQPs and their SDP relaxations

## • Rank-one generated (ROG) property of SDPs

- Definition
- Implications

- An introduction to SDPs
- An introduction to QCQPs and their SDP relaxations

## • Rank-one generated (ROG) property of SDPs

- Definition
- Implications
- Examples

# An introduction to SDPs

References:

Ben-Tal, A. and Nemirovski, A. (2001). *Lectures on Modern Convex Optimization*, volume 2 of *MPS-SIAM Ser. Optim.* SIAM

- $\mathbb{R}^n = \text{real column vectors of length } n$
- $\mathbb{R}^{m \times n}$  = real matrices of size  $m \times n$
- $\mathbb{S}^n \subseteq \mathbb{R}^{n \times n}$  = space of  $n \times n$  real symmetric matrices

- $\mathbb{R}^n = \text{real column vectors of length } n$
- $\mathbb{R}^{m \times n}$  = real matrices of size  $m \times n$
- $\mathbb{S}^n \subseteq \mathbb{R}^{n \times n}$  = space of  $n \times n$  real symmetric matrices
  - $\implies$  Symmetry of the matrices ensures that the eigenvalues are *all* real.

• In  $\mathbb{R}^n$ , we use the *standard Euclidean inner product* given by

$$\langle x, y \rangle = \sum_{i \in [n]} x_i y_i$$

• In  $\mathbb{R}^n$ , we use the standard Euclidean inner product given by

$$\langle x, y \rangle = \sum_{i \in [n]} x_i y_i$$

and it induces the Euclidean norm:  $||x||_2 := \sqrt{\sum_{i \in [n]} x_i^2}$ .

• In  $\mathbb{R}^n$ , we use the standard Euclidean inner product given by

$$\langle x, y \rangle = \sum_{i \in [n]} x_i y_i$$

and it induces the *Euclidean norm*:  $||x||_2 := \sqrt{\sum_{i \in [n]} x_i^2}$ .

• In  $\mathbb{R}^{m \times n}$ , we use the *trace (Frobenius) inner product* given by

$$\langle X, Y \rangle = \sum_{i \in [m]} \sum_{j \in [n]} X_{ij} Y_{ij} = \operatorname{tr}(X^{\top}Y)$$

• In  $\mathbb{R}^n$ , we use the standard Euclidean inner product given by

$$\langle x, y \rangle = \sum_{i \in [n]} x_i y_i$$

and it induces the Euclidean norm:  $\|x\|_2 := \sqrt{\sum_{i \in [n]} x_i^2}$ .

• In  $\mathbb{R}^{m \times n}$ , we use the *trace (Frobenius) inner product* given by

$$\langle X, Y \rangle = \sum_{i \in [m]} \sum_{j \in [n]} X_{ij} Y_{ij} = \operatorname{tr}(X^{\top}Y)$$

and it induces the *Frobenius norm*:  $||X||_2 := \sqrt{\langle X, X \rangle} = \sqrt{\sum_{i \in [m]} \sum_{j \in [n]} X_{ij}^2}$ .

A matrix  $X \in \mathbb{S}^n$  is positive semidefinite if and only if:

•  $a^{\top}Xa \ge 0$  for all  $a \in \mathbb{R}^n$ 

A matrix  $X \in \mathbb{S}^n$  is positive semidefinite if and only if:

- $a^{\top}Xa \ge 0$  for all  $a \in \mathbb{R}^n$
- $\lambda_{\min}(X) \ge 0$

A matrix  $X \in \mathbb{S}^n$  is positive semidefinite if and only if:

- $a^{\top}Xa \ge 0$  for all  $a \in \mathbb{R}^n$
- $\lambda_{\min}(X) \ge 0$
- $X = VV^{\top}$  for some  $V \in \mathbb{R}^{n \times r}$  (note  $\operatorname{rank}(X) \leq r$ )

A matrix  $X \in \mathbb{S}^n$  is positive semidefinite if and only if:

- $a^{\top}Xa \ge 0$  for all  $a \in \mathbb{R}^n$
- $\lambda_{\min}(X) \ge 0$
- $X = VV^{\top}$  for some  $V \in \mathbb{R}^{n \times r}$  (note  $\operatorname{rank}(X) \leq r$ )

In particular,  $X = \sum_{k \in [r]} x_k x_k^\top$  where  $x_k \in \mathbb{R}^n$  for all  $k \in [r]$  where  $\operatorname{rank}(X) \leq r$ 

A matrix  $X \in \mathbb{S}^n$  is positive semidefinite if and only if:

- $a^{\top}Xa \ge 0$  for all  $a \in \mathbb{R}^n$
- $\lambda_{\min}(X) \ge 0$
- $X = VV^{\top}$  for some  $V \in \mathbb{R}^{n \times r}$  (note  $\operatorname{rank}(X) \leq r$ )

In particular,  $X = \sum_{k \in [r]} x_k x_k^{\top}$  where  $x_k \in \mathbb{R}^n$  for all  $k \in [r]$  where  $\operatorname{rank}(X) \leq r$ 

• every principle submatrix of X has nonnegative determinant

A matrix  $X \in \mathbb{S}^n$  is positive semidefinite if and only if:

- $a^{\top}Xa \ge 0$  for all  $a \in \mathbb{R}^n$
- $\lambda_{\min}(X) \ge 0$
- $X = VV^{\top}$  for some  $V \in \mathbb{R}^{n \times r}$  (note  $\operatorname{rank}(X) \leq r$ )

In particular,  $X = \sum_{k \in [r]} x_k x_k^{\top}$  where  $x_k \in \mathbb{R}^n$  for all  $k \in [r]$  where  $\operatorname{rank}(X) \leq r$ 

• every principle submatrix of X has nonnegative determinant

A matrix  $X \in \mathbb{S}^n$  is positive semidefinite if and only if:

- $a^{\top}Xa \ge 0$  for all  $a \in \mathbb{R}^n$
- $\lambda_{\min}(X) \ge 0$
- $X = VV^{\top}$  for some  $V \in \mathbb{R}^{n \times r}$  (note  $\operatorname{rank}(X) \leq r$ )

In particular,  $X = \sum_{k \in [r]} x_k x_k^{\top}$  where  $x_k \in \mathbb{R}^n$  for all  $k \in [r]$  where  $\operatorname{rank}(X) \leq r$ 

• every principle submatrix of X has nonnegative determinant

#### Notation

• 
$$\mathbb{S}^n_+$$
 = set of  $n \times n$  positive semidefinite matrices

• 
$$X \in \mathbb{S}^n_+$$
, or  $\displaystyle rac{X \succeq 0}{}$ , or  $X$  is "PSD"

Important properties of  $\mathbb{S}^{n}_{+}$ :

• It is a *cone*!

Important properties of  $\mathbb{S}^n_+$ :

- It is a *cone*!
- In fact it is a *proper*, i.e., closed, convex, pointed, full-dimensional, cone

Important properties of  $\mathbb{S}^n_+$ :

- It is a *cone*!
- In fact it is a *proper*, i.e., closed, convex, pointed, full-dimensional, cone
- It is *self-dual*, i.e.,  $\{S \in \mathbb{S}^n : \langle S, X \rangle \ge 0, \forall X \in \mathbb{S}^n_+\} = \mathbb{S}^n_+$

Important properties of  $\mathbb{S}^n_+$ :

- It is a cone!
- In fact it is a *proper*, i.e., closed, convex, pointed, full-dimensional, cone
- It is *self-dual*, i.e.,  $\{S \in \mathbb{S}^n : \langle S, X \rangle \ge 0, \forall X \in \mathbb{S}^n_+\} = \mathbb{S}^n_+$ In particular,  $X, S \in \mathbb{S}^n_+ \implies \langle S, X \rangle \ge 0$
What is the dimension of  $\mathbb{S}^n_+$ ?

What is the dimension of  $\mathbb{S}^n_+$ ?

• Ambient dimension is  $n^2$ 

What is the dimension of  $\mathbb{S}^{n}_{\perp}$ ?

- Ambient dimension is  $n^2$

• But, symmetry takes away  $\binom{n}{2}$  degrees of freedom

What is the dimension of  $\mathbb{S}^n_{\perp}$ ?

- Ambient dimension is  $n^2$
- But, symmetry takes away  $\binom{n}{2}$  degrees of freedom

• So, its dimension is  $\binom{n+1}{2}$ 

When is a diagonal matrix in  $\mathbb{S}^{n}_{+}$ ?

$$D := \begin{pmatrix} D_{11} & 0 & \dots & 0 \\ 0 & D_{22} & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & D_{nn} \end{pmatrix}$$

• *D* is a diagonal matrix where  $diag(D) = (D_{11}, D_{22}, \dots, D_{nn})^{\top}$ 

When is a diagonal matrix in  $\mathbb{S}^{n}_{+}$ ?

$$D := \begin{pmatrix} D_{11} & 0 & \dots & 0\\ 0 & D_{22} & \dots & 0\\ & & \dots & \\ 0 & 0 & \dots & D_{nn} \end{pmatrix}$$

- *D* is a diagonal matrix where  $diag(D) = (D_{11}, D_{22}, \dots, D_{nn})^{\top}$
- Its eigenvalues are  $D_{11}, D_{22}, \ldots, D_{nn}$

When is a diagonal matrix in  $\mathbb{S}^{n}_{+}$ ?

$$D := \begin{pmatrix} D_{11} & 0 & \dots & 0 \\ 0 & D_{22} & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & D_{nn} \end{pmatrix}$$

- *D* is a diagonal matrix where  $diag(D) = (D_{11}, D_{22}, \dots, D_{nn})^{\top}$
- Its eigenvalues are  $D_{11}, D_{22}, \ldots, D_{nn}$
- So,  $D \in \mathbb{S}^n_+$  iff  $\operatorname{diag}(D) \ge 0$

Is the following matrix in  $\mathbb{S}^3_+$ ?

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Is the following matrix in  $\mathbb{S}^3_+$ ?

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• Yes, we can check its principal minors...

Is the following matrix in  $\mathbb{S}^3_+$ ?

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• Yes, we can check its principal minors...

• Also, note that it is equal to 
$$vv^{\top}$$
 where  $v = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ 

Is the following matrix in  $\mathbb{S}^3_+$ ?

$$\begin{pmatrix} 9 & -3 & -6 \\ -3 & 1 & 2 \\ -6 & 2 & 4 \end{pmatrix}$$

Is the following matrix in  $\mathbb{S}^3_+$ ?

$$\begin{pmatrix} 9 & -3 & -6 \\ -3 & 1 & 2 \\ -6 & 2 & 4 \end{pmatrix}$$

• Yes, because it is equal to  $vv^{\top}$  where  $v = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}$ 

#### Theorem

- $X \in \mathbb{S}^n_+$  if and only if there exists
  - an orthogonal matrix  $U \in \mathbb{R}^{n \times n}$ , and
  - a nonnegative diagonal matrix  $D \in \mathbb{S}^n$

such that  $X = UDU^{\top}$ .

#### Theorem

- $X \in \mathbb{S}^n_+$  if and only if there exists
  - an orthogonal matrix  $U \in \mathbb{R}^{n \times n}$ , and
  - a nonnegative diagonal matrix  $D \in \mathbb{S}^n$

```
such that X = UDU^{\top}.
```

Here, the elements of  $\underline{\operatorname{diag}(D)}$  are precisely the eigenvalues of X, and the columns of U are the corresponding eigenvectors of X.

## Primal SDP problem:

$$\operatorname{Opt}(P) := \inf_{X \in \mathbb{S}^n} \left\{ \langle C, X \rangle : \begin{array}{cc} \langle A_i, X \rangle = b_i, & \forall i \in [m], \\ X \succeq 0 \end{array} \right\},$$

where

- the decision variable is  $X \in \mathbb{S}^n$
- the data are the matrices  $C, A_1, \ldots, A_m \in \mathbb{S}^n$ , and the vector  $b \in \mathbb{R}^m$

Specify the data for this problem:

$$\inf_{X \in \mathbb{S}^2} \left\{ \begin{array}{c} X_{11} + X_{22} = 1\\ X_{12} : & \begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq 0 \end{array} \right\}$$

Specify the data for this problem:

$$\inf_{X \in \mathbb{S}^2} \left\{ \begin{array}{c} X_{11} + X_{22} = 1\\ X_{12} : & \begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq 0 \end{array} \right\}$$

• 
$$n = 2$$
 and  $m = 1$   
•  $C = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  and  $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$   
•  $b_1 = 1$ 

$$Opt^* := \inf_{X \in \mathbb{S}^2} \left\{ \begin{array}{c} X_{11} + X_{22} = 1 \\ X_{12} : \begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq 0 \end{array} \right\}$$

$$Opt^* := \inf_{X \in \mathbb{S}^2} \left\{ \begin{aligned} X_{11} + X_{22} &= 1\\ X_{12} : & \begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq 0 \end{aligned} \right\}$$

$$Opt^* = \inf_{X_{11}, X_{22}, X_{12}} \left\{ \begin{array}{c} X_{11} + X_{22} = 1 \\ X_{12} : & X_{11} \ge 0, \ X_{22} \ge 0 \\ & X_{12}^2 \le X_{11} X_{22} \end{array} \right\}$$

$$Opt^* := \inf_{X \in \mathbb{S}^2} \left\{ \begin{aligned} X_{11} + X_{22} &= 1\\ X_{12} : & \begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq 0 \end{aligned} \right\}$$

$$Opt^* = \inf_{X_{11}, X_{22}, X_{12}} \left\{ \begin{array}{cc} X_{11} + X_{22} = 1 \\ X_{12} : & X_{11} \ge 0, \ X_{22} \ge 0 \\ & X_{12}^2 \le X_{11} X_{22} \end{array} \right\} \\ = \inf_{X_{11}, X_{12}} \left\{ \begin{array}{cc} X_{11} \ge 0, \ X_{11} \le 1 \\ X_{12} : & X_{12}^2 \le X_{11} (1 - X_{11}) \end{array} \right\}$$

$$Opt^* := \inf_{X \in \mathbb{S}^2} \left\{ \begin{array}{c} X_{11} + X_{22} = 1 \\ X_{12} : \begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq 0 \end{array} \right\}$$

$$\begin{aligned}
\text{Opt}^* &= \inf_{X_{11}, X_{22}, X_{12}} \left\{ \begin{array}{cc} X_{11} + X_{22} = 1 \\ X_{12} : & X_{11} \ge 0, \ X_{22} \ge 0 \\ & X_{12}^2 \le X_{11} X_{22} \end{array} \right\} \\
&= \inf_{X_{11}} \left\{ -\sqrt{X_{11}(1 - X_{11})} : \quad 0 \le X_{11} \le 1 \end{array} \right\} \\
\end{aligned}$$

$$Opt^* := \inf_{X \in \mathbb{S}^2} \left\{ \begin{array}{c} X_{11} + X_{22} = 1 \\ X_{12} : \begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq 0 \end{array} \right\}$$

$$\begin{array}{l}
\operatorname{Opt}^{*} = \inf_{X_{11}, X_{22}, X_{12}} \left\{ \begin{array}{c}
X_{11} + X_{22} = 1 \\
X_{12} : X_{11} \ge 0, \ X_{22} \ge 0 \\
X_{12}^{2} \le X_{11} X_{22}
\end{array} \right\} = \inf_{X_{11}, X_{12}} \left\{ X_{12} : \begin{array}{c}
X_{11} \ge 0, \ X_{11} \le 1 \\
X_{12}^{2} \le X_{11} (1 - X_{11})
\end{array} \right\} \\
= \inf_{X_{11}} \left\{ -\sqrt{X_{11}(1 - X_{11})} : 0 \le X_{11} \le 1 \right\}$$

$$Opt^* = -\frac{1}{2}$$
 and  $X^* = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ 

LP is a special case of SDP:

$$\inf_{x \in \mathbb{R}^n} \left\{ \langle c, x \rangle : \begin{array}{c} \langle a_i, x \rangle = b_i, \quad \forall i \in [m], \\ x \ge 0 \end{array} \right\} \\ \iff \inf_{X \in \mathbb{S}^n} \left\{ \langle \operatorname{Diag}(c), X \rangle : \begin{array}{c} \langle \operatorname{Diag}(a_i), X \rangle = b_i, \quad \forall i \in [m], \\ X \succeq 0 \end{array} \right\}$$

Second-order cone programs (SOCPs) are a special case of SDPs:

$$\|x\|_2 \le t \quad \Longleftrightarrow \quad \begin{pmatrix} t & x^\top \\ x & tI_n \end{pmatrix} \succeq 0$$

Second-order cone programs (SOCPs) are a special case of SDPs:

$$\|x\|_2 \le t \quad \Longleftrightarrow \quad \begin{pmatrix} t & x^\top \\ x & tI_n \end{pmatrix} \succeq 0$$

Second-order cone programs (SOCPs) are a special case of SDPs:

$$\|x\|_2 \le t \quad \Longleftrightarrow \quad \begin{pmatrix} t & x^\top \\ x & tI_n \end{pmatrix} \succeq 0$$

This is based on the following very useful result:

# Theorem (Schur Complement Lemma) Consider a symmetric matrix $M := \begin{pmatrix} P & Q^T \\ Q & R \end{pmatrix}$ such that R is positive definite. Then, $M \succeq 0$ iff $P - Q^T R^{-1}Q \succeq 0$ .

# What can be expressed as an SDP?

Many nice functions of eigenvalues (or singular values) of matrices admit SDP representations...

# What can be expressed as an SDP?

Many nice functions of eigenvalues (or singular values) of matrices admit SDP representations...

#### Theorem

- Let f: ℝ<sup>n</sup> → ℝ be a convex, SDP representable, permutation invariant function, i.e., f(x) = f(Px) for every permutation matrix P.
- Let  $\lambda(X)$  denote the vector of eigenvalues of matrix  $X \in \mathbb{S}^n$ .

Then, the epigraph of the function  $F(X) = f(\lambda(X)) : \mathbb{S}^n \to \mathbb{R}$  admits an SDP representation.

# What can be expressed as an SDP?

Many nice functions of eigenvalues (or singular values) of matrices admit SDP representations...

#### Theorem

- Let f: ℝ<sup>n</sup> → ℝ be a convex, SDP representable, permutation invariant function, i.e., f(x) = f(Px) for every permutation matrix P.
- Let  $\lambda(X)$  denote the vector of eigenvalues of matrix  $X \in \mathbb{S}^n$ .

Then, the epigraph of the function  $F(X) = f(\lambda(X)) : \mathbb{S}^n \to \mathbb{R}$  admits an SDP representation.

• 
$$\lambda_{\max}(X)$$
,  $\sum_{i \in [n]} \lambda_i(X)$ ,  
•  $\|X\|_p \coloneqq \|\lambda(X)\|_p = \left(\sum_{i \in [n]} |\lambda_i(X)|^p\right)^{1/p}$  for  $p \in \mathbb{Q}$  and  $p \ge 1$ ,  
•  $-\log \det(X) = -\sum_{i \in [n]} \log(\lambda_i(X))$  for  $X \succ 0, \ldots$ 

# Conic problems and their duals

Consider the conic optimization problem is

$$Opt(P) := \inf_{X} \left\{ \langle C, X \rangle : \begin{array}{cc} \langle A_i, X \rangle = b_i, & \forall i \in [m], \\ X \in \mathbb{K} \end{array} \right\}.$$

where  $\mathbb{K}$  is a proper cone.

# Conic problems and their duals

Consider the conic optimization problem is

$$Opt(P) := \inf_{X} \left\{ \langle C, X \rangle : \begin{array}{c} \langle A_i, X \rangle = b_i, \quad \forall i \in [m], \\ X \in \mathbb{K} \end{array} \right\}.$$

where  $\mathbb{K}$  is a proper cone.

Given a cone  $\mathbb{K}$ , define the dual cone as

$$\mathbb{K}_* := \left\{ \xi : \langle \xi, X \rangle \ge 0, \ \forall X \in \mathbb{K} \right\}.$$

# Conic problems and their duals

Consider the conic optimization problem is

$$Opt(P) := \inf_{X} \left\{ \langle C, X \rangle : \begin{array}{c} \langle A_i, X \rangle = b_i, \quad \forall i \in [m], \\ X \in \mathbb{K} \end{array} \right\}.$$

where  $\mathbb{K}$  is a proper cone.

Given a cone  $\mathbb{K}$ , define the dual cone as

$$\mathbb{K}_* := \left\{ \xi: \ \langle \xi, X \rangle \ge 0, \ \forall X \in \mathbb{K} \right\}.$$

Then, the dual conic problem is given by

$$Opt(D) := \sup_{y \in \mathbb{R}^m, S} \left\{ \langle b, y \rangle : \begin{array}{c} \sum_{i \in [m]} A_i y_i + S = C, \\ S \in \mathbb{K}_* \end{array} \right\}$$

.

# **Conic duality**

## Theorem (Weak Duality Theorem)

- Let (*P*) and (*D*) be any pair of primal and dual conic programs, where the primal (*P*) is in minimization form.
- Let  $\bar{X}$  be a primal feasible solution, and  $(\bar{y},\bar{S})$  be a dual feasible solution.

Then,

$$\langle C, \bar{X} \rangle - \langle b, \bar{y} \rangle = \langle \bar{S}, \bar{X} \rangle \ge 0.$$

# **Conic duality**

## Theorem (Weak Duality Theorem)

- Let (*P*) and (*D*) be any pair of primal and dual conic programs, where the primal (*P*) is in minimization form.
- Let  $\bar{X}$  be a primal feasible solution, and  $(\bar{y},\bar{S})$  be a dual feasible solution.

Then,

$$\langle C, \bar{X} \rangle - \langle b, \bar{y} \rangle = \langle \bar{S}, \bar{X} \rangle \ge 0.$$

Proof.

# Corollary (Weak Duality Theorem)

Let  $\bar{X}$  be a primal feasible solution to (P) (in minimization form), and  $(\bar{y}, \bar{S})$  be a dual feasible solution to its dual (D). Then,

 $\langle C, \bar{X} \rangle \ge \operatorname{Opt}(P) \ge \operatorname{Opt}(D) \ge \langle b, \bar{y} \rangle$ .

# Corollary (Weak Duality Theorem)

Let  $\bar{X}$  be a primal feasible solution to (P) (in minimization form), and  $(\bar{y}, \bar{S})$  be a dual feasible solution to its dual (D). Then,

 $\langle C, \bar{X} \rangle \ge \operatorname{Opt}(P) \ge \operatorname{Opt}(D) \ge \langle b, \bar{y} \rangle$ .

### Corollary

Let  $\bar{X}$  be a primal feasible solution to (P) (in minimization form), and  $(\bar{y}, \bar{S})$  be a dual feasible solution to its dual (D). If  $\langle C, \bar{X} \rangle = \langle b, \bar{y} \rangle$ , then  $\bar{X}$  is primal optimum and  $(\bar{y}, \bar{S})$  is dual optimum. Moreover, in the case of SDPs,  $\langle \bar{X}, \bar{S} \rangle = 0$  iff  $\bar{X}\bar{S} = 0$ .
# **Dual SDP**

Recall our primal SDP:

$$Opt(P) := \inf_{X \in \mathbb{S}^n} \left\{ \langle C, X \rangle : \begin{array}{cc} \langle A_i, X \rangle = b_i, & \forall i \in [m], \\ X \succeq 0 \end{array} \right\}.$$

## **Dual SDP**

Recall our primal SDP:

$$Opt(P) := \inf_{X \in \mathbb{S}^n} \left\{ \langle C, X \rangle : \begin{array}{c} \langle A_i, X \rangle = b_i, \quad \forall i \in [m], \\ X \succeq 0 \end{array} \right\}.$$

Then, the dual SDP is given by

$$Opt(D) := \sup_{y \in \mathbb{R}^m, S \in \mathbb{S}^n} \left\{ \langle b, y \rangle : \sum_{\substack{i \in [m] \\ S \succeq 0}} A_i y_i + S = C, \\ S \succeq 0 \end{array} \right\}$$
$$= \sup_{y \in \mathbb{R}^m} \left\{ \langle b, y \rangle : C - \sum_{i \in [m]} A_i y_i \succeq 0 \right\}.$$

What is the dual of the following SDP?

$$\inf_{X \in \mathbb{S}^2} \left\{ \begin{array}{c} X_{11} + X_{22} = 1\\ X_{12} : & \begin{pmatrix} X_{11} & X_{12}\\ X_{12} & X_{22} \end{pmatrix} \succeq 0 \end{array} \right\}$$

• Dual SDP: 
$$\operatorname{Opt}(D) = \sup_{y_1 \in \mathbb{R}} \left\{ y_1 : \begin{pmatrix} -y_1 & 1/2 \\ 1/2 & -y_1 \end{pmatrix} \succeq 0 \right\}$$

What is the dual of the following SDP?

$$\inf_{X \in \mathbb{S}^2} \left\{ \begin{array}{c} X_{11} + X_{22} = 1 \\ X_{12} : \begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq 0 \end{array} \right\}$$

• Dual SDP: 
$$\operatorname{Opt}(D) = \sup_{y_1 \in \mathbb{R}} \left\{ y_1 : \begin{pmatrix} -y_1 & 1/2 \\ 1/2 & -y_1 \end{pmatrix} \succeq 0 \right\}$$

•  $\operatorname{Opt}(D) = -\frac{1}{2}$ 

What is the dual of the following SDP?

$$\inf_{X \in \mathbb{S}^2} \left\{ \begin{array}{c} X_{11} + X_{22} = 1 \\ X_{12} : \begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq 0 \end{array} \right\}$$

• Dual SDP: 
$$\operatorname{Opt}(D) = \sup_{y_1 \in \mathbb{R}} \left\{ y_1 : \begin{pmatrix} -y_1 & 1/2 \\ 1/2 & -y_1 \end{pmatrix} \succeq 0 \right\}$$

•  $Opt(D) = -\frac{1}{2}$ •  $y_1^* = -\frac{1}{2}$  and  $S^* = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ 

Let's verify...

$$X^* = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
 and  $S^* = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ 

Let's verify...

$$X^* = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
 and  $S^* = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ 

$$X^*S^* = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Do we always have strong duality, i.e., Opt(P) = Opt(D)?

# SDP strong duality counter example

Consider

$$Opt(P) = \inf_{X \in \mathbb{S}^3} \left\{ \begin{aligned} X_{22} &= 0, \\ X_{11} : & X_{11} + 2X_{23} = 1, \\ & X \succeq 0 \end{aligned} \right\}$$

# SDP strong duality counter example

Consider

$$Opt(P) = \inf_{X \in \mathbb{S}^3} \left\{ \begin{aligned} & X_{22} = 0, \\ X_{11} : & X_{11} + 2X_{23} = 1, \\ & X \succeq 0 \end{aligned} \right\}$$

and its dual

$$\operatorname{Opt}(D) = \sup_{y_1, y_2 \in \mathbb{R}} \left\{ -y_2 : \begin{pmatrix} 1+y_2 \\ y_1 & y_2 \\ y_2 \end{pmatrix} \succeq 0 \right\}$$

# SDP strong duality counter example

Consider

$$Opt(P) = \inf_{X \in \mathbb{S}^3} \left\{ \begin{aligned} & X_{22} = 0, \\ X_{11} : & X_{11} + 2X_{23} = 1, \\ & X \succeq 0 \end{aligned} \right\}$$

$$\operatorname{Opt}(D) = \sup_{y_1, y_2 \in \mathbb{R}} \left\{ -y_2 : \begin{pmatrix} 1+y_2 \\ y_1 & y_2 \\ y_2 \end{pmatrix} \succeq 0 \right\}$$

• 
$$Opt(P) = 1$$
 while  $Opt(D) = 0$ .

• Positive and finite duality gap ?!?!?!

## Theorem (Strong conic duality)

Let (P) and (D) be a pair of feasible primal and dual conic programs, where the primal (P) is in minimization form.

- If  $\exists$  a primal feasible  $\bar{X}$  with  $\bar{X} \in int(\mathbb{K})$  (i.e., primal strict feas. holds), then Opt(P) = Opt(D) and Opt(D) is attained.
- If  $\exists$  a dual feasible  $(\bar{y}, \bar{S})$  with  $\bar{S} \in int(\mathbb{K})$  (i.e., dual strict feas. holds), then Opt(P) = Opt(D) and Opt(P) is attained.
- If both primal and dual strict feas. hold, then  $\exists$  primal-dual optimal solutions  $(\bar{X}, \bar{y}, \bar{S})$  s.t.

$$\operatorname{Opt}(P) = \langle C, \bar{X} \rangle = \langle b, \bar{y} \rangle = \operatorname{Opt}(D)$$
 (and for SDPs  $\bar{X}\bar{S} = 0$ ).

A matrix  $X \in \mathbb{S}^n$  is positive definite if and only if:

•  $a^{\top}Xa > 0$  for all  $a \in \mathbb{R}^n \setminus \{0\}$ 

A matrix  $X \in \mathbb{S}^n$  is positive definite if and only if:

- $a^{\top}Xa > 0$  for all  $a \in \mathbb{R}^n \setminus \{0\}$
- $\lambda_{\min}(X) > 0$

A matrix  $X \in \mathbb{S}^n$  is positive definite if and only if:

- $a^{\top}Xa > 0$  for all  $a \in \mathbb{R}^n \setminus \{0\}$
- $\lambda_{\min}(X) > 0$
- $X = VV^{\top}$  for some invertible  $V \in \mathbb{R}^{n \times n}$  (note  $\operatorname{rank}(X) = n$ )

A matrix  $X \in \mathbb{S}^n$  is positive definite if and only if:

- $a^{\top}Xa > 0$  for all  $a \in \mathbb{R}^n \setminus \{0\}$
- $\lambda_{\min}(X) > 0$

•  $X = VV^{\top}$  for some invertible  $V \in \mathbb{R}^{n \times n}$  (note  $\operatorname{rank}(X) = n$ ) In particular,  $X = \sum_{k \in [n]} x_k x_k^{\top}$  where each  $x_k \in \mathbb{R}^n$  is orthogonal to each  $x_j$  for all  $k, j \in [n]$ 

A matrix  $X \in \mathbb{S}^n$  is positive definite if and only if:

- $a^{\top}Xa > 0$  for all  $a \in \mathbb{R}^n \setminus \{0\}$
- $\lambda_{\min}(X) > 0$

•  $X = VV^{\top}$  for some invertible  $V \in \mathbb{R}^{n \times n}$  (note  $\operatorname{rank}(X) = n$ ) In particular,  $X = \sum_{k \in [n]} x_k x_k^{\top}$  where each  $x_k \in \mathbb{R}^n$  is orthogonal to each  $x_j$  for all  $k, j \in [n]$ 

• every principle submatrix of X has positive determinant

A matrix  $X \in \mathbb{S}^n$  is positive definite if and only if:

- $a^{\top}Xa > 0$  for all  $a \in \mathbb{R}^n \setminus \{0\}$
- $\lambda_{\min}(X) > 0$

•  $X = VV^{\top}$  for some invertible  $V \in \mathbb{R}^{n \times n}$  (note  $\operatorname{rank}(X) = n$ ) In particular,  $X = \sum_{k \in [n]} x_k x_k^{\top}$  where each  $x_k \in \mathbb{R}^n$  is orthogonal to each  $x_j$  for all  $k, j \in [n]$ 

• every principle submatrix of X has positive determinant

A matrix  $X \in \mathbb{S}^n$  is positive definite if and only if:

- $a^{\top}Xa > 0$  for all  $a \in \mathbb{R}^n \setminus \{0\}$
- $\lambda_{\min}(X) > 0$

•  $X = VV^{\top}$  for some invertible  $V \in \mathbb{R}^{n \times n}$  (note  $\operatorname{rank}(X) = n$ ) In particular,  $X = \sum_{k \in [n]} x_k x_k^{\top}$  where each  $x_k \in \mathbb{R}^n$  is orthogonal to each  $x_j$  for all  $k, j \in [n]$ 

every principle submatrix of X has positive determinant

# Notation

• 
$$\mathbb{S}_{++}^n =$$
 set of  $n \times n$  positive definite matrices

• 
$$X \in \mathbb{S}^n_{++}$$
, or  $rac{X \succ 0}{,}$  or  $X$  is "PD"

#### Remark

- Be careful about strict feasibility and attainment conditions when applying conic duality!
- Papers (especially the ones focusing on algorithms) often assume that both (*P*) and (*D*) have nonempty interior. But, it is best to double check in any given application!

$$-\sqrt{5} = \inf_{X \in \mathbb{S}^2} \left\{ \left\langle \begin{pmatrix} 1 & 2\\ 2 & -1 \end{pmatrix}, X \right\rangle : \begin{array}{c} \operatorname{tr}(X) = 1, \\ X \succeq 0 \end{array} \right\}$$

• Even if the data is rational, an SDP may have an irrational optimum solution: e.g.,

$$-\sqrt{5} = \inf_{X \in \mathbb{S}^2} \left\{ \left\langle \begin{pmatrix} 1 & 2\\ 2 & -1 \end{pmatrix}, X \right\rangle : \begin{array}{c} \operatorname{tr}(X) = 1, \\ X \succeq 0 \end{array} \right\}$$

• By specifying a tolerance  $\epsilon > 0$ , we seek an  $\epsilon$ -optimal primal (or dual) solution.

$$-\sqrt{5} = \inf_{X \in \mathbb{S}^2} \left\{ \left\langle \begin{pmatrix} 1 & 2\\ 2 & -1 \end{pmatrix}, X \right\rangle : \begin{array}{c} \operatorname{tr}(X) = 1, \\ X \succeq 0 \end{array} \right\}$$

- By specifying a tolerance  $\epsilon > 0$ , we seek an  $\epsilon$ -optimal primal (or dual) solution.
- Theoretically, ellipsoid algorithm is applicable (under strict feasibility assumptions) and guarantees  $\approx O(m^2 \log(1/\epsilon))$  iterations to return an  $\epsilon$ -optimal solution to (D), where each iteration requires  $O(m^2 + mn^2 + n^3)$  floating point operations.

$$-\sqrt{5} = \inf_{X \in \mathbb{S}^2} \left\{ \left\langle \begin{pmatrix} 1 & 2\\ 2 & -1 \end{pmatrix}, X \right\rangle : \begin{array}{c} \operatorname{tr}(X) = 1, \\ X \succeq 0 \end{array} \right\}$$

- By specifying a tolerance  $\epsilon > 0$ , we seek an  $\epsilon$ -optimal primal (or dual) solution.
- Theoretically, ellipsoid algorithm is applicable (under strict feasibility assumptions) and guarantees  $\approx O(m^2 \log(1/\epsilon))$  iterations to return an  $\epsilon$ -optimal solution to (D), where each iteration requires  $O(m^2 + mn^2 + n^3)$  floating point operations.
- Modern (primal-dual) interior point methods do much better in practice...

$$-\sqrt{5} = \inf_{X \in \mathbb{S}^2} \left\{ \left\langle \begin{pmatrix} 1 & 2\\ 2 & -1 \end{pmatrix}, X \right\rangle : \begin{array}{c} \operatorname{tr}(X) = 1, \\ X \succeq 0 \end{array} \right\}$$

- By specifying a tolerance  $\epsilon > 0$ , we seek an  $\epsilon$ -optimal primal (or dual) solution.
- Theoretically, ellipsoid algorithm is applicable (under strict feasibility assumptions) and guarantees  $\approx O(m^2 \log(1/\epsilon))$  iterations to return an  $\epsilon$ -optimal solution to (D), where each iteration requires  $O(m^2 + mn^2 + n^3)$  floating point operations.
- Modern (primal-dual) interior point methods do much better in practice...
- For software package, Mosek has a very reliable implementation based on a specific P-D interior point method.

$$-\sqrt{5} = \inf_{X \in \mathbb{S}^2} \left\{ \left\langle \begin{pmatrix} 1 & 2\\ 2 & -1 \end{pmatrix}, X \right\rangle : \begin{array}{c} \operatorname{tr}(X) = 1, \\ X \succeq 0 \end{array} \right\}$$

- By specifying a tolerance  $\epsilon > 0$ , we seek an  $\epsilon$ -optimal primal (or dual) solution.
- Theoretically, ellipsoid algorithm is applicable (under strict feasibility assumptions) and guarantees  $\approx O(m^2 \log(1/\epsilon))$  iterations to return an  $\epsilon$ -optimal solution to (D), where each iteration requires  $O(m^2 + mn^2 + n^3)$  floating point operations.
- Modern (primal-dual) interior point methods do much better in practice...
- For software package, Mosek has a very reliable implementation based on a specific P-D interior point method.
- More on solving SDPs tomorrow...

# An introduction to QCQPs

$$\begin{aligned} \text{Opt} &\coloneqq \inf_{x \in \mathbb{R}^n} \left\{ q_{\mathsf{obj}}(x) : \, q_i(x) \leq 0, \, \forall i \in [m] \right\} \\ q_i(x) &= x^\top A_i x + 2b_i^\top x + c_i \end{aligned}$$

$$\begin{aligned} \text{Opt} &\coloneqq \inf_{x \in \mathbb{R}^n} \left\{ q_{\mathsf{obj}}(x) : \, q_i(x) \leq 0, \, \forall i \in [m] \right\} \\ q_i(x) &= x^\top A_i x + 2b_i^\top x + c_i \end{aligned}$$

$$\begin{aligned} \text{Opt} &\coloneqq \inf_{x \in \mathbb{R}^n} \left\{ q_{\text{obj}}(x) : \, q_i(x) \leq 0, \, \forall i \in [m] \right\} \\ q_i(x) &= x^\top A_i x + 2b_i^\top x + c_i \end{aligned}$$



•  $q_{\text{obj}}, q_1, \dots, q_m : \mathbb{R}^n \to \mathbb{R}$  quadratic (possibly nonconvex!)

$$\begin{aligned} \text{Opt} &\coloneqq \inf_{x \in \mathbb{R}^n} \left\{ q_{\mathsf{obj}}(x) : \, q_i(x) \leq 0, \, \forall i \in [m] \right\} \\ q_i(x) &= x^\top A_i x + 2b_i^\top x + c_i \end{aligned}$$



• Highly expressive:

$$\begin{aligned} \text{Opt} &\coloneqq \inf_{x \in \mathbb{R}^n} \left\{ q_{\mathsf{obj}}(x) : \, q_i(x) \leq 0, \, \forall i \in [m] \right\} \\ &q_i(x) = x^\top A_i x + 2b_i^\top x + c_i \end{aligned}$$



- Highly expressive:
  - optimization (MAX-CUT, MAX-CLIQUE,...)

$$Opt := \inf_{x \in \mathbb{R}^n} \left\{ q_{\mathsf{obj}}(x) : q_i(x) \le 0, \, \forall i \in [m] \right\}$$
$$q_i(x) = x^\top A_i x + 2b_i^\top x + c_i$$



- Highly expressive:
  - optimization (MAX-CUT, MAX-CLIQUE,...), control, ML+statistics (clustering, sparse regression,...)

$$Opt := \inf_{x \in \mathbb{R}^n} \left\{ q_{\mathsf{obj}}(x) : q_i(x) \le 0, \, \forall i \in [m] \right\}$$

$$q_i(x) = x^\top A_i x + 2b_i^\top x + c_i$$



- Highly expressive:
  - optimization (MAX-CUT, MAX-CLIQUE,...), control, ML+statistics (clustering, sparse regression,...)
  - **binary programs**  $x_1(1-x_1) = 0$

$$Opt := \inf_{x \in \mathbb{R}^n} \left\{ q_{\mathsf{obj}}(x) : q_i(x) \le 0, \, \forall i \in [m] \right\}$$

$$q_i(x) = x^\top A_i x + 2b_i^\top x + c_i$$



- Highly expressive:
  - optimization (MAX-CUT, MAX-CLIQUE,...), control, ML+statistics (clustering, sparse regression,...)
  - **binary programs**  $x_1(1-x_1) = 0$
  - polynomial optimization problems  $x_1x_2 = z_{12}$
### Quadratically constrained quadratic programs (QCQPs)

•  $q_{\text{obj}}, q_1, \dots, q_m : \mathbb{R}^n \to \mathbb{R}$  quadratic (possibly nonconvex!)

$$Opt := \inf_{x \in \mathbb{R}^n} \left\{ q_{\mathsf{obj}}(x) : q_i(x) \le 0, \, \forall i \in [m] \right\}$$

$$q_i(x) = x^\top A_i x + 2b_i^\top x + c_i$$



- Highly expressive:
  - optimization (MAX-CUT, MAX-CLIQUE,...), control, ML+statistics (clustering, sparse regression,...)
  - **binary programs**  $x_1(1-x_1) = 0$
  - polynomial optimization problems  $x_1x_2 = z_{12}$
- NP-hard in general

• 
$$q_i(x) \coloneqq x^\top A_i x + 2b_i^\top x + c_i$$

• 
$$q_i(x) \coloneqq x^\top A_i x + 2b_i^\top x + c_i = \begin{pmatrix} x \\ 1 \end{pmatrix}^\top \begin{pmatrix} A_i & b_i \\ b_i^\top & c_i \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix}$$

• 
$$q_i(x) \coloneqq x^\top A_i x + 2b_i^\top x + c_i = \begin{pmatrix} x \\ 1 \end{pmatrix}^\top \underbrace{\begin{pmatrix} A_i & b_i \\ b_i^\top & c_i \end{pmatrix}}_{=: M_i} \begin{pmatrix} x \\ 1 \end{pmatrix}$$

• 
$$q_i(x) \coloneqq x^\top A_i x + 2b_i^\top x + c_i = \begin{pmatrix} x \\ 1 \end{pmatrix}^\top \underbrace{\begin{pmatrix} A_i & b_i \\ b_i^\top & c_i \end{pmatrix}}_{=:M_i} \begin{pmatrix} x \\ 1 \end{pmatrix} = \left\langle M_i, \begin{pmatrix} xx^\top & x \\ x^\top & 1 \end{pmatrix} \right\rangle$$

• 
$$q_i(x) := x^\top A_i x + 2b_i^\top x + c_i = \begin{pmatrix} x \\ 1 \end{pmatrix}^\top \underbrace{\begin{pmatrix} A_i & b_i \\ b_i^\top & c_i \end{pmatrix}}_{=:M_i} \begin{pmatrix} x \\ 1 \end{pmatrix} = \left\langle M_i, \begin{pmatrix} xx^\top & x \\ x^\top & 1 \end{pmatrix} \right\rangle$$

$$\bullet \qquad \qquad \mathbf{Opt} = \inf_{x \in \mathbb{R}^n} \left\{ \left\langle M_{\mathsf{obj}}, \begin{pmatrix} xx^\top & x \\ x^\top & 1 \end{pmatrix} \right\rangle : \ \left\langle M_i, \begin{pmatrix} xx^\top & x \\ x^\top & 1 \end{pmatrix} \right\rangle \le 0, \, \forall i \in [m] \right\}$$

• 
$$q_i(x) \coloneqq x^\top A_i x + 2b_i^\top x + c_i = \begin{pmatrix} x \\ 1 \end{pmatrix}^\top \underbrace{\begin{pmatrix} A_i & b_i \\ b_i^\top & c_i \end{pmatrix}}_{=:M_i} \begin{pmatrix} x \\ 1 \end{pmatrix} = \left\langle M_i, \begin{pmatrix} xx^\top & x \\ x^\top & 1 \end{pmatrix} \right\rangle$$

$$\begin{aligned} \bullet \qquad \mathbf{Opt} &= \inf_{x \in \mathbb{R}^n} \left\{ \left\langle M_{\mathsf{obj}}, \begin{pmatrix} xx^\top & x \\ x^\top & 1 \end{pmatrix} \right\rangle : \ \left\langle M_i, \begin{pmatrix} xx^\top & x \\ x^\top & 1 \end{pmatrix} \right\rangle \leq 0, \ \forall i \in [m] \right\} \\ &\geq \inf_{x \in \mathbb{R}^n, \ X \in \mathbb{S}^n, \ Z \in \mathbb{S}^{n+1}} \left\{ \left\langle M_{\mathsf{obj}}, Z \right\rangle : \ Z = \begin{pmatrix} X \\ x^\top & 1 \end{pmatrix} \succeq 0 \right\} = \mathbf{Opt}_{\mathsf{SDP}} \end{aligned}$$

• QCQPs are highly expressive but NP-hard in general

- QCQPs are highly expressive but NP-hard in general
- Use SDP to get tractable convex relaxation

- QCQPs are highly expressive but NP-hard in general
- Use SDP to get tractable convex relaxation
- Vast literature on approximation guarantees: MAX-CUT, Nesterov's  $\pi/2$ , Matrix Cube, . . .

- QCQPs are highly expressive but NP-hard in general
- Use SDP to get tractable convex relaxation
- Vast literature on approximation guarantees: MAX-CUT, Nesterov's  $\pi/2$ , Matrix Cube, . . .
- NP-hard to decide  $\operatorname{Opt} \stackrel{?}{=} \operatorname{Opt}_{\text{SDP}}$

[Laurent and Poljak, 1995]

- QCQPs are highly expressive but NP-hard in general
- Use SDP to get tractable convex relaxation
- Vast literature on approximation guarantees: MAX-CUT, Nesterov's  $\pi/2$ , Matrix Cube, . . .

• NP-hard to decide Opt 
$$\stackrel{?}{=}$$
 Opt<sub>SDP</sub>

[Laurent and Poljak, 1995]

 Interested in sufficient (and perhaps also necessary) conditions for SDP exactness.

• What does exactness mean?

- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$

- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$ 
    - Optimizer exactness:  $\operatorname{arg\,min}\operatorname{Opt} = \operatorname{arg\,min}\operatorname{Opt}_{\mathsf{SDP}}$

- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$ 
    - Optimizer exactness:  $\operatorname{arg\,min}\operatorname{Opt} = \operatorname{arg\,min}\operatorname{Opt}_{\mathsf{SDP}}$
  - Convex hull exactness:  $\operatorname{conv}(\mathcal{D}) = \mathcal{D}_{SDP}$

- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$ 
    - Optimizer exactness:  $\arg \min Opt = \arg \min Opt_{SDP}$
  - Convex hull exactness:  $conv(\mathcal{D}) = \mathcal{D}_{SDP} \leftarrow convexification of substructures$

- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$ 
    - Optimizer exactness:  $\arg \min Opt = \arg \min Opt_{SDP}$
  - Convex hull exactness:  $conv(D) = D_{SDP} \leftarrow convexification of substructures$



- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$ 
    - Optimizer exactness:  $\arg \min Opt = \arg \min Opt_{SDP}$
  - Convex hull exactness:  $conv(D) = D_{SDP} \leftarrow convexification of substructures$



- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$ 
    - Optimizer exactness:  $\arg \min Opt = \arg \min Opt_{SDP}$
  - Convex hull exactness:  $conv(D) = D_{SDP} \leftarrow convexification of substructures$



- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$ 
    - Optimizer exactness:  $\arg \min Opt = \arg \min Opt_{SDP}$
  - Convex hull exactness:  $conv(D) = D_{SDP} \leftarrow convexification of substructures$



- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$ 
    - Optimizer exactness:  $\arg \min Opt = \arg \min Opt_{SDP}$
  - Convex hull exactness:  $conv(D) = D_{SDP} \leftarrow convexification of substructures$



- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$ 
    - Optimizer exactness:  $\arg \min Opt = \arg \min Opt_{SDP}$
  - Convex hull exactness:  $conv(D) = D_{SDP} \leftarrow convexification of substructures$



- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$ 
    - Optimizer exactness:  $\arg \min Opt = \arg \min Opt_{SDP}$
  - Convex hull exactness:  $conv(D) = D_{SDP} \leftarrow convexification of substructures$



- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$ 
    - Optimizer exactness:  $\operatorname{arg\,min}\operatorname{Opt} = \operatorname{arg\,min}\operatorname{Opt}_{\mathsf{SDP}}$
  - Convex hull exactness:  $conv(D) = D_{SDP} \leftarrow convexification of substructures$
  - Rank-one generated (ROG) property:

"SDP exactness that is oblivious to the objective function"

- What does exactness mean?
  - Objective value exactness:  $Opt = Opt_{SDP}$ 
    - Optimizer exactness:  $\operatorname{arg\,min}\operatorname{Opt} = \operatorname{arg\,min}\operatorname{Opt}_{\mathsf{SDP}}$
  - Convex hull exactness:  $conv(D) = D_{SDP} \leftarrow convexification of substructures$
  - Rank-one generated (ROG) property:

"SDP exactness that is oblivious to the objective function"

 $\longrightarrow$  exactness in the lifted SDP space

# Exactness in the lifted SDP space: ROG property

References:

Argue, C., K.-K., F., and Wang, A. L. (2022+). Necessary and sufficient conditions for rank-one generated cones. *Math. Oper. Res.*, Forthcoming, (arXiv:2007.07433)

K.-K., F. and Wang, A. L. (2021). Exactness in SDP relaxations of QCQPs: Theory and applications. Tut. in Oper. Res. INFORMS

• Given  $\mathcal{M} \subseteq \mathbb{S}^{n+1}$ , define  $\mathcal{S}(\mathcal{M}) \coloneqq \{Z \in \mathbb{S}^{n+1}_+ : \langle M, Z \rangle \le 0, \forall M \in \mathcal{M}\}$ 

• Given 
$$\mathcal{M} \subseteq \mathbb{S}^{n+1}$$
, define  $\mathcal{S}(\mathcal{M}) \coloneqq \{Z \in \mathbb{S}^{n+1}_+ : \langle M, Z \rangle \leq 0, \forall M \in \mathcal{M}\}$ 

#### Definition

A closed cone  $S \subseteq \mathbb{S}^{n+1}_+$  is rank-one generated (ROG) if

$$\mathcal{S} = \operatorname{conv}\left(\mathcal{S} \cap \left\{zz^{\top} : z \in \mathbb{R}^{n+1}\right\}\right).$$

Equivalently, if all extreme rays are generated by rank-one matrices.

• Given 
$$\mathcal{M} \subseteq \mathbb{S}^{n+1}$$
, define  $\mathcal{S}(\mathcal{M}) \coloneqq \{Z \in \mathbb{S}^{n+1}_+ : \langle M, Z \rangle \leq 0, \forall M \in \mathcal{M}\}$ 

#### Definition

A closed cone  $S \subseteq \mathbb{S}^{n+1}_+$  is rank-one generated (ROG) if

$$\mathcal{S} = \operatorname{conv}\left(\mathcal{S} \cap \left\{zz^{\top} : z \in \mathbb{R}^{n+1}\right\}\right).$$

Equivalently, if all extreme rays are generated by rank-one matrices.

• Analogy: (Integer programs, integral polyhedra)  $\approx$  (QCQPs, ROG)

## Motivation: ROG $\implies$ exactness

$$\begin{aligned} \text{For any } \mathcal{M} \subseteq \mathbb{S}^{n+1}, \quad \text{Opt} &= \inf_{x \in \mathbb{R}^n} \left\{ \begin{pmatrix} x \\ 1 \end{pmatrix}^\top M_{\text{obj}} \begin{pmatrix} x \\ 1 \end{pmatrix} : \quad \begin{pmatrix} x \\ 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix}^\top \in \mathcal{S}(\mathcal{M}) \right\} \\ &\geq \inf_{Z \in \mathbb{S}^{n+1}} \left\{ \langle M_{\text{obj}}, Z \rangle : \begin{array}{c} Z \in \mathcal{S}(\mathcal{M}) \\ \langle e_{n+1}e_{n+1}^\top, Z \rangle = 1 \end{array} \right\} = \text{Opt}_{\text{SDP}} \,. \end{aligned}$$

### Motivation: ROG $\implies$ exactness

$$\begin{split} \text{For any } \mathcal{M} \subseteq \mathbb{S}^{n+1}, \quad \text{Opt} &= \inf_{x \in \mathbb{R}^n} \left\{ \begin{pmatrix} x \\ 1 \end{pmatrix}^\top M_{\text{obj}} \begin{pmatrix} x \\ 1 \end{pmatrix} : \quad \begin{pmatrix} x \\ 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix}^\top \in \mathcal{S}(\mathcal{M}) \\ &\geq \inf_{Z \in \mathbb{S}^{n+1}} \left\{ \langle M_{\text{obj}}, Z \rangle : \begin{array}{c} Z \in \mathcal{S}(\mathcal{M}) \\ \langle e_{n+1} e_{n+1}^\top, Z \rangle = 1 \end{array} \right\} = \text{Opt}_{\text{SDP}} \,. \end{split}$$

•  $\mathcal{S}(\mathcal{M})$  is ROG  $\implies$  objective value exactness.

## Proposition

• 
$$S(\mathcal{M})$$
 is ROG iff for all  $M_{\mathsf{obj}} \in \mathbb{S}^{n+1}$ ,

$$\inf_{z \in \mathbb{R}^{n+1}} \left\{ \left\langle M_{\mathsf{obj}}, zz^{\top} \right\rangle : \, zz^{\top} \in \mathcal{S}(\mathcal{M}) \right\} = \inf_{Z \in \mathbb{S}^{n+1}} \left\{ \left\langle M_{\mathsf{obj}}, Z \right\rangle : \, Z \in \mathcal{S}(\mathcal{M}) \right\}.$$

• If 
$$\mathcal{S}(\mathcal{M})$$
 is ROG, then for all  $B, M_{\mathsf{obj}} \in \mathbb{S}^{n+1}$  s.t.  $\operatorname{Opt}_{\mathsf{SDP}} > -\infty$ ,

$$\inf_{z \in \mathbb{R}^{n+1}} \left\{ \left\langle M_{\mathsf{obj}}, zz^{\top} \right\rangle : \frac{zz^{\top} \in \mathcal{S}(\mathcal{M})}{\left\langle B, zz^{\top} \right\rangle = 1} \right\} = \inf_{Z \in \mathbb{S}^{n+1}} \left\{ \left\langle M_{\mathsf{obj}}, Z \right\rangle : \frac{Z \in \mathcal{S}(\mathcal{M})}{\left\langle B, Z \right\rangle = 1} \right\}.$$

Related: Hildebrand [2016, Lemma 1.2]

### Motivation: ROG $\implies$ exactness

$$\begin{split} \text{For any } \mathcal{M} \subseteq \mathbb{S}^{n+1}, \quad \text{Opt} &= \inf_{x \in \mathbb{R}^n} \left\{ \begin{pmatrix} x \\ 1 \end{pmatrix}^\top M_{\text{obj}} \begin{pmatrix} x \\ 1 \end{pmatrix} : \quad \begin{pmatrix} x \\ 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix}^\top \in \mathcal{S}(\mathcal{M}) \\ &\geq \inf_{Z \in \mathbb{S}^{n+1}} \left\{ \langle M_{\text{obj}}, Z \rangle : \quad \begin{array}{c} Z \in \mathcal{S}(\mathcal{M}) \\ \langle e_{n+1} e_{n+1}^\top, Z \rangle = 1 \end{array} \right\} = \text{Opt}_{\text{SDP}} \,. \end{split}$$

•  $S(\mathcal{M})$  is ROG  $\implies$  objective value exactness.

•  $\mathcal{S}(\mathcal{M})$  is ROG  $\implies$  closed convex hull exactness via projected SDP set.

#### Theorem

Given 
$$\mathcal{M} = [m]$$
, let  $\mathcal{X} := \left\{ x \in \mathbb{R}^n : \begin{pmatrix} x \\ 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} \begin{pmatrix} x \end{pmatrix}^\top \in \mathcal{S}(\mathcal{M}) \right\}$ . and  $A(\gamma^*) := \sum_{i \in [m]} \gamma_i^* A_i$ .

• If  $\mathcal{S}(\mathcal{M})$  is ROG and  $\exists \gamma^* \in \mathbb{R}^m_+$  s.t.  $A(\gamma^*) \succ 0$ , then  $\operatorname{conv}(\mathcal{X}) = \operatorname{projected} \operatorname{SDP}$  domain, i.e.,

$$\operatorname{conv}(\mathcal{X}) = \left\{ x \in \mathbb{R}^n : \begin{array}{l} \exists X, Z \text{ s.t. } Z = \begin{pmatrix} X & x \\ x^\top & 1 \end{pmatrix} \\ Z \in \mathcal{S}(\mathcal{M}) \end{array} \right\}$$

• If  $\mathcal{S}(\mathcal{M})$  is ROG and  $\exists \gamma^* \in \mathbb{R}^m_+$  s.t.  $A_{\mathsf{obj}} + A(\gamma^*) \succ 0$ , then

$$\operatorname{cl\,conv}\left(\left\{(x,t)\in\mathbb{R}^{n+1}:\ q_{\operatorname{obj}}(x)\leq t\ ,\ x\in\mathcal{X}\right\}\right)=\operatorname{cl}(\mathcal{D}_{\operatorname{SDP}}).$$

## **Applications**

#### Exactness

- objective value and convex hull exactness
- variants of the S-lemma
- minimizing a *ratio* of quadratic functions

## **Applications**

#### Exactness

- objective value and convex hull exactness
- variants of the S-lemma
- minimizing a ratio of quadratic functions
- Applications when  $|\mathcal{M}|$  is finite
  - PSD matrix completion

[Grone et al., 1984], [Agler et al., 1988], [Paulsen et al., 1989]

#### Statistics applications + real algebraic geometry view [Hildebrand, 2016], [Blekherman et al., 2017]

### **Applications**

#### Exactness

- objective value and convex hull exactness
- variants of the S-lemma
- minimizing a ratio of quadratic functions
- Applications when  $|\mathcal{M}|$  is finite
  - PSD matrix completion

[Grone et al., 1984], [Agler et al., 1988], [Paulsen et al., 1989]

• Statistics applications + real algebraic geometry view [Hildebrand, 2016], [Blekherman et al., 2017]

### $\bullet$ Applications when $|\mathcal{M}|$ is not finite

- Trust-region subproblem and its variants [Sturm and Zhang, 2003], [Burer, 2015] and references therein, [Yang et al., 2018]
- Intersection of two Euclidean balls

[Kelly et al., 2022, Burer, 2023]
$$\mathcal{S}(\mathcal{M}) \coloneqq \left\{ Z \in \mathbb{S}^{n+1}_+ : \langle M, Z \rangle \le 0, \, \forall M \in \mathcal{M} \right\}$$

Well-known ROG sets:

• Positive semidefinite cone  $\mathbb{S}^{n+1}_+$  itself!

$$\mathcal{S}(\mathcal{M}) \coloneqq \left\{ Z \in \mathbb{S}^{n+1}_+ : \langle M, Z \rangle \le 0, \, \forall M \in \mathcal{M} \right\}$$

Well-known ROG sets:

- Positive semidefinite cone  $\mathbb{S}^{n+1}_+$  itself!
- Any single linear matrix inequality (LMI) or equation (LME):

$$\mathcal{S}(\mathcal{M}) \coloneqq \left\{ Z \in \mathbb{S}^{n+1}_+ : \langle M, Z \rangle \le 0, \, \forall M \in \mathcal{M} \right\}$$

Well-known ROG sets:

- Positive semidefinite cone  $\mathbb{S}^{n+1}_+$  itself!
- Any single linear matrix inequality (LMI) or equation (LME):

#### Theorem (S-lemma)

 $\mathcal{S}(\{M\})$  for any  $M \in \mathbb{S}^{n+1}$  is ROG.

[Fradkov and Yakubovich, 1979, Sturm and Zhang, 2003]

# S-lemma

# Corollary (Homogeneous S-lemma)

For any  $M_{\text{obj}}, M \in \mathbb{S}^{n+1}$ , we have

$$\inf_{z \in \mathbb{R}^{n+1}} \left\{ z^\top M_{\mathsf{obj}} z: \, z^\top M z \leq 0 \right\} \quad = \inf_{Z \in \mathbb{S}^{n+1}} \left\{ \langle M_{\mathsf{obj}}, Z \rangle: \, \langle M, Z \rangle \leq 0 \right\}$$

# S-lemma

## Corollary (Homogeneous S-lemma)

For any  $M_{\text{obj}}, M \in \mathbb{S}^{n+1}$ , we have

$$\inf_{z \in \mathbb{R}^{n+1}} \left\{ z^\top M_{\mathsf{obj}} z : \, z^\top M z \le 0 \right\} \quad = \inf_{Z \in \mathbb{S}^{n+1}} \left\{ \langle M_{\mathsf{obj}}, Z \rangle : \, \langle M, Z \rangle \le 0 \right\}$$

Equivalently, suppose  $\exists \bar{z} \text{ s.t. } \bar{z}^\top M \bar{z} < 0$ . Then,

$$\left[ z^{\top}Mz \le 0 \implies z^{\top}M_{\mathsf{obj}}z \le 0 \right] \quad \text{iff} \quad \left[ \exists \alpha \in \mathbb{R}_+ \text{ s.t. } \alpha M \succeq M_{\mathsf{obj}} \right]$$

# S-lemma

#### Corollary (Homogeneous S-lemma)

For any  $M_{\text{obj}}, M \in \mathbb{S}^{n+1}$ , we have

$$\inf_{z \in \mathbb{R}^{n+1}} \left\{ z^\top M_{\mathsf{obj}} z : \, z^\top M z \le 0 \right\} \quad = \inf_{Z \in \mathbb{S}^{n+1}} \left\{ \langle M_{\mathsf{obj}}, Z \rangle : \, \langle M, Z \rangle \le 0 \right\}$$

Equivalently, suppose  $\exists \bar{z} \text{ s.t. } \bar{z}^{\top} M \bar{z} < 0$ . Then,

$$\begin{bmatrix} z^{\top}Mz \leq 0 \implies z^{\top}M_{\mathsf{obj}}z \leq 0 \end{bmatrix}$$
 iff  $[\exists \alpha \in \mathbb{R}_+ \text{ s.t. } \alpha M \succeq M_{\mathsf{obj}}]$ 

#### Corollary (Inhomogeneous S-lemma)

For any  $A_{obj}, A \in \mathbb{S}^n$ , any  $b_{obj}, b \in \mathbb{R}^n$  and  $c \in \mathbb{R}$  s.t.  $\exists \bar{x}$  satisfying  $\bar{x}^\top A \bar{x} + b^\top \bar{x} + c < 0$  and  $Opt > -\infty$ , we have  $Opt = \inf_{x \in \mathbb{R}^n} \left\{ x^\top A_{obj} x + b_{obj}^\top x : x^\top A x + b^\top x + c \le 0 \right\}$  $= \inf_{x \in \mathbb{R}^n, X \in \mathbb{S}^n} \left\{ \langle A_{obj}, X \rangle + b_{obj}^\top x : \langle A, X \rangle + b^\top x + c \le 0, \ X \succeq x x^\top \right\}.$ 

#### • Question: for what $\mathcal{M} \subseteq \mathbb{S}^{n+1}$ is $\mathcal{S}(\mathcal{M})$ ROG?

# Thank you!

# **Questions?**

#### **References I**

- Agler, J., Helton, W., McCullough, S., and Rodman, L. (1988). Positive semidefinite matrices with a given sparsity pattern. *Linear Algebra Appl.*, 107:101–149.
- Argue, C., K.-K., F., and Wang, A. L. (2022+). Necessary and sufficient conditions for rank-one generated cones. *Math. Oper. Res.*, Forthcoming, (arXiv:2007.07433).
- Ben-Tal, A. and Nemirovski, A. (2001). *Lectures on Modern Convex Optimization*, volume 2 of *MPS-SIAM Ser. Optim.* SIAM.
- Blekherman, G., Sinn, R., and Velasco, M. (2017). Do sums of squares dream of free resolutions? *SIAM J. Appl. Algebra Geom.*, 1:175–199.
- Burer, S. (2015). A gentle, geometric introduction to copositive optimization. *Math. Program.*, 151:89–116.
- Burer, S. (2023). A slightly lifted convex relaxation for nonconvex quadratic programming with ball constraints. *arXiv preprint arXiv:2303.01624*.
- Fradkov, A. L. and Yakubovich, V. A. (1979). The S-procedure and duality relations in nonconvex problems of quadratic programming. *Vestnik Leningrad Univ. Math.*, 6:101–109.
- Grone, R., Johnson, C. R., Sá, E. M., and Wolkowicz, H. (1984). Positive definite completions of partial Hermitian matrices. *Linear Algebra Appl.*, 58:109–124.

- Hildebrand, R. (2016). Spectrahedral cones generated by rank 1 matrices. *J. Global Optim.*, 64:349–397.
- K.-K., F. and Wang, A. L. (2021). Exactness in SDP relaxations of QCQPs: Theory and applications. Tut. in Oper. Res. INFORMS.
- Kelly, S., Ouyang, Y., and Yang, B. (2022). A note on semidefinite representable reformulations for two variants of the trust-region subproblem. *Manuscript, School of Mathematical and Statistical Sciences, Clemson University, Clemson, South Carolina, USA*.
- Laurent, M. and Poljak, S. (1995). On a positive semidefinite relaxation of the cut polytope. *Linear Algebra Appl.*, 223-224:439–461.
- Paulsen, V. I., Power, S. C., and Smith, R. R. (1989). Schur products and matrix completions. *J. Funct. Anal.*, 85(1):151–178.
- Sturm, J. F. and Zhang, S. (2003). On cones of nonnegative quadratic functions. *Math. Oper. Res.*, 28(2):246–267.
- Wang, A. L. and K.-K., F. (2022a). Accelerated first-order methods for a class of semidefinite programs. *arXiv preprint*, 2206.00224.

- Wang, A. L. and K.-K., F. (2022b). The generalized trust region subproblem: solution complexity and convex hull results. *Math. Program.*, 191:445–486.
- Wang, A. L. and K.-K., F. (2022c). On the tightness of SDP relaxations of QCQPs. *Math. Program.*, 193:33–73.
- Wang, A. L., Lu, Y., and K.-K., F. (2023+). Implicit regularity and linear convergence rates for the generalized trust-region subproblem. *SIAM J. Optim.*, Forthcoming, (arXiv:2112.13821).
- Yang, B., Anstreicher, K., and Burer, S. (2018). Quadratic programs with hollows. *Math. Program.*, 170:541–553.