An Introduction to Semidefinite Program Relaxations of Quadratically Constrained Quadratic Programs

Fatma Kılınç-Karzan
Carnegie Mellon University
Tepper School of Business

IPCO Summer School
June 19-20, 2023

Recap: QCQP and its SDP relaxation

$$
\begin{aligned}
& \text { - } \quad q_{i}(x):=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}=\binom{x}{1}^{\top}(\underbrace{\left(\begin{array}{ll}
A_{i} & b_{i} \\
b_{i}^{i} & c_{i}
\end{array}\right.}_{=: M_{i}})\binom{x}{1}=\left\langle M_{i},\left(\begin{array}{cc}
x x^{\top} & x \\
x^{\top} & 1
\end{array}\right)\right\rangle \\
& \text { - } \quad \mathrm{Opt}=\inf _{x \in \mathbb{R}^{n}}\left\{\left\langle M_{\text {obj }},\left(\begin{array}{c}
x x^{\top} \\
x^{\top} \\
1
\end{array}\right)\right\rangle:\left\langle M_{i},\left(\begin{array}{cc}
x x^{\top} & x \\
x^{\top} & 1
\end{array}\right)\right\rangle \leq 0, \forall i \in[m]\right\} \\
& \geq \inf _{x \in \mathbb{R}^{n}, X \in \mathbb{S}^{n}, Z \in \mathrm{~S}^{n+1}}\left\{\left\langle M_{\mathrm{obj},}, Z\right\rangle: \begin{array}{l}
\left\langle M_{i}, Z\right\rangle \leq 0, \forall i \in[m] \\
Z=\left(\begin{array}{cc}
X & x \\
x^{\top} & 1
\end{array}\right) \succeq 0
\end{array}\right\}=\mathrm{Opt} \mathrm{Sopp}
\end{aligned}
$$

Recap: forms of exactness

- What does exactness mean?
- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\text {SDP }}$
- Optimizer exactness: arg min Opt $=$ arg min Opt ${ }_{\text {SDP }}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }} \longleftarrow$ convexification of substructures
- Rank-one generated (ROG) property: "SDP exactness that is oblivious to the objective function" \longrightarrow exactness in the lifted SDP space

Today's outline

- Rank-one generated (ROG) property of SDPs
- Sufficient (necessary) conditions
- Examples
- Exactness in the original space
- Convex hull
- Objective value
- Efficient algorithms for solving SDPs

Exactness in the lifted SDP space: ROG property

References:
Argue, C., K.-K., F., and Wang, A. L. (2022+). Necessary and sufficient conditions for rank-one generated cones. Math. Oper. Res., Forthcoming, (arXiv:2007.07433)
K.-K., F. and Wang, A. L. (2021). Exactness in SDP relaxations of QCQPs: Theory and applications. Tut. in Oper. Res. INFORMS

Recap: ROG

- Given $\mathcal{M} \subseteq \mathbb{S}^{n+1}$, define $\mathcal{S}(\mathcal{M}):=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle \leq 0, \forall M \in \mathcal{M}\right\}$

Definition

A closed cone $\mathcal{S} \subseteq \mathbb{S}_{+}^{n+1}$ is rank-one generated (ROG) if

$$
\mathcal{S}=\operatorname{conv}\left(\mathcal{S} \cap\left\{z z^{\top}: z \in \mathbb{R}^{n+1}\right\}\right)
$$

Equivalently, if all extreme rays are generated by rank-one matrices.

- Analogy: (Integer programs, integral polyhedra) \approx (QCQPs, ROG)
- ROG implies exactness (objective value and convex hull via the projected SDP)

ROG

$$
\mathcal{S}(\mathcal{M}):=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle \leq 0, \forall M \in \mathcal{M}\right\}
$$

Well-known ROG sets:

- Positive semidefinite cone \mathbb{S}_{+}^{n+1} itself!
- Any single linear matrix inequality (LMI) or equation (LME):

Theorem (S-lemma)
$\mathcal{S}(\{M\})$ for any $M \in \mathbb{S}^{n+1}$ is ROG.
[Fradkov and Yakubovich, 1979, Sturm and Zhang, 2003]

When is $\mathcal{S}(\mathcal{M})$ ROG?

- Question: for what $\mathcal{M} \subseteq \mathbb{S}^{n+1}$ is $\mathcal{S}(\mathcal{M}) \mathrm{ROG}$?

When is $\mathcal{S}(\mathcal{M})$ ROG?

- Question: for what $\mathcal{M} \subseteq \mathbb{S}^{n+1}$ is $\mathcal{S}(\mathcal{M}) \mathrm{ROG}$?
- Can we analyze ROG property of $\mathcal{S}(\mathcal{M})$ from ROG property of

$$
\mathcal{T}(\mathcal{M}):=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle=0, \forall M \in \mathcal{M}\right\} ?
$$

When is $\mathcal{S}(\mathcal{M})$ ROG?

- Question: for what $\mathcal{M} \subseteq \mathbb{S}^{n+1}$ is $\mathcal{S}(\mathcal{M}) \mathrm{ROG}$?
- Can we analyze ROG property of $\mathcal{S}(\mathcal{M})$ from ROG property of

$$
\mathcal{T}(\mathcal{M}):=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle=0, \forall M \in \mathcal{M}\right\} ?
$$

- Caveat:

When is $\mathcal{S}(\mathcal{M})$ ROG?

- Question: for what $\mathcal{M} \subseteq \mathbb{S}^{n+1}$ is $\mathcal{S}(\mathcal{M}) \mathrm{ROG}$?
- Can we analyze ROG property of $\mathcal{S}(\mathcal{M})$ from ROG property of

$$
\mathcal{T}(\mathcal{M}):=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle=0, \forall M \in \mathcal{M}\right\} ?
$$

- Caveat:
- When \mathcal{M} is finite, $\mathcal{S}(\mathcal{M})$ can be "lifted" into $\mathcal{T}\left(\mathcal{M}^{\prime}\right)$. But, ROG property is not necessarily preserved in such liftings.

Facial structure

$$
\begin{aligned}
& \mathcal{S}(\mathcal{M})=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle \leq 0, \forall M \in \mathcal{M}\right\} \\
& \mathcal{T}(\mathcal{M})=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle=0, \forall M \in \mathcal{M}\right\}
\end{aligned}
$$

Facial structure

$$
\begin{aligned}
& \mathcal{S}(\mathcal{M})=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle \leq 0, \forall M \in \mathcal{M}\right\} \\
& \mathcal{T}(\mathcal{M})=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle M, Z\rangle=0, \forall M \in \mathcal{M}\right\}
\end{aligned}
$$

Proposition

- $\mathcal{S}(\mathcal{M})$ is ROG \Longleftrightarrow every face of $\mathcal{S}(\mathcal{M})$ is ROG
- $\begin{aligned} & \mathcal{S}(\mathcal{M}) \text { is } \mathrm{ROG} \\ & \Longrightarrow \\ & \Longleftrightarrow \mathcal{T}(\mathcal{M}) \text { is } \mathrm{ROG} \\ & \Longrightarrow\end{aligned}$
- When \mathcal{M} is compact,

$$
\mathcal{S}(\mathcal{M}) \text { is ROG } \Longleftrightarrow \forall \varnothing \neq \mathcal{M}^{\prime} \subseteq \mathcal{M}, \mathcal{S}(\mathcal{M}) \cap \mathcal{T}\left(\mathcal{M}^{\prime}\right) \text { is ROG }
$$

- When \mathcal{M} is finite, $\forall \mathcal{M}^{\prime} \subseteq \mathcal{M}, \mathcal{T}\left(\mathcal{M}^{\prime}\right)$ is ROG $\Longrightarrow \mathcal{S}(\mathcal{M})$ is ROG

Facial structure \rightarrow sufficient conditions

- $|\mathcal{M}|=1$, then both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG (S-lemma)

Facial structure \rightarrow sufficient conditions

- $|\mathcal{M}|=1$, then both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG (S-lemma)
- Not necessarily true if $|\mathcal{M}| \geq 2$

Facial structure \rightarrow sufficient conditions

- $|\mathcal{M}|=1$, then both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG (S-lemma)
- Not necessarily true if $|\mathcal{M}| \geq 2$
- Two LMIs $\left\langle M_{1}, Z\right\rangle \leq 0$ and $\left\langle M_{2}, Z\right\rangle \leq 0$ are "non-interacting" when

$$
\exists\left(\alpha_{1}, \alpha_{2}\right) \neq(0,0), \alpha_{1} M_{1}+\alpha_{2} M_{2} \succeq 0
$$

Facial structure \rightarrow sufficient conditions

- $|\mathcal{M}|=1$, then both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG (S-lemma)
- Not necessarily true if $|\mathcal{M}| \geq 2$
- Two LMIs $\left\langle M_{1}, Z\right\rangle \leq 0$ and $\left\langle M_{2}, Z\right\rangle \leq 0$ are "non-interacting" when

$$
\exists\left(\alpha_{1}, \alpha_{2}\right) \neq(0,0), \alpha_{1} M_{1}+\alpha_{2} M_{2} \succeq 0
$$

Lemma

If every pair $\left(M_{i}, M_{j}\right)$ is "non-interacting" in $\mathcal{M}=\left\{M_{1}, \ldots, M_{k}\right\}$, then $\mathcal{T}(\mathcal{M})$ and $\mathcal{S}(\mathcal{M})$ are ROG.

The ROG property and solutions to quadratic systems

- Let $\mathcal{E}(Z, \mathcal{M}):=\left\{z \in \mathbb{R}^{n+1}:\langle M, Z\rangle \leq z^{\top} M z \leq 0, \forall M \in \mathcal{M}\right\}$

The ROG property and solutions to quadratic systems

- Let $\mathcal{E}(Z, \mathcal{M}):=\left\{z \in \mathbb{R}^{n+1}:\langle M, Z\rangle \leq z^{\top} M z \leq 0, \forall M \in \mathcal{M}\right\}$

Proposition

$$
\mathcal{S}(\mathcal{M}) \text { is ROG } \Longleftrightarrow \quad \begin{gathered}
\text { for all nonzero } Z \in \mathcal{S}(\mathcal{M}), \\
\operatorname{range}(Z) \cap \mathcal{E}(Z, \mathcal{M}) \neq\{0\}
\end{gathered}
$$

The ROG property and solutions to quadratic systems

- Let $\mathcal{E}(Z, \mathcal{M}):=\left\{z \in \mathbb{R}^{n+1}:\langle M, Z\rangle \leq z^{\top} M z \leq 0, \forall M \in \mathcal{M}\right\}$

Proposition

$$
\mathcal{S}(\mathcal{M}) \text { is ROG } \Longleftrightarrow \quad \begin{array}{r}
\text { for all nonzero } Z \in \mathcal{S}(\mathcal{M}), \\
\operatorname{range}(Z) \cap \mathcal{E}(Z, \mathcal{M}) \neq\{0\}
\end{array}
$$

> for all nonzero $Z \in \mathcal{T}(\mathcal{M})$, range $(Z) \cap \mathcal{N}(\mathcal{M}) \neq\{0\}$,
where

$$
\mathcal{N}(\mathcal{M}):=\left\{z \in \mathbb{R}^{n+1}: z^{\top} M z=0, \forall M \in \mathcal{M}\right\}
$$

The ROG property and solutions to quadratic systems

- Let $\mathcal{E}(Z, \mathcal{M}):=\left\{z \in \mathbb{R}^{n+1}:\langle M, Z\rangle \leq z^{\top} M z \leq 0, \forall M \in \mathcal{M}\right\}$

Proposition

$$
\mathcal{S}(\mathcal{M}) \text { is ROG } \Longleftrightarrow \quad \begin{array}{r}
\text { for all nonzero } Z \in \mathcal{S}(\mathcal{M}), \\
\operatorname{range}(Z) \cap \mathcal{E}(Z, \mathcal{M}) \neq\{0\}
\end{array}
$$

- $\mathcal{T}(\mathcal{M})$ is ROG $\Longleftrightarrow \quad \begin{aligned} & \text { for all nonzero } Z \in \mathcal{T}(\mathcal{M}), \\ & \text { range }(Z) \cap \mathcal{N}(\mathcal{M}) \neq\{0\},\end{aligned}$
where $\quad \mathcal{N}(\mathcal{M}):=\left\{z \in \mathbb{R}^{n+1}: z^{\top} M z=0, \forall M \in \mathcal{M}\right\}$
- $\mathcal{N}(\mathcal{M}) \subseteq \mathcal{E}(Z, \mathcal{M})$ for all $Z \in \mathcal{S}(\mathcal{M})$

The ROG property and solutions to quadratic systems

- Let $\quad \mathcal{E}(Z, \mathcal{M}):=\left\{z \in \mathbb{R}^{n+1}:\langle M, Z\rangle \leq z^{\top} M z \leq 0, \forall M \in \mathcal{M}\right\}$

Proposition

$$
\mathcal{S}(\mathcal{M}) \text { is ROG } \Longleftrightarrow \quad \begin{gathered}
\text { for all nonzero } Z \in \mathcal{S}(\mathcal{M}), \\
\text { range }(Z) \cap \mathcal{E}(Z, \mathcal{M}) \neq\{0\}
\end{gathered}
$$

- $\mathcal{T}(\mathcal{M})$ is ROG $\Longleftrightarrow \quad \begin{aligned} & \text { for all nonzero } Z \in \mathcal{T}(\mathcal{M}), \\ & \\ & \text { range }(Z) \cap \mathcal{N}(\mathcal{M}) \neq\{0\},\end{aligned}$
where $\quad \mathcal{N}(\mathcal{M}):=\left\{z \in \mathbb{R}^{n+1}: z^{\top} M z=0, \forall M \in \mathcal{M}\right\}$
- $\mathcal{N}(\mathcal{M}) \subseteq \mathcal{E}(Z, \mathcal{M})$ for all $Z \in \mathcal{S}(\mathcal{M})$
- Suffices to check these for all Z with $\operatorname{rank}(Z) \geq 2$

Sufficient conditions - II

- Both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG when

Sufficient conditions - II

- Both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG when
- For all $Z \in \mathcal{T}(\mathcal{M})$ with rank ≥ 2, range $(Z) \cap \mathcal{N}(\mathcal{M}) \neq\{0\}$

Sufficient conditions - II

- Both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG when
- For all $Z \in \mathcal{T}(\mathcal{M})$ with rank ≥ 2, range $(Z) \cap \mathcal{N}(\mathcal{M}) \neq\{0\}$
- E.g., when $\mathcal{N}(\mathcal{M})$ contains a hyperplane $a^{\perp}:=\left\{\xi \in \mathbb{R}^{n+1}: a^{\top} \xi=0\right\}$

Sufficient conditions - II

- Both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG when
- For all $Z \in \mathcal{T}(\mathcal{M})$ with rank ≥ 2, range $(Z) \cap \mathcal{N}(\mathcal{M}) \neq\{0\}$
- E.g., when $\mathcal{N}(\mathcal{M})$ contains a hyperplane $a^{\perp}:=\left\{\xi \in \mathbb{R}^{n+1}: a^{\top} \xi=0\right\}$
- $\mathcal{N}(\{M\})$ contains a^{\perp} ?

Sufficient conditions - II

- Both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG when
- For all $Z \in \mathcal{T}(\mathcal{M})$ with rank ≥ 2, range $(Z) \cap \mathcal{N}(\mathcal{M}) \neq\{0\}$
- E.g., when $\mathcal{N}(\mathcal{M})$ contains a hyperplane $a^{\perp}:=\left\{\xi \in \mathbb{R}^{n+1}: a^{\top} \xi=0\right\}$
- $\mathcal{N}(\{M\})$ contains $a^{\perp} \Longleftrightarrow M=a b^{\top}+b a^{\top}$ for some $b \in \mathbb{R}^{n+1}$

Sufficient conditions - II

- Both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG when
- For all $Z \in \mathcal{T}(\mathcal{M})$ with rank ≥ 2, range $(Z) \cap \mathcal{N}(\mathcal{M}) \neq\{0\}$
- E.g., when $\mathcal{N}(\mathcal{M})$ contains a hyperplane $a^{\perp}:=\left\{\xi \in \mathbb{R}^{n+1}: a^{\top} \xi=0\right\}$
- $\mathcal{N}(\{M\})$ contains $a^{\perp} \Longleftrightarrow M=a b^{\top}+b a^{\top}$ for some $b \in \mathbb{R}^{n+1}$

Proposition

Let $a \in \mathbb{R}^{n+1}, \mathcal{B} \subseteq \mathbb{R}^{n+1}$ and $\mathcal{M}:=\left\{a b^{\top}+b a^{\top}: b \in \mathcal{B}\right\}$. Then, both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG.

Sufficient conditions - II

- Both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG when
- For all $Z \in \mathcal{T}(\mathcal{M})$ with rank ≥ 2, range $(Z) \cap \mathcal{N}(\mathcal{M}) \neq\{0\}$
- E.g., when $\mathcal{N}(\mathcal{M})$ contains a hyperplane $a^{\perp}:=\left\{\xi \in \mathbb{R}^{n+1}: a^{\top} \xi=0\right\}$
- $\mathcal{N}(\{M\})$ contains $a^{\perp} \Longleftrightarrow M=a b^{\top}+b a^{\top}$ for some $b \in \mathbb{R}^{n+1}$

Proposition

Let $a \in \mathbb{R}^{n+1}, \mathcal{B} \subseteq \mathbb{R}^{n+1}$ and $\mathcal{M}:=\left\{a b^{\top}+b a^{\top}: b \in \mathcal{B}\right\}$. Then, both $\mathcal{S}(\mathcal{M})$ and $\mathcal{T}(\mathcal{M})$ are ROG.

- For any closed convex cone $\mathbb{K} \subseteq \mathbb{R}^{n+1} \Longrightarrow\left\{Z \in \mathbb{S}_{+}^{n+1}: Z a \in \mathbb{K}\right\}$ is ROG.

Summary for two LMIs

$$
\mathcal{S}\left(\left\{M_{1}, M_{2}\right\}\right)=\left\{Z \in \mathbb{S}_{+}^{n+1}:\left\langle M_{1}, Z\right\rangle \leq 0,\left\langle M_{2}, Z\right\rangle \leq 0\right\}
$$

Summary for two LMIs

$$
\mathcal{S}\left(\left\{M_{1}, M_{2}\right\}\right)=\left\{Z \in \mathbb{S}_{+}^{n+1}:\left\langle M_{1}, Z\right\rangle \leq 0,\left\langle M_{2}, Z\right\rangle \leq 0\right\}
$$

Theorem

$\mathcal{S}\left(\left\{M_{1}, M_{2}\right\}\right)$ is ROG if at least one of the following holds
(1) $\exists\left(\alpha_{1}, \alpha_{2}\right) \neq(0,0)$ s.t. $\alpha_{1} M_{1}+\alpha_{2} M_{2} \succeq 0$,
(2) $\exists a, b_{1}, b_{2} \in \mathbb{R}^{n+1}$ s.t. $M_{1}=a b_{1}^{\top}+b_{1} a^{\top}$ and $M_{2}=a b_{2}^{\top}+b_{2} a^{\top}$.

Summary for two LMIs

$$
\mathcal{S}\left(\left\{M_{1}, M_{2}\right\}\right)=\left\{Z \in \mathbb{S}_{+}^{n+1}:\left\langle M_{1}, Z\right\rangle \leq 0,\left\langle M_{2}, Z\right\rangle \leq 0\right\}
$$

Theorem

$\mathcal{S}\left(\left\{M_{1}, M_{2}\right\}\right)$ is ROG if and only if at least one of the following holds
(1) $\exists\left(\alpha_{1}, \alpha_{2}\right) \neq(0,0)$ s.t. $\alpha_{1} M_{1}+\alpha_{2} M_{2} \succeq 0$,
(2) $\exists a, b_{1}, b_{2} \in \mathbb{R}^{n+1}$ s.t. $M_{1}=a b_{1}^{\top}+b_{1} a^{\top}$ and $M_{2}=a b_{2}^{\top}+b_{2} a^{\top}$.

Summary for two LMIs

$$
\mathcal{S}\left(\left\{M_{1}, M_{2}\right\}\right)=\left\{Z \in \mathbb{S}_{+}^{n+1}:\left\langle M_{1}, Z\right\rangle \leq 0,\left\langle M_{2}, Z\right\rangle \leq 0\right\}
$$

Theorem

$\mathcal{S}\left(\left\{M_{1}, M_{2}\right\}\right)$ is ROG if and only if at least one of the following holds
(1) $\exists\left(\alpha_{1}, \alpha_{2}\right) \neq(0,0)$ s.t. $\alpha_{1} M_{1}+\alpha_{2} M_{2} \succeq 0$,
(2) $\exists a, b_{1}, b_{2} \in \mathbb{R}^{n+1}$ s.t. $M_{1}=a b_{1}^{\top}+b_{1} a^{\top}$ and $M_{2}=a b_{2}^{\top}+b_{2} a^{\top}$.

- Complete characterization of ROG property in the case of two LMIs (c.f., S-lemma).

What other sets are ROG?

- ROG property is extensively studied in the context of Trust-region subproblem (TRS) and its variants
[Sturm and Zhang, 2003], [Burer, 2015] and references therein, [Yang et al., 2018]

$$
\text { (TRS): } \inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1\right\}
$$

What other sets are ROG?

- ROG property is extensively studied in the context of Trust-region subproblem (TRS) and its variants
[Sturm and Zhang, 2003], [Burer, 2015] and references therein, [Yang et al., 2018]

$$
\text { (TRS): } \inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1\right\}
$$

What other sets are ROG?

- ROG property is extensively studied in the context of Trust-region subproblem (TRS) and its variants
[Sturm and Zhang, 2003], [Burer, 2015] and references therein, [Yang et al., 2018]

$$
\begin{aligned}
(\mathrm{TRS}): & \inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{\left\langle M_{\mathrm{obj}},\left(\begin{array}{cc}
x x^{\top} & x \\
x^{\top} & 1
\end{array}\right)\right\rangle: \operatorname{tr}\left(x x^{\top}\right)-1 \leq 0\right\}
\end{aligned}
$$

What other sets are ROG?

- ROG property is extensively studied in the context of Trust-region subproblem (TRS) and its variants
[Sturm and Zhang, 2003], [Burer, 2015] and references therein, [Yang et al., 2018]

$$
\text { (TRS): } \begin{aligned}
& \inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{\left\langle M_{\mathrm{obj}},\left(\begin{array}{cc}
x x^{\top} & x \\
x^{\top} & 1
\end{array}\right)\right\rangle: \operatorname{tr}\left(x x^{\top}\right)-1 \leq 0\right\} \\
& =\inf _{z \in \mathbb{R}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1,\left\langle L, z z^{\top}\right\rangle \leq 0\right\}, \text { where } L:=\operatorname{Diag}(1, \ldots, 1,-1)
\end{aligned}
$$

What other sets are ROG?

- ROG property is extensively studied in the context of Trust-region subproblem (TRS) and its variants
[Sturm and Zhang, 2003], [Burer, 2015] and references therein, [Yang et al., 2018]

$$
\begin{aligned}
(\mathrm{TRS}): & \inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{\left\langle M_{\mathrm{obj}},\left(\begin{array}{cc}
x x^{\top} & x \\
x^{\top} & 1
\end{array}\right)\right\rangle: \operatorname{tr}\left(x x^{\top}\right)-1 \leq 0\right\} \\
& =\inf _{z \in \mathbb{R}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1,\left\langle L, z z^{\top}\right\rangle \leq 0\right\}, \text { where } L:=\operatorname{Diag}(1, \ldots, 1,-1) \\
& =\inf _{z \in \mathbb{R}^{n+1}, Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, Z=z z^{\top}\right\}
\end{aligned}
$$

What other sets are ROG?

- ROG property is extensively studied in the context of Trust-region subproblem (TRS) and its variants
[Sturm and Zhang, 2003], [Burer, 2015] and references therein, [Yang et al., 2018]

$$
\begin{aligned}
(\mathrm{TRS}): & \inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{\left\langle M_{\mathrm{obj}},\left(\begin{array}{cc}
x x^{\top} & x \\
x^{\top} & 1
\end{array}\right)\right\rangle: \operatorname{tr}\left(x x^{\top}\right)-1 \leq 0\right\} \\
& =\inf _{z \in \mathbb{R}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1,\left\langle L, z z^{\top}\right\rangle \leq 0\right\}, \text { where } L:=\operatorname{Diag}(1, \ldots, 1,-1) \\
& =\inf _{z \in \mathbb{R}^{n+1}, Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, Z=z z^{\top}\right\} \\
& \geq \inf _{Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, Z \succeq 0\right\}
\end{aligned}
$$

Trust region subproblem

$$
\begin{gathered}
\text { (TRS): } \inf _{z \in \mathbb{R}^{n+1}, Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, Z=z z^{\top}\right\} \\
\quad \geq \inf _{Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, Z \succeq 0\right\},
\end{gathered}
$$

where $L:=\operatorname{Diag}(1, \ldots, 1,-1)$.

Trust region subproblem

$$
\begin{gathered}
\text { (TRS): } \inf _{z \in \mathbb{R}^{n+1}, Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, Z=z z^{\top}\right\} \\
\quad \geq \inf _{Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, Z \succeq 0\right\}
\end{gathered}
$$

where $L:=\operatorname{Diag}(1, \ldots, 1,-1)$.

Theorem ([Sturm and Zhang, 2003])

$$
\operatorname{cl} \text { conv }\left\{z z^{\top}:\left\langle L, z z^{\top}\right\rangle \leq 0\right\}=\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle L, Z\rangle \leq 0\right\}=\mathcal{S}(\{L\}) .
$$

(recall $\mathcal{S}(\{L\})$ is ROG).
Furthermore,

$$
\begin{aligned}
& \text { cl conv }\left\{\left(x, x x^{\top}\right):\|x\|_{2} \leq 1\right\} \\
& =\left\{(x, X): \exists Z=\left(\begin{array}{cc}
X & x \\
x^{\top} & 1
\end{array}\right), Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, Z \succeq 0\right\} .
\end{aligned}
$$

Extended TRS

Extended TRS:

(e-TRS): $\inf _{x \in \mathbb{R}^{n}}\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\mathrm{b}} x:\|x\|_{2} \leq 1, c_{i}^{\top} \underbrace{\binom{x}{1}}_{:=z} \geq 0, \forall i \in[m]\}$

Extended TRS

Extended TRS:

$$
\begin{aligned}
(\mathrm{e}-\mathrm{TRS}): & \inf _{x \in \mathbb{R}^{n}}\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1, c_{i}^{\top} \underbrace{\binom{x}{1}}_{:=z} \geq 0, \forall i \in[m]\} \\
& =\inf _{z \in \mathbb{R}^{n+1}}\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1,\|\overbrace{\left(z_{1}, \ldots, z_{n}\right)}^{=x}\|_{2} \leq 1, c_{i}^{\top} z \geq 0, \forall i \in[m]\}
\end{aligned}
$$

Extended TRS

Extended TRS:

$$
\text { (e-TRS): } \begin{aligned}
& \inf _{x \in \mathbb{R}^{n}}\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1, c_{i}^{\top} \underbrace{\binom{x}{1}}_{:=z} \geq 0, \forall i \in[m]\} \\
& =\inf _{z \in \mathbb{R}^{n+1}}\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1,\|\overbrace{\left(z_{1}, \ldots, z_{n}\right)}^{=x}\|_{2} \leq 1, c_{i}^{\top} z \geq 0, \forall i \in[m]\} \\
& =\inf _{z \in \mathbb{R}^{n+1}, Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, c_{i}^{\top} z \geq 0, \forall i \in[m], Z=z z^{\top}\right\}
\end{aligned}
$$

Extended TRS

Extended TRS:

$$
\begin{aligned}
\text { (e-TRS): } & \inf _{x \in \mathbb{R}^{n}}\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1, c_{i}^{\top} \underbrace{\binom{x}{1}}_{:=z} \geq 0, \forall i \in[m]\} \\
& =\inf _{z \in \mathbb{R}^{n+1}}\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1,\|\overbrace{\left(z_{1}, \ldots, z_{n}\right)}^{=x}\|_{2} \leq 1, c_{i}^{\top} z \geq 0, \forall i \in[m]\} \\
& =\inf _{z \in \mathbb{R}^{n+1}, Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, c_{i}^{\top} z \geq 0, \forall i \in[m], Z=z z^{\top}\right\} \\
& ?=? \inf _{z \in \mathbb{R}^{n+1}, Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, c_{i}^{\top} z \geq 0, \forall i \in[m], Z \succeq z z^{\top}\right\}
\end{aligned}
$$

Extended TRS

Extended TRS:

$$
\begin{aligned}
& \text { (e-TRS): } \begin{aligned}
\inf _{x \in \mathbb{R}^{n}}\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1, c_{i}^{\top} \underbrace{\binom{x}{1}}_{:=z} \geq 0, \forall i \in[m]
\end{aligned} \\
&=\inf _{z \in \mathbb{R}^{n+1}}\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1,\|\overbrace{\left(z_{1}, \ldots, z_{n}\right)}^{=x}\|_{2} \leq 1, c_{i}^{\top} z \geq 0, \forall i \in[m]\} \\
&=\inf _{z \in \mathbb{R}^{n+1}, Z \in \mathbb{S}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, Z\right\rangle: Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, c_{i}^{\top} z \geq 0, \forall i \in[m], Z=z z^{\top}\right\} \\
& ?=? \underset{z \in \mathbb{R}^{n+1}, Z \in \mathbb{R}^{n+1}}{ }\left\{\left\langle M_{\mathrm{ob}}, Z\right\rangle: Z_{n+1, n+1}=1,\langle L, Z\rangle \leq 0, c_{i}^{\top} z \geq 0, \forall i \in[m], Z \succeq z z^{\top}\right\}
\end{aligned}
$$

Not really! We need a stronger relaxation.

How to strengthen the standard SDP relaxation?

$$
(\mathrm{e}-\mathrm{TRS})=\inf _{z \in \mathbb{R}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1,\left\|\left(z_{1}, \ldots, z_{n}\right)\right\|_{2} \leq 1, c_{i}^{\top} z \geq 0, \forall i \in[m]\right\}
$$

How to strengthen the standard SDP relaxation?

$(\mathrm{e}-\mathrm{TRS})=\inf _{z \in \mathbb{R}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1,\left\|\left(z_{1}, \ldots, z_{n}\right)\right\|_{2} \leq 1, c_{i}^{\top} z \geq 0, \forall i \in[m]\right\}$

- Linear RLT: $\left.\begin{array}{l}c_{1}^{\top} z \geq 0 \\ c_{2}^{\top} z \geq 0\end{array}\right\} \quad \Longrightarrow \quad c_{1}^{\top} z z^{\top} c_{2} \geq 0 \quad \Longrightarrow \quad c_{1}^{\top} Z c_{2} \geq 0$

How to strengthen the standard SDP relaxation?

$$
(\mathrm{e}-\mathrm{TRS})=\inf _{z \in \mathbb{R}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1,\left\|\left(z_{1}, \ldots, z_{n}\right)\right\|_{2} \leq 1, c_{i}^{\top} z \geq 0, \forall i \in[m]\right\}
$$

- Linear RLT: $\left.\begin{array}{l}c_{1}^{\top} z \geq 0 \\ c_{2}^{\top} z \geq 0\end{array}\right\} \quad \Longrightarrow \quad c_{1}^{\top} z z^{\top} c_{2} \geq 0 \quad \Longrightarrow \quad c_{1}^{\top} Z c_{2} \geq 0$
- $\mathbb{L}^{n+1}:=\left\{z \in \mathbb{R}^{n+1}: z_{n+1} \geq\left\|\left(z_{1}, \ldots, z_{n}\right)\right\|_{2}\right\}$ denote the SOC in \mathbb{R}^{n+1}. Then,

$$
(\mathrm{e}-\mathrm{TRS})=\inf _{z \in \mathbb{R}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1, z \in \mathbb{L}^{n+1}, c_{i}^{\top} z \geq 0, \forall i \in[m]\right\}
$$

How to strengthen the standard SDP relaxation?

$$
(\mathrm{e}-\mathrm{TRS})=\inf _{z \in \mathbb{R}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1,\left\|\left(z_{1}, \ldots, z_{n}\right)\right\|_{2} \leq 1, c_{i}^{\top} z \geq 0, \forall i \in[m]\right\}
$$

- Linear RLT: $\left.\begin{array}{c}c_{1}^{\top} z \geq 0 \\ c_{2}^{\top} z \geq 0\end{array}\right\} \quad \Longrightarrow c_{1}^{\top} z z^{\top} c_{2} \geq 0 \quad \Longrightarrow \quad c_{1}^{\top} Z c_{2} \geq 0$
- $\mathbb{L}^{n+1}:=\left\{z \in \mathbb{R}^{n+1}: z_{n+1} \geq\left\|\left(z_{1}, \ldots, z_{n}\right)\right\|_{2}\right\}$ denote the SOC in \mathbb{R}^{n+1}. Then,

$$
(\mathrm{e}-\mathrm{TRS})=\inf _{z \in \mathbb{R}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1, z \in \mathbb{L}^{n+1}, c_{i}^{\top} z \geq 0, \forall i \in[m]\right\}
$$

- SOC RLT: $\left.\begin{array}{l}c_{1}^{\top} z \geq 0 \\ z \in \mathbb{L}^{n+1}\end{array}\right\} \quad \Longrightarrow \quad z z^{\top} c_{1} \in \mathbb{L}^{n+1} \quad \Longrightarrow \quad Z c_{1} \in \mathbb{L}^{n+1}$

ROG characterization of (e-TRS)

$$
(\mathrm{e}-\mathrm{TRS})=\inf _{z \in \mathbb{R}^{n+1}}\left\{\left\langle M_{\mathrm{obj}}, z z^{\top}\right\rangle: z_{n+1}=1, z \in \mathbb{L}^{n+1}, c_{i}^{\top} z \geq 0, \forall i \in[m]\right\}
$$

Theorem ([Burer and Anstreicher, 2013, Burer, 2015] and references therein)
Suppose $c_{i}^{\top} z \geq 0$ for $i \in[m]$ are s.t. whenever \bar{z} is feasible to (e-TRS) and $c_{\ell}^{\top} \bar{z}=0$ for some $\ell \in[m]$, then $c_{j}^{\top} \bar{z} \geq 0$ for all $j \in[m]$. Then, the set

$$
\left\{Z \in \mathbb{S}_{+}^{n+1}:\langle L, Z\rangle \leq 0, Z c_{i} \in \mathbb{L}^{n+1}, \forall i \in[m], c_{i}^{\top} Z c_{j} \geq 0, \forall i, j \in[m]\right\}
$$

is ROG and it is equal to conv $\left\{z z^{\top}: z \in \mathbb{L}^{n+1}, c_{i}^{\top} z \geq 0, \forall i \in[m]\right\}$.

Intersection of two Euclidean balls

- ROG characterization of the intersection of two Euclidean balls is studied in [Kelly et al., 2022, Burer, 2023]

$$
(\mathrm{tb}-\mathrm{TRS})=\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1,\|x-c\|_{2} \leq \tilde{r}\right\}
$$

Intersection of two Euclidean balls

- ROG characterization of the intersection of two Euclidean balls is studied in [Kelly et al., 2022, Burer, 2023]

$$
(\mathrm{tb}-\mathrm{TRS})=\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1,\|x-c\|_{2} \leq \tilde{r}\right\}
$$

Intersection of two Euclidean balls

- ROG characterization of the intersection of two Euclidean balls is studied in [Kelly et al., 2022, Burer, 2023]

$$
\begin{aligned}
(\mathrm{tb}-\mathrm{TRS}) & =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1,\|x-c\|_{2} \leq \tilde{r}\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2}^{2} \leq 1,\|x\|_{2}^{2}-2 c^{\top} x+\|c\|_{2}^{2} \leq \tilde{r}\right\}
\end{aligned}
$$

Intersection of two Euclidean balls

- ROG characterization of the intersection of two Euclidean balls is studied in [Kelly et al., 2022, Burer, 2023]

$$
\begin{aligned}
(\mathrm{tb}-\mathrm{TRS}) & =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1,\|x-c\|_{2} \leq \tilde{r}\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2}^{2} \leq 1,\|x\|_{2}^{2}-2 c^{\top} x+\|c\|_{2}^{2} \leq \tilde{r}\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2}^{2} \leq \min \{1,2 c^{\top} x \underbrace{-\|c\|_{2}^{2}+\tilde{r}}_{:=r}\}\}
\end{aligned}
$$

Intersection of two Euclidean balls

- ROG characterization of the intersection of two Euclidean balls is studied in [Kelly et al., 2022, Burer, 2023]

$$
\begin{aligned}
(\mathrm{tb}-\mathrm{TRS}) & =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1,\|x-c\|_{2} \leq \tilde{r}\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2}^{2} \leq 1,\|x\|_{2}^{2}-2 c^{\top} x+\|c\|_{2}^{2} \leq \tilde{r}\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2}^{2} \leq \min \{1,2 c^{\top} x \underbrace{-\|c\|_{2}^{2}+\tilde{r}}_{:=r}\}\} \\
& =\inf _{x \in \mathbb{R}^{n}, t \in \mathbb{R}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2}^{2} \leq t, t=\min \left\{1,2 c^{\top} x+r\right\}\right\}
\end{aligned}
$$

Intersection of two Euclidean balls

- ROG characterization of the intersection of two Euclidean balls is studied in [Kelly et al., 2022, Burer, 2023]

$$
\begin{aligned}
(\mathrm{tb}-\mathrm{TRS}) & =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2} \leq 1,\|x-c\|_{2} \leq \tilde{r}\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2}^{2} \leq 1,\|x\|_{2}^{2}-2 c^{\top} x+\|c\|_{2}^{2} \leq \tilde{r}\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2}^{2} \leq \min \{1,2 c^{\top} x \underbrace{-\|c\|_{2}^{2}+\tilde{r}}_{:=r}\}\} \\
& =\inf _{x \in \mathbb{R}^{n}, t \in \mathbb{R}^{-}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x:\|x\|_{2}^{2} \leq t, t=\min \left\{1,2 c^{\top} x+r\right\}\right\}
\end{aligned}
$$

Theorem ([Burer, 2023], informal)

Consider (tb-TRS) in the (x, t) space. Then, its strengthened $\mathcal{S}(\mathcal{M})$ set which contains 1 LMI from the norm constraint, 2 SOC-RLT constraints, and 1 LME from the linear RLT, is ROG.

What about nonconvex quadratics?

Theorem ([Yang et al., 2018], informal)

Consider the intersection of

- "ball": $\|x\|_{2} \leq 1$
- "cuts": $C x \geq d$
- "holes": $x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \geq 0$, where each $A_{i} \succ 0$, for all $i \in[k]$.

If none of the cuts and holes touch each other, then the strengthened $\mathcal{S}(\mathcal{M})$ set which contains

- 1 LMI from the norm constraint,
- all SOC-RLT and linear RLT constraints from the cuts, and
- all LMIs $\left\langle A_{i}, X\right\rangle+2 b_{i}^{\top} x+c_{i} \geq 0$ from the holes,
is ROG.

Open questions

Here is a deceivingly simple looking open question:

Open questions

Here is a deceivingly simple looking open question:

Open question

Given $A \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^{m}$, what is the set $\mathcal{S}(\mathcal{M})$ that gives the ROG characterization of

$$
\left\{x \in \mathbb{R}^{n}:\|x\|_{2} \leq 1,\|A x-c\|_{2} \leq \tilde{r}\right\} ?
$$

- Kronecker RLT constraints? [Anstreicher, 2017]

Open questions

Here is a deceivingly simple looking open question:

Open question

Given $A \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^{m}$, what is the set $\mathcal{S}(\mathcal{M})$ that gives the ROG characterization of

$$
\left\{x \in \mathbb{R}^{n}:\|x\|_{2} \leq 1,\|A x-c\|_{2} \leq \tilde{r}\right\} ?
$$

- Kronecker RLT constraints? [Anstreicher, 2017]
- What about cuts? holes?

Open questions

Here is a deceivingly simple looking open question:

Open question

Given $A \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^{m}$, what is the set $\mathcal{S}(\mathcal{M})$ that gives the ROG characterization of

$$
\left\{x \in \mathbb{R}^{n}:\|x\|_{2} \leq 1,\|A x-c\|_{2} \leq \tilde{r}\right\} ?
$$

- Kronecker RLT constraints? [Anstreicher, 2017]
- What about cuts? holes?
- Fejes-Tóth conjecture (1964) (one of Kurt Anstreicher's favorite open problems that can significantly simplify the proof of Kepler conjecture)

Simple ROG preserving operations

Lemma

Suppose

- $\mathcal{M}=\bigcup_{\alpha \in \mathcal{F}} \mathcal{M}_{\alpha}$ for some family of matrices $\left\{\mathcal{M}_{\alpha}\right\}_{\alpha \in \mathcal{F}}$, and
- $\mathcal{S}\left(\mathcal{M}_{\alpha}\right)$ is ROG for every $\alpha \in \mathcal{F}$.

Then, $\mathcal{S}(\mathcal{M})$ is ROG iff $\operatorname{extr}(\mathcal{S}(\mathcal{M})) \subseteq \bigcap_{\alpha \in \mathcal{F}} \operatorname{extr}\left(\mathcal{S}\left(\mathcal{M}_{\alpha}\right)\right)$.

Simple ROG preserving operations

Lemma

Suppose

- $\mathcal{M}=\bigcup_{\alpha \in \mathcal{F}} \mathcal{M}_{\alpha}$ for some family of matrices $\left\{\mathcal{M}_{\alpha}\right\}_{\alpha \in \mathcal{F}}$, and
- $\mathcal{S}\left(\mathcal{M}_{\alpha}\right)$ is ROG for every $\alpha \in \mathcal{F}$.

Then, $\mathcal{S}(\mathcal{M})$ is ROG iff $\operatorname{extr}(\mathcal{S}(\mathcal{M})) \subseteq \bigcap_{\alpha \in \mathcal{F}} \operatorname{extr}\left(\mathcal{S}\left(\mathcal{M}_{\alpha}\right)\right)$.

Lemma

Suppose

- $\mathcal{M}=\bigcup_{i=1}^{k} \mathcal{M}_{i}$, i.e., a finite union of compact sets, and
- the following "non-interacting" assumption holds:

$$
\text { for all } 0 \neq Z \in \mathbb{S}_{+}^{n+1} \text { and } i \in[k] \text {, if }\left\langle M_{i}, Z\right\rangle=0 \text { for some } M_{i} \in \mathcal{M}_{i} \text {, then }\langle M, Z\rangle<0
$$

$$
\text { for all } M \in \mathcal{M} \backslash \mathcal{M}_{i} .
$$

Then, $\mathcal{S}(\mathcal{M})$ is ROG iff $\mathcal{S}\left(\mathcal{M}_{i}\right)$ is ROG for all $i \in[k]$.

Summary of the ROG property

- ROG property implies (closed) convex hull exactness for any* objective function

Summary of the ROG property

- ROG property implies (closed) convex hull exactness for any* objective function
- Other applications (e.g., minimizing ratios of quadratic functions, PSD matrix completion, ...)

Summary of the ROG property

- ROG property implies (closed) convex hull exactness for any* objective function
- Other applications (e.g., minimizing ratios of quadratic functions, PSD matrix completion, ...)
- Sufficient conditions based on "non-interacting" or "solutions to quadratic systems"

Summary of the ROG property

- ROG property implies (closed) convex hull exactness for any* objective function
- Other applications (e.g., minimizing ratios of quadratic functions, PSD matrix completion, ...)
- Sufficient conditions based on "non-interacting" or "solutions to quadratic systems"
- Complete characterization of when $\mathcal{S}\left(\left\{M_{1}, M_{2}\right\}\right)$ is ROG

Summary of the ROG property

- ROG property implies (closed) convex hull exactness for any* objective function
- Other applications (e.g., minimizing ratios of quadratic functions, PSD matrix completion, ...)
- Sufficient conditions based on "non-interacting" or "solutions to quadratic systems"
- Complete characterization of when $\mathcal{S}\left(\left\{M_{1}, M_{2}\right\}\right)$ is ROG
- Toolkit for ROG property

Summary of the ROG property

- ROG property implies (closed) convex hull exactness for any* objective function
- Other applications (e.g., minimizing ratios of quadratic functions, PSD matrix completion, ...)
- Sufficient conditions based on "non-interacting" or "solutions to quadratic systems"
- Complete characterization of when $\mathcal{S}\left(\left\{M_{1}, M_{2}\right\}\right)$ is ROG
- Toolkit for ROG property
- Many ROG sets arising from variants of TRS...

Summary of the ROG property

- ROG property implies (closed) convex hull exactness for any* objective function
- Other applications (e.g., minimizing ratios of quadratic functions, PSD matrix completion, ...)
- Sufficient conditions based on "non-interacting" or "solutions to quadratic systems"
- Complete characterization of when $\mathcal{S}\left(\left\{M_{1}, M_{2}\right\}\right)$ is ROG
- Toolkit for ROG property
- Many ROG sets arising from variants of TRS. . .
- Many more open questions about ROG characterizations of sets defined by quadratics...

Exactness in the original space

References:
Wang, A. L. and K.--K., F. (2022c). On the tightness of SDP relaxations of QCQPs. Math. Program., 193:33-73
Wang, A. L. and K.-K., F. (2020). A geometric view of SDP exactness in QCQPs and its applications. arXiv preprint, 2011.07155

The QCQP epigraph

- QCQP epigraph

$$
\mathcal{D}:=\left\{(x, t) \in \mathbb{R}^{n+1}: \begin{array}{l}
q_{\mathrm{obj}}(x) \leq t \\
q_{i}(x) \leq 0, \forall i \in[m]
\end{array}\right\}
$$

The QCQP epigraph

- QCQP epigraph

$$
\mathcal{D}:=\left\{(x, t) \in \mathbb{R}^{n+1}: \begin{array}{l}
q_{\text {obj }}(x) \leq t \\
\\
q_{i}(x) \leq 0, \forall i \in[m]
\end{array}\right\}
$$

The QCQP epigraph

- QCQP epigraph

$$
\mathcal{D}:=\left\{(x, t) \in \mathbb{R}^{n+1}: \begin{array}{l}
q_{\mathrm{obj}}(x) \leq t \\
q_{i}(x) \leq 0, \forall i \in[m]
\end{array}\right\}
$$

- How can we derive convex relaxations of \mathcal{D} ?

The QCQP epigraph

- QCQP epigraph

$$
\mathcal{D}:=\left\{(x, t) \in \mathbb{R}^{n+1}: \begin{array}{l}
q_{\mathrm{obj}}(x) \leq t \\
\\
q_{i}(x) \leq 0, \forall i \in[m]
\end{array}\right\}
$$

- How can we derive relaxations of \mathcal{D} ? Lagrangian aggregation!

The QCQP epigraph

- QCQP epigraph

$$
\mathcal{D}:=\left\{(x, t) \in \mathbb{R}^{n+1}: \begin{array}{l}
q_{\mathrm{obj}}(x) \leq t \\
q_{i}(x) \leq 0, \forall i \in[m]
\end{array}\right\}
$$

- How can we derive relaxations of \mathcal{D} ? Lagrangian aggregation!
- For any $\gamma \in \mathbb{R}_{+}^{m}$, the aggregated inequality $q_{\text {obj }}(x)+\sum_{i=1}^{m} \gamma_{i} q_{i}(x) \leq t$
is valid for all $(x, t) \in \mathcal{D}$.

The QCQP epigraph

- QCQP epigraph

$$
\mathcal{D}:=\left\{(x, t) \in \mathbb{R}^{n+1}: \begin{array}{l}
q_{\mathrm{obj}}(x) \leq t \\
q_{i}(x) \leq 0, \forall i \in[m]
\end{array}\right\}
$$

- How can we derive relaxations of \mathcal{D} ? Lagrangian aggregation!
- For any $\gamma \in \mathbb{R}_{+}^{m}$, the aggregated inequality
is valid for all $(x, t) \in \mathcal{D}$.
$\underbrace{q_{\text {obj }}(x)+\sum_{i=1}^{m} \gamma_{i} q_{i}(x)}_{=: q(\gamma, x)} \leq t$

The QCQP epigraph

- QCQP epigraph

$$
\mathcal{D}:=\left\{(x, t) \in \mathbb{R}^{n+1}: \begin{array}{l}
q_{\mathrm{obj}}(x) \leq t \\
q_{i}(x) \leq 0, \forall i \in[m]
\end{array}\right\}
$$

- How can we derive relaxations of \mathcal{D} ? Lagrangian aggregation!
- For any $\gamma \in \mathbb{R}_{+}^{m}$, the aggregated inequality
is valid for all $(x, t) \in \mathcal{D}$.
$\underbrace{q_{\text {obj }}(x)+\sum_{i=1}^{m} \gamma_{i} q_{i}(x)}_{=: q(\gamma, x)} \leq t$

The QCQP epigraph

- QCQP epigraph

$$
\mathcal{D}:=\left\{(x, t) \in \mathbb{R}^{n+1}: \begin{array}{l}
q_{\mathrm{obj}}(x) \leq t \\
q_{i}(x) \leq 0, \forall i \in[m]
\end{array}\right\}
$$

- How can we derive relaxations of \mathcal{D} ? Lagrangian aggregation!
- For any $\gamma \in \mathbb{R}_{+}^{m}$, the aggregated inequality
is valid for all $(x, t) \in \mathcal{D}$.
$\underbrace{q_{\text {obj }}(x)+\sum_{i=1}^{m} \gamma_{i} q_{i}(x)}_{=: q(\gamma, x)} \leq t$

SDP relaxation is Lagrangian aggregation

SDP relaxation is Lagrangian aggregation

Assumption

Dual strict feasibility holds, i.e., $\exists \gamma^{*} \in \mathbb{R}_{+}^{m}$ s.t. $A_{\text {obj }}+\sum_{i \in[m]} \gamma_{i}^{*} A_{i} \succ 0$.

Related: Fujie and Kojima [1997]

SDP relaxation is Lagrangian aggregation

Assumption

Dual strict feasibility holds, i.e., $\exists \gamma^{*} \in \mathbb{R}_{+}^{m}$ s.t. $A_{\text {obj }}+\sum_{i \in[m]} \gamma_{i}^{*} A_{i} \succ 0$.

$$
\begin{aligned}
\text { Opt }=\inf _{x \in \mathbb{R}^{n}} & \left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x+c_{\mathrm{obj}}: x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i \in[m]\right\} \\
& \geq \inf _{x \in \mathbb{R}^{n}, X \in \mathbb{S}^{n}}\left\{\left\langle A_{\mathrm{obj}}, X\right\rangle+2 b_{\mathrm{obj}}^{\top} x+c_{\mathrm{obj}}: \begin{array}{l}
X-x x^{\top} \succeq 0 \\
\left\langle A_{i}, X\right\rangle+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i \in[m]
\end{array}\right\}
\end{aligned}
$$

SDP relaxation is Lagrangian aggregation

Assumption

Dual strict feasibility holds, i.e., $\exists \gamma^{*} \in \mathbb{R}_{+}^{m}$ s.t. $A_{\text {obj }}+\sum_{i \in[m]} \gamma_{i}^{*} A_{i} \succ 0$.

$$
\begin{aligned}
\text { Opt }=\inf _{x \in \mathbb{R}^{n}} & \left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x+c_{\mathrm{obj}}: x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i \in[m]\right\} \\
& \geq \inf _{x \in \mathbb{R}^{n}, X \in \mathbb{S}^{n}}\left\{\left\langle A_{\mathrm{obj}}, X\right\rangle+2 b_{\mathrm{obj}}^{\top} x+c_{\mathrm{obj}}: \begin{array}{l}
X-x x^{\top} \succeq 0 \\
\left\langle A_{i}, X\right\rangle+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i \in[m]
\end{array}\right\} \\
& =\inf _{x \in \mathbb{R}^{n}} \inf _{X \in \mathbb{S}^{n}} \ldots
\end{aligned}
$$

SDP relaxation is Lagrangian aggregation

Assumption

Dual strict feasibility holds, i.e., $\exists \gamma^{*} \in \mathbb{R}_{+}^{m}$ s.t. $A_{\text {obj }}+\sum_{i \in[m]} \gamma_{i}^{*} A_{i} \succ 0$.

$$
\begin{aligned}
\text { Opt }=\inf _{x \in \mathbb{R}^{n}} & \left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x+c_{\mathrm{obj}}: x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i \in[m]\right\} \\
& \geq \inf _{x \in \mathbb{R}^{n}, X \in \mathbb{S}^{n}}\left\{\left\langle A_{\mathrm{obj}}, X\right\rangle+2 b_{\mathrm{obj}}^{\top} x+c_{\mathrm{obj}}: \begin{array}{l}
X-x x^{\top} \succeq 0 \\
\left\langle A_{i}, X\right\rangle+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i \in[m]
\end{array}\right\} \\
& =\inf _{x \in \mathbb{R}^{n}} \inf _{X \in \mathbb{S}^{n}} \ldots \\
& =\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)=\mathrm{Opt}_{\mathrm{SDP}}
\end{aligned}
$$

SDP relaxation is Lagrangian aggregation

Assumption

Dual strict feasibility holds, i.e., $\exists \gamma^{*} \in \mathbb{R}_{+}^{m}$ s.t. $A_{\text {obj }}+\sum_{i \in[m]} \gamma_{i}^{*} A_{i} \succ 0$.

$$
\begin{aligned}
& \begin{aligned}
\text { Opt }=\inf _{x \in \mathbb{R}^{n}} & \left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x+c_{\mathrm{obj}}: x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i \in[m]\right\} \\
& \geq \inf _{x \in \mathbb{R}^{n}, X \in \mathbb{S}^{n}}\left\{\left\langle A_{\mathrm{obj}}, X\right\rangle+2 b_{\mathrm{obj}}^{\top} x+c_{\mathrm{obj}}: \begin{array}{|l|l|}
& \left\langle A_{i}, X\right\rangle+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i \in[m]
\end{array}\right\} \\
& =\inf _{x \in \mathbb{R}^{n}} \inf _{X \in \mathbb{S}^{n}} \cdots \\
& =\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)=\mathrm{Opt}_{\mathrm{SDP}}
\end{aligned} \\
& \text { where } \quad \Gamma_{1}:=\left\{\gamma \in \mathbb{R}_{+}^{m}: A_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\}
\end{aligned}
$$

Related: Fujie and Kojima [1997]

SDP relaxation is Lagrangian aggregation

Assumption

Dual strict feasibility holds, i.e., $\exists \gamma^{*} \in \mathbb{R}_{+}^{m}$ s.t. $A_{\text {obj }}+\sum_{i \in[m]} \gamma_{i}^{*} A_{i} \succ 0$.

$$
\begin{aligned}
& \begin{aligned}
\text { Opt }=\inf _{x \in \mathbb{R}^{n}} & \left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A_{\mathrm{obj}} x+2 b_{\mathrm{obj}}^{\top} x+c_{\mathrm{obj}}: x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i \in[m]\right\} \\
& \geq \inf _{x \in \mathbb{R}^{n}, X \in \mathbb{S}^{n}}\left\{\left\langle A_{\mathrm{obj}}, X\right\rangle+2 b_{\mathrm{obj}}^{\top} x+c_{\mathrm{obj}}: \begin{array}{c}
X-x x^{\top} \succeq 0 \\
\left\langle A_{i}, X\right\rangle+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i \in[m]
\end{array}\right\} \\
& =\inf _{x \in \mathbb{R}^{n}} \inf _{X \in \mathbb{S}^{n}} \ldots \\
& =\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)=\text { Opt }_{\mathrm{SDP}}
\end{aligned} \\
& \text { where } \quad \Gamma_{1}:=\left\{\gamma \in \mathbb{R}_{+}^{m}: A_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\}=\left\{\gamma \in \mathbb{R}_{+}^{m}: q(\gamma, x) \text { is convex in } x\right\}
\end{aligned}
$$

[^0]
Revisiting the SDP relaxation

- $\operatorname{Opt}_{\mathrm{SDP}}=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)$ where $\Gamma_{1}=\left\{\gamma \in \mathbb{R}_{+}^{m}: A_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\}$

Revisiting the SDP relaxation

- \quad Opt $_{\text {SDP }}=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)$ where $\Gamma_{1}=\left\{\gamma \in \mathbb{R}_{+}^{m}: A_{\text {obj }}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\}$

$$
\text { Define } \Gamma:=\left\{\left(\gamma_{\mathrm{obj}}, \gamma\right) \in \mathbb{R}_{+}^{1+m}: \gamma_{\mathrm{obj}} A_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\} \text {, i.e., } \Gamma=\operatorname{cl} \operatorname{cone}\left\{(1, \gamma): \gamma \in \Gamma_{1}\right\}
$$

Revisiting the SDP relaxation

- \quad Opt $_{\text {SDP }}=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)$ where $\Gamma_{1}=\left\{\gamma \in \mathbb{R}_{+}^{m}: A_{\text {obj }}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\}$

Define $\Gamma:=\left\{\left(\gamma_{\text {obj }}, \gamma\right) \in \mathbb{R}_{+}^{1+m}: \gamma_{\text {obj }} A_{\text {obj }}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\}$, i.e., $\Gamma=\operatorname{cl} \operatorname{cone}\left\{(1, \gamma): \gamma \in \Gamma_{1}\right\}$
Then, $\mathcal{D}_{\mathrm{SDP}}:=\bigcap_{\left(\gamma_{\mathrm{obj}}, \gamma\right) \in \Gamma}\left\{(x, t): \gamma_{\mathrm{obj}}\left(q_{\mathrm{obj}}(x)-t\right)+\sum_{i=1}^{m} \gamma_{i} q_{i}(x) \leq 0\right\}$

Revisiting the SDP relaxation

- \quad Opt $_{\text {SDP }}=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)$ where $\Gamma_{1}=\left\{\gamma \in \mathbb{R}_{+}^{m}: A_{\text {obj }}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\}$

Define $\Gamma:=\left\{\left(\gamma_{\mathrm{obj}}, \gamma\right) \in \mathbb{R}_{+}^{1+m}: \gamma_{\mathrm{obj}} A_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\}$, i.e., $\Gamma=\operatorname{cl} \operatorname{cone}\left\{(1, \gamma): \gamma \in \Gamma_{1}\right\}$
Then, $\mathcal{D}_{\text {SDP }}:=\bigcap_{\left(\gamma_{\text {obj }}, \gamma\right) \in \Gamma}\left\{(x, t): \gamma_{\text {obj }}\left(q_{\text {obj }}(x)-t\right)+\sum_{i=1}^{m} \gamma_{i} q_{i}(x) \leq 0\right\}$

- Projected SDP relaxation = impose all convex aggregated inequalities!

Revisiting the SDP relaxation

- \quad Opt $_{\text {SDP }}=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)$ where $\Gamma_{1}=\left\{\gamma \in \mathbb{R}_{+}^{m}: A_{\text {obj }}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\}$

Define $\Gamma:=\left\{\left(\gamma_{\mathrm{obj}}, \gamma\right) \in \mathbb{R}_{+}^{1+m}: \gamma_{\mathrm{obj}} A_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\}$, i.e., $\Gamma=\operatorname{cl} \operatorname{cone}\left\{(1, \gamma): \gamma \in \Gamma_{1}\right\}$
Then, $\mathcal{D}_{\mathrm{SDP}}:=\bigcap_{\left(\gamma_{\mathrm{ob}}, \gamma\right) \in \Gamma}\left\{(x, t): \gamma_{\mathrm{obj}}\left(q_{\mathrm{obj}}(x)-t\right)+\sum_{i=1}^{m} \gamma_{i} q_{i}(x) \leq 0\right\}$

- Projected SDP relaxation = impose all convex aggregated inequalities!

Rewriting SDP in terms of Γ

Lemma

$$
\mathcal{D}_{\mathrm{SDP}}=\left\{(x, t):\left\langle\binom{\gamma_{\mathrm{obj}}}{\gamma},\binom{q_{\mathrm{obj}}(x)-t}{q(x)}\right\rangle \leq 0, \quad \forall\binom{\gamma_{\mathrm{obj}}}{\gamma} \in \Gamma\right\}
$$

Rewriting SDP in terms of Γ

Lemma

$$
\mathcal{D}_{\mathrm{SDP}}=\left\{(x, t):\left\langle\binom{\gamma_{\mathrm{obj}}}{\gamma},\binom{q_{\mathrm{obj}}(x)-t}{q(x)}\right\rangle \leq 0, \quad \forall\binom{\gamma_{\mathrm{obj}}}{\gamma} \in \Gamma\right\}
$$

Rewriting SDP in terms of Γ

Lemma

$$
\mathcal{D}_{\mathrm{SDP}}=\left\{(x, t):\left\langle\binom{\gamma_{\mathrm{obj}}}{\gamma},\binom{q_{\mathrm{obj}}(x)-t}{q(x)}\right\rangle \leq 0, \quad \forall\binom{\gamma_{\mathrm{obj}}}{\gamma} \in \Gamma\right\}
$$

For a cone K, the polar cone $K^{\circ}:=\{\xi:\langle\xi, \zeta\rangle \leq 0, \forall \zeta \in K\}$

Rewriting SDP in terms of Γ

Lemma

$$
\begin{aligned}
\mathcal{D}_{\mathrm{SDP}} & =\left\{(x, t):\left\langle\binom{\gamma_{\mathrm{obj}}}{\gamma},\binom{q_{\mathrm{obj}}(x)-t}{q(x)}\right\rangle \leq 0, \quad \forall\binom{\gamma_{\mathrm{obj}}}{\gamma} \in \Gamma\right\} \\
& =\left\{(x, t):\binom{q_{\mathrm{obj}}(x)-t}{q(x)} \in \Gamma^{\circ}\right\}
\end{aligned}
$$

where Γ° is the polar cone of Γ.
For a cone K, the polar cone $K^{\circ}:=\{\xi:\langle\xi, \zeta\rangle \leq 0, \forall \zeta \in K\}$

Rewriting SDP in terms of Γ

Lemma

$$
\begin{aligned}
\mathcal{D}_{\mathrm{SDP}} & =\left\{(x, t):\left\langle\binom{\gamma_{\mathrm{obj}}}{\gamma},\binom{q_{\mathrm{obj}}(x)-t}{q(x)}\right\rangle \leq 0, \quad \forall\binom{\gamma_{\mathrm{obj}}}{\gamma} \in \Gamma\right\} \\
& =\left\{(x, t):\binom{q_{\mathrm{obj}}(x)-t}{q(x)} \in \Gamma^{\circ}\right\}
\end{aligned}
$$

where Γ° is the polar cone of Γ.
For a cone K, the polar cone $K^{\circ}:=\{\xi:\langle\xi, \zeta\rangle \leq 0, \forall \zeta \in K\}$

Convex hull exactness

- $\operatorname{conv}(\mathcal{D}) \stackrel{?}{=} \mathcal{D}_{\text {SDP }}$

Convex hull exactness

- $\operatorname{conv}(\mathcal{D}) \stackrel{?}{=} \mathcal{D}_{\mathrm{SDP}}$

Convex hull exactness

- $\operatorname{conv}(\mathcal{D}) \stackrel{?}{=} \mathcal{D}_{\text {SDP }}$

Convex hull exactness

- $\operatorname{conv}(\mathcal{D}) \stackrel{?}{=} \mathcal{D}_{\text {SDP }}$

Convex hull exactness

- $\operatorname{conv}(\mathcal{D}) \stackrel{?}{=} \mathcal{D}_{\mathrm{SDP}}$

- When do these "rounding" directions exist?

Convex hull exactness

- $\operatorname{conv}(\mathcal{D}) \stackrel{?}{=} \mathcal{D}_{\mathrm{SDP}}$

- When do these "rounding" directions exist? « Can carry out this idea for QCQPs!

Faces of Γ and Γ°

- Recall $\mathcal{D}_{\text {SDP }}=\left\{(x, t):\binom{q_{\text {obj }}(x)-t}{q(x)} \in \Gamma^{\circ}\right\}$.

Faces of Γ and Γ°

- Recall $\mathcal{D}_{\text {SDP }}=\left\{(x, t):\binom{q_{\text {obj }}(x)-t}{q(x)} \in \Gamma^{\circ}\right\}$.

Faces of Γ and Γ°

- Recall $\mathcal{D}_{\text {SDP }}=\left\{(x, t):\binom{q_{\text {obj }}(x)-t}{q(x)} \in \Gamma^{\circ}\right\}$.

Faces of Γ and Γ°

- Recall $\mathcal{D}_{\text {SDP }}=\left\{(x, t):\binom{q_{\text {obj }}(x)-t}{q(x)} \in \Gamma^{\circ}\right\}$.

$\Longleftrightarrow \forall(\hat{x}, \hat{t}) \in \mathcal{D}_{\text {SDP }} \backslash \mathcal{D}, \exists\left(x^{\prime}, t^{\prime}\right) \neq 0$ s.t. $\binom{q_{\text {obj }}\left(\hat{x} \pm \alpha x^{\prime}\right)-\left(\hat{t} \pm \alpha t^{\prime}\right)}{q\left(\hat{x} \pm \alpha x^{\prime}\right)} \in \Gamma^{\circ}$ for some $\alpha>0$.
- Let $\mathcal{G}(\hat{x}, \hat{t})$ denote the minimal face of Γ° containing $\binom{q_{\text {obj }}(\hat{x})-\hat{t}}{q(\hat{x})}$.

Faces of Γ and Γ°

- Recall $\mathcal{D}_{\text {SDP }}=\left\{(x, t):\binom{q_{\text {obj }}(x)-t}{q(x)} \in \Gamma^{\circ}\right\}$.

$$
\Longleftrightarrow \forall(\hat{x}, \hat{t}) \in \mathcal{D}_{\mathrm{SDP}} \backslash \mathcal{D}, \exists\left(x^{\prime}, t^{\prime}\right) \neq 0 \text { s.t. }\binom{q_{\mathrm{obj}}\left(\hat{x} \pm \alpha x^{\prime}\right)-\left(\hat{t} \pm \alpha t^{\prime}\right)}{q\left(\hat{x} \pm \alpha x^{\prime}\right)} \in \Gamma^{\circ} \text { for some } \alpha>0 .
$$

- Let $\mathcal{G}(\hat{x}, \hat{t})$ denote the minimal face of Γ° containing $\binom{q_{\text {obj }}(\hat{x})-\hat{t}}{q(\hat{x})}$.

Sufficient condition for convex hull exactness

- Given $(\hat{x}, \hat{t}) \in \mathcal{D}_{\text {SDP }}$, look for a subset of directions $\left(x^{\prime}, t^{\prime}\right)$ s.t. $\left[(\hat{x}, \hat{t}) \pm \alpha\left(x^{\prime}, t^{\prime}\right)\right] \in \mathcal{D}_{\text {SDP }}$ for some $\alpha>0$

Sufficient condition for convex hull exactness

- Given $(\hat{x}, \hat{t}) \in \mathcal{D}_{\text {SDP }}$, look for a subset of directions $\left(x^{\prime}, t^{\prime}\right)$ s.t.

$$
\left[(\hat{x}, \hat{t}) \pm \alpha\left(x^{\prime}, t^{\prime}\right)\right] \in \mathcal{D}_{\mathrm{SDP}} \text { for some } \alpha>0
$$

Theorem

If for every $(\hat{x}, \hat{t}) \in \mathcal{D}_{\text {SDP }} \backslash \mathcal{D}$, the set

$$
\mathcal{R}^{\prime}(\hat{x}, \hat{t}):=\left\{\left(x^{\prime}, t^{\prime}\right) \in \mathbb{R}^{n+1}:\binom{q_{\mathrm{obj}}\left(\hat{x}+\alpha x^{\prime}\right)-\left(\hat{t}+\alpha t^{\prime}\right)}{q\left(\hat{x}+\alpha x^{\prime}\right)} \in \operatorname{span}(\mathcal{G}(\hat{x}, \hat{t})), \forall \alpha \in \mathbb{R}\right\} .
$$

is nontrivial, then $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }}$.

Sufficient condition for convex hull exactness

- Given $(\hat{x}, \hat{t}) \in \mathcal{D}_{\text {SDP }}$, look for a subset of directions $\left(x^{\prime}, t^{\prime}\right)$ s.t.

$$
\left[(\hat{x}, \hat{t}) \pm \alpha\left(x^{\prime}, t^{\prime}\right)\right] \in \mathcal{D}_{\mathrm{SDP}} \text { for some } \alpha>0
$$

Theorem

If for every $(\hat{x}, \hat{t}) \in \mathcal{D}_{\text {SDP }} \backslash \mathcal{D}$, the set

$$
\mathcal{R}^{\prime}(\hat{x}, \hat{t}):=\left\{\left(x^{\prime}, t^{\prime}\right) \in \mathbb{R}^{n+1}:\binom{q_{\mathrm{obj}}\left(\hat{x}+\alpha x^{\prime}\right)-\left(\hat{t}+\alpha t^{\prime}\right)}{q\left(\hat{x}+\alpha x^{\prime}\right)} \in \operatorname{span}(\mathcal{G}(\hat{x}, \hat{t})), \forall \alpha \in \mathbb{R}\right\} .
$$

is nontrivial, then $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }}$.

- Whenever Γ° is facially exposed (e.g., whenever Γ° is polyhedral), this condition identifies all rounding directions:

Sufficient condition for convex hull exactness

- Given $(\hat{x}, \hat{t}) \in \mathcal{D}_{\mathrm{SDP}}$, look for a subset of directions $\left(x^{\prime}, t^{\prime}\right)$ s.t.

$$
\left[(\hat{x}, \hat{t}) \pm \alpha\left(x^{\prime}, t^{\prime}\right)\right] \in \mathcal{D}_{\mathrm{SDP}} \text { for some } \alpha>0
$$

Theorem

If for every $(\hat{x}, \hat{t}) \in \mathcal{D}_{\text {SDP }} \backslash \mathcal{D}$, the set

$$
\mathcal{R}^{\prime}(\hat{x}, \hat{t}):=\left\{\left(x^{\prime}, t^{\prime}\right) \in \mathbb{R}^{n+1}:\binom{q_{\mathrm{obj}}\left(\hat{x}+\alpha x^{\prime}\right)-\left(\hat{t}+\alpha t^{\prime}\right)}{q\left(\hat{x}+\alpha x^{\prime}\right)} \in \operatorname{span}(\mathcal{G}(\hat{x}, \hat{t})), \forall \alpha \in \mathbb{R}\right\} .
$$

is nontrivial, then $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }}$.

- Whenever Γ° is facially exposed (e.g., whenever Γ° is polyhedral), this condition identifies all rounding directions:
\Longrightarrow This sufficient condition becomes also necessary.

Sufficient condition for convex hull exactness

- When Γ° is facially exposed, $\mathcal{R}^{\prime}(x, t)$ admits further simplification.

Sufficient condition for convex hull exactness

- When Γ° is facially exposed, $\mathcal{R}^{\prime}(x, t)$ admits further simplification.
- For example,

Proposition

Suppose Γ is strictly feasible. Consider any $(x, t) \in \mathcal{D}_{\text {SDP }}$ with $t=\sup _{\gamma \in \Gamma_{1}} q(\gamma, x)$, and let $(1, f) \in \operatorname{rint}(\mathcal{F}(x, t))$.
If Γ is polyhedral, then

$$
\mathcal{R}^{\prime}(x, t)=\left\{\left(x^{\prime}, t^{\prime}\right) \in \mathbb{R}^{n+1}: \begin{array}{l}
x^{\prime} \in \operatorname{ker}(A(f)), \\
\left\langle b(\gamma), x^{\prime}\right\rangle-t^{\prime}=0, \forall(1, \gamma) \in \mathcal{F}(x, t)
\end{array}\right\} .
$$

Example: SDP convex hull exactness for $m=2$

- Consider $\mathcal{X}=\left\{x: q_{i}(x) \leq 0, \forall i \in[2]\right\}$, i.e., $q_{\text {obj }}=0$ and $m=2$.

Example: SDP convex hull exactness for $m=2$

- Consider $\mathcal{X}=\left\{x: q_{i}(x) \leq 0, \forall i \in[2]\right\}$, i.e., $q_{\text {obj }}=0$ and $m=2$.
- Then, $\mathcal{D}=\mathcal{X} \times \mathbb{R}_{+}$and $\mathcal{D}_{\text {SDP }}=\mathcal{X}_{\text {SDP }} \times \mathbb{R}_{+}$.

Example: SDP convex hull exactness for $m=2$

- Consider $\mathcal{X}=\left\{x: q_{i}(x) \leq 0, \forall i \in[2]\right\}$, i.e., $q_{\mathrm{obj}}=0$ and $m=2$.
- Then, $\mathcal{D}=\mathcal{X} \times \mathbb{R}_{+}$and $\mathcal{D}_{\mathrm{SDP}}=\mathcal{X}_{\mathrm{SDP}} \times \mathbb{R}_{+}$.

Proposition

Example: SDP convex hull exactness for $m=2$

- Consider $\mathcal{X}=\left\{x: q_{i}(x) \leq 0, \forall i \in[2]\right\}$, i.e., $q_{\mathrm{obj}}=0$ and $m=2$.
- Then, $\mathcal{D}=\mathcal{X} \times \mathbb{R}_{+}$and $\mathcal{D}_{\mathrm{SDP}}=\mathcal{X}_{\mathrm{SDP}} \times \mathbb{R}_{+}$.

Proposition

- Suppose $\exists \gamma^{*} \in \mathbb{R}_{+}^{2}$ s.t. $\gamma_{1}^{*} A_{1}+\gamma_{2}^{*} A_{2} \succ 0$, and let $\gamma^{(1)}, \gamma^{(2)} \in \mathbb{R}_{+}^{2}$ be generators of Γ_{1}.

Example: SDP convex hull exactness for $m=2$

- Consider $\mathcal{X}=\left\{x: q_{i}(x) \leq 0, \forall i \in[2]\right\}$, i.e., $q_{\mathrm{obj}}=0$ and $m=2$.
- Then, $\mathcal{D}=\mathcal{X} \times \mathbb{R}_{+}$and $\mathcal{D}_{\mathrm{SDP}}=\mathcal{X}_{\mathrm{SDP}} \times \mathbb{R}_{+}$.

Proposition

- Suppose $\exists \gamma^{*} \in \mathbb{R}_{+}^{2}$ s.t. $\gamma_{1}^{*} A_{1}+\gamma_{2}^{*} A_{2} \succ 0$, and let $\gamma^{(1)}, \gamma^{(2)} \in \mathbb{R}_{+}^{2}$ be generators of Γ_{1}.
- Suppose \mathcal{X} is strictly feasible and q_{1}, q_{2} are both nonconvex.

Example: SDP convex hull exactness for $m=2$

- Consider $\mathcal{X}=\left\{x: q_{i}(x) \leq 0, \forall i \in[2]\right\}$, i.e., $q_{\mathrm{obj}}=0$ and $m=2$.
- Then, $\mathcal{D}=\mathcal{X} \times \mathbb{R}_{+}$and $\mathcal{D}_{\mathrm{SDP}}=\mathcal{X}_{\mathrm{SDP}} \times \mathbb{R}_{+}$.

Proposition

- Suppose $\exists \gamma^{*} \in \mathbb{R}_{+}^{2}$ s.t. $\gamma_{1}^{*} A_{1}+\gamma_{2}^{*} A_{2} \succ 0$, and let $\gamma^{(1)}, \gamma^{(2)} \in \mathbb{R}_{+}^{2}$ be generators of Γ_{1}.
- Suppose \mathcal{X} is strictly feasible and q_{1}, q_{2} are both nonconvex.
- Then, $\operatorname{cl} \operatorname{conv}(\mathcal{X})=\mathcal{X}_{\text {SDP }}$ if and only if for both $i=1,2$, we have that

$$
\operatorname{ker}\left(A\left(\gamma^{(i)}\right)\right) \cap b\left(\gamma^{(i)}\right)^{\perp} \text { is nontrivial. }
$$

Example: QCQPs with symmetry

- Convex hull exactness in the case of "highly symmetric" QCQPs, a.k.a., quadratic matrix programs (QMPs):

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \longrightarrow X \in \mathbb{R}^{n \times k} \text { and } \\
& x^{\top} A x+2 b^{\top} x+c \longrightarrow \\
& \operatorname{tr}\left(X^{\top} \mathbb{A} X\right)+2\langle B, X\rangle+c
\end{aligned}
$$

Example: QCQPs with symmetry

- Convex hull exactness in the case of "highly symmetric" QCQPs, a.k.a., quadratic matrix programs (QMPs):

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \longrightarrow X \in \mathbb{R}^{n \times k} \text { and } \\
& x^{\top} A x+2 b^{\top} x+c \longrightarrow \\
& \operatorname{tr}\left(X^{\top} \mathbb{A} X\right)+2\langle B, X\rangle+c=: q_{i}(X)
\end{aligned}
$$

- General QMP:

$$
\min _{X \in \mathbb{R}^{n \times k}}\left\{q_{\mathrm{obj}}(X): q_{i}(X) \leq 0, \forall i \in[m]\right\}
$$

Example: QCQPs with symmetry

- Convex hull exactness in the case of "highly symmetric" QCQPs, a.k.a., quadratic matrix programs (QMPs):

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \longrightarrow X \in \mathbb{R}^{n \times k} \text { and } \\
& x^{\top} A x+2 b^{\top} x+c \longrightarrow \\
& \operatorname{tr}\left(X^{\top} \mathbb{A} X\right)+2\langle B, X\rangle+c=: q_{i}(X)
\end{aligned}
$$

- General QMP:

$$
\min _{X \in \mathbb{R}^{n \times k}}\left\{q_{\mathrm{obj}}(X): q_{i}(X) \leq 0, \forall i \in[m]\right\}
$$

- Applications:
- Robust least squares, sphere packing problems, QCQPs with spherical constraints, orthogonal Procrustes problem

Example: QCQPs with symmetry

- Convex hull exactness in the case of "highly symmetric" QCQPs, a.k.a., quadratic matrix programs (QMPs):

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \longrightarrow X \in \mathbb{R}^{n \times k} \text { and } \\
& x^{\top} A x+2 b^{\top} x+c \longrightarrow \\
& \operatorname{tr}\left(X^{\top} \mathbb{A} X\right)+2\langle B, X\rangle+c=: q_{i}(X)
\end{aligned}
$$

- General QMP:

$$
\min _{X \in \mathbb{R}^{n \times k}}\left\{q_{\text {obj }}(X): q_{i}(X) \leq 0, \forall i \in[m]\right\}
$$

- Can be written as a QCQP by defining $A_{\text {obj }}=I_{k} \otimes \mathbb{A}_{\mathrm{obj}}, A_{i}=I_{k} \otimes \mathbb{A}_{i} \forall i \in[m]$

$$
A=I_{k} \otimes \mathbb{A}=\left(\begin{array}{lll}
\mathbb{A} & & \\
& \ddots & \\
& & \mathbb{A}
\end{array}\right)
$$

- Convex hull exactness holds whenever $k \geq m$

Sufficient condition for objective value exactness

Objective value exactness has been studied a lot:

- TRS and S-lemma
[Yakubovich, 1971]
- Extended TRS
[Jeyakumar and Li, 2014, Ben-Tal and den Hertog, 2014, Locatelli, 2016, Ho-Nguyen and K.-K., 2017, Bomze et al., 2018]
- Sign-definite SDPs
[Sojoudi and Lavaei, 2014]
- SDPs with simultaneously diagonalizable matrices [Burer and Ye, 2019, Locatelli, 2022]
- SDPs with certain sparsity patterns (forest, bipartite)
[Azuma et al., 2022b,a]

Sufficient condition for objective value exactness

- Give primal and also dual sufficient conditions for optimizer exactness, i.e., $\underset{(x, t) \in \mathcal{D}}{\arg \min } t=\underset{(x, t) \in \mathcal{D}_{\mathrm{SDP}}}{\arg \min } t$.

Related: [Burer and Ye, 2019, Locatelli, 2022]

Sufficient condition for objective value exactness

- Give primal and also dual sufficient conditions for optimizer exactness, i.e.,

$$
\underset{(x, t) \in \mathcal{D}}{\arg \min } t=\underset{(x, t) \in \mathcal{D}_{\mathrm{SDP}}}{\arg \min } t .
$$

- Dual sufficient condition originates from

$$
\mathrm{Opt}_{\mathrm{SDP}}=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}}\{q(\gamma, x)\}
$$

Sufficient condition for objective value exactness

- Give primal and also dual sufficient conditions for optimizer exactness, i.e.,

$$
\underset{(x, t) \in \mathcal{D}}{\arg \min } t=\underset{(x, t) \in \mathcal{D}_{\mathrm{SDP}}}{\arg \min } t .
$$

- Dual sufficient condition originates from

$$
\begin{aligned}
\mathrm{Opt}_{\mathrm{SDP}} & =\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}}\{q(\gamma, x)\} \\
& =\sup _{\gamma \in \Gamma_{1}} \underbrace{\inf _{x \in \mathbb{R}^{n}}\{q(\gamma, x)\}}_{:=\mathbf{d}(\gamma)}=\sup _{\gamma \in \Gamma_{1}} \mathbf{d}(\gamma) . \text { (by coercivity [Ekeland and Temam, 1999]) }
\end{aligned}
$$

Sufficient condition for objective value exactness

- Give primal and also dual sufficient conditions for optimizer exactness, i.e.,

$$
\underset{(x, t) \in \mathcal{D}}{\arg \min } t=\underset{(x, t) \in \mathcal{D}_{\mathrm{SDP}}}{\arg \min } t
$$

- Dual sufficient condition originates from

$$
\begin{aligned}
\mathrm{Opt}_{\mathrm{SDP}} & =\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}}\{q(\gamma, x)\} \\
& =\sup _{\gamma \in \Gamma_{1}} \underbrace{\inf _{x \in \mathbb{R}^{n}}\{q(\gamma, x)\}}_{:=\mathbf{d}(\gamma)}=\sup _{\gamma \in \Gamma_{1}} \mathbf{d}(\gamma) . \text { (by coercivity [Ekeland and Temam, 1999]) }
\end{aligned}
$$

Theorem

Suppose $\sup _{\gamma \in \Gamma_{1}} \mathbf{d}(\gamma)$ is achieved at some γ^{*} for which $A_{\mathrm{obj}}+A\left(\gamma^{*}\right) \succ 0$. Then, $\arg \min _{(x, t) \in \mathcal{D}} t=\arg \min _{(x, t) \in \mathcal{D}_{\text {SDP }}} t$.

Summary of exactness in the original space

- Sufficient conditions for convex hull exactness

Summary of exactness in the original space

- Sufficient conditions for convex hull exactness
- Necessary and sufficient if Γ is polyhedral (dual facially exposed)

Summary of exactness in the original space

- Sufficient conditions for convex hull exactness
- Necessary and sufficient if Γ is polyhedral (dual facially exposed)
- Sufficient conditions for objective value exactness

Summary of exactness in the original space

- Sufficient conditions for convex hull exactness
- Necessary and sufficient if Γ is polyhedral (dual facially exposed)
- Sufficient conditions for objective value exactness
- Further applications:

Summary of exactness in the original space

- Sufficient conditions for convex hull exactness
- Necessary and sufficient if Γ is polyhedral (dual facially exposed)
- Sufficient conditions for objective value exactness
- Further applications:
- Diagonal QCQPs with sign-definite linear terms, QCQPs with centered constraints and polyhedral Γ, QCQPs with spherical constraints, random and semi-random QCQPs, ratios of quadratic functions

Summary of exactness in the original space

- Sufficient conditions for convex hull exactness
- Necessary and sufficient if Γ is polyhedral (dual facially exposed)
- Sufficient conditions for objective value exactness
- Further applications:
- Diagonal QCQPs with sign-definite linear terms, QCQPs with centered constraints and polyhedral Γ, QCQPs with spherical constraints, random and semi-random QCQPs, ratios of quadratic functions

Summary of exactness in the original space

- Sufficient conditions for convex hull exactness
- Necessary and sufficient if Γ is polyhedral (dual facially exposed)
- Sufficient conditions for objective value exactness
- Further applications:
- Diagonal QCQPs with sign-definite linear terms, QCQPs with centered constraints and polyhedral Γ, QCQPs with spherical constraints, random and semi-random QCQPs, ratios of quadratic functions

SDPs provide exact reformulations for broad classes of QCQPs!

Efficient algorithms for exact SDPs

References:
Wang, A. L., Lu, Y., and K.-K., F. (2023+). Implicit regularity and linear convergence rates for the generalized trust-region subproblem. SIAM J. Optim., Forthcoming, (arXiv:2112.13821)

Wang, A. L. and K.-K., F. (2022a). Accelerated first-order methods for a class of semidefinite programs. arXiv preprint, 2206.00224

Solving the SDP relaxation

- SDPs can be solved in polynomial time

Solving the SDP relaxation

- SDPs can be solved in polynomial time \longleftarrow too expensive in modern applications

Solving the SDP relaxation

- SDPs can be solved in polynomial time \longleftarrow too expensive in modern applications
- Usual SDP relaxation in $x \in \mathbb{R}^{n}$ and $X \in \mathbb{S}^{n}$

Solving the SDP relaxation

- SDPs can be solved in polynomial time \longleftarrow too expensive in modern applications
- Usual SDP relaxation in $x \in \mathbb{R}^{n}$ and $X \in \mathbb{S}^{n} \longrightarrow O\left(n^{2}\right)$ variables

Solving the SDP relaxation

- SDPs can be solved in polynomial time \longleftarrow too expensive in modern applications
- Usual SDP relaxation in $x \in \mathbb{R}^{n}$ and $X \in \mathbb{S}^{n} \longrightarrow O\left(n^{2}\right)$ variables
- Classical interior point methods:

Solving the SDP relaxation

- SDPs can be solved in polynomial time \longleftarrow too expensive in modern applications
- Usual SDP relaxation in $x \in \mathbb{R}^{n}$ and $X \in \mathbb{S}^{n} \longrightarrow O\left(n^{2}\right)$ variables
- Classical interior point methods:
\longrightarrow iterations are too expensive requiring $O\left(m n^{3}+m^{2} n^{2}+m^{3}\right)$ operations (time) and $O\left(n^{2}+m^{2}\right)$ storage

Solving the SDP relaxation

- SDPs can be solved in polynomial time \longleftarrow too expensive in modern applications
- Usual SDP relaxation in $x \in \mathbb{R}^{n}$ and $X \in \mathbb{S}^{n} \longrightarrow O\left(n^{2}\right)$ variables
- Classical interior point methods:
\longrightarrow iterations are too expensive requiring $O\left(m n^{3}+m^{2} n^{2}+m^{3}\right)$ operations (time) and $O\left(n^{2}+m^{2}\right)$ storage
- High storage requirements and expensive iterations led to alternative approaches:

Solving the SDP relaxation

- SDPs can be solved in polynomial time \longleftarrow too expensive in modern applications
- Usual SDP relaxation in $x \in \mathbb{R}^{n}$ and $X \in \mathbb{S}^{n} \longrightarrow O\left(n^{2}\right)$ variables
- Classical interior point methods:
\longrightarrow iterations are too expensive requiring $O\left(m n^{3}+m^{2} n^{2}+m^{3}\right)$ operations (time) and $O\left(n^{2}+m^{2}\right)$ storage
- High storage requirements and expensive iterations led to alternative approaches: \longrightarrow Burer-Monteiro method: [Burer and Monteiro, 2003], extremely popular in ML...

Solving the SDP relaxation

- SDPs can be solved in polynomial time \longleftarrow too expensive in modern applications
- Usual SDP relaxation in $x \in \mathbb{R}^{n}$ and $X \in \mathbb{S}^{n} \longrightarrow O\left(n^{2}\right)$ variables
- Classical interior point methods:
\longrightarrow iterations are too expensive requiring $O\left(m n^{3}+m^{2} n^{2}+m^{3}\right)$ operations (time) and $O\left(n^{2}+m^{2}\right)$ storage
- High storage requirements and expensive iterations led to alternative approaches: \longrightarrow Burer-Monteiro method: [Burer and Monteiro, 2003], extremely popular in ML...

Solving the SDP relaxation

- SDPs can be solved in polynomial time \longleftarrow too expensive in modern applications
- Usual SDP relaxation in $x \in \mathbb{R}^{n}$ and $X \in \mathbb{S}^{n} \longrightarrow O\left(n^{2}\right)$ variables
- Classical interior point methods:
\longrightarrow iterations are too expensive requiring $O\left(m n^{3}+m^{2} n^{2}+m^{3}\right)$ operations (time) and $O\left(n^{2}+m^{2}\right)$ storage
- High storage requirements and expensive iterations led to alternative approaches:
\longrightarrow Burer-Monteiro method: [Burer and Monteiro, 2003], extremely popular in ML. . .
- Motivation: For a primal SDP (P) with m LMEs, ヨan optimal solution Z^{*} with $\operatorname{rank}\left(Z^{*}\right) \leq\lceil\sqrt{2 m}\rceil$ [Pataki, 1998, Barvinok, 2001]

Solving the SDP relaxation

- SDPs can be solved in polynomial time \longleftarrow too expensive in modern applications
- Usual SDP relaxation in $x \in \mathbb{R}^{n}$ and $X \in \mathbb{S}^{n} \longrightarrow O\left(n^{2}\right)$ variables
- Classical interior point methods:
\longrightarrow iterations are too expensive requiring $O\left(m n^{3}+m^{2} n^{2}+m^{3}\right)$ operations (time) and $O\left(n^{2}+m^{2}\right)$ storage
- High storage requirements and expensive iterations led to alternative approaches:
\longrightarrow Burer-Monteiro method: [Burer and Monteiro, 2003], extremely popular in ML...
- Motivation: For a primal SDP (P) with m LMEs, ヨan optimal solution Z^{*} with $\operatorname{rank}\left(Z^{*}\right) \leq\lceil\sqrt{2 m}\rceil$ [Pataki, 1998, Barvinok, 2001]
- Main Idea: Solve (P) as an NLP by replacing Z with $V V^{\top}$ where V has at least $\lceil\sqrt{2 m} \mid$ columns

Solving the SDP relaxation

- SDPs can be solved in polynomial time \longleftarrow too expensive in modern applications
- Usual SDP relaxation in $x \in \mathbb{R}^{n}$ and $X \in \mathbb{S}^{n} \longrightarrow O\left(n^{2}\right)$ variables
- Classical interior point methods:
\longrightarrow iterations are too expensive requiring $O\left(m n^{3}+m^{2} n^{2}+m^{3}\right)$ operations (time) and $O\left(n^{2}+m^{2}\right)$ storage
- High storage requirements and expensive iterations led to alternative approaches:
\longrightarrow Burer-Monteiro method: [Burer and Monteiro, 2003], extremely popular in ML...
- Motivation: For a primal SDP (P) with m LMEs, ヨan optimal solution Z^{*} with $\operatorname{rank}\left(Z^{*}\right) \leq\lceil\sqrt{2 m}\rceil$ [Pataki, 1998, Barvinok, 2001]
- Main Idea: Solve (P) as an NLP by replacing Z with $V V^{\top}$ where V has at least $\lceil\sqrt{2 m}\rceil$ columns
- Recent theory showing that under some regularity conditions, for almost all objective functions, B-M method finds the global optimum. [Boumal et al., 2016, 2020]

Solving the SDP relaxation

We can solve an SDP more efficiently and with $O(k n+m)$ storage if it is rank- k-exact (regular)!

Solving the SDP relaxation

We can solve an SDP more efficiently and with $O(k n+m)$ storage if it is rank- k-exact (regular)!

- Recall

$$
\text { Opt }{ }_{\text {SDP }}:=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)
$$

Solving the SDP relaxation

We can solve an SDP more efficiently and with $O(k n+m)$ storage if it is rank- k-exact (regular)!

- Recall

$$
\text { Opt }_{\text {SDP }}:=\inf _{x \in \mathbb{R}^{n}}\left(\sup _{\gamma \in \Gamma_{1}} q(\gamma, x)\right)
$$

Solving the SDP relaxation

We can solve an SDP more efficiently and with $O(k n+m)$ storage if it is rank- k-exact (regular)!

- Recall

$$
\text { Opt }_{\text {SDP }}:=\inf _{x \in \mathbb{R}^{n}}\left(\sup _{\gamma \in \Gamma_{1}} q(\gamma, x)\right)
$$

This is a minimization problem in the original space $\longrightarrow n$ variables

Solving the SDP relaxation

We can solve an SDP more efficiently and with $O(k n+m)$ storage if it is rank- k-exact (regular)!

- Recall

$$
\text { Opt }{ }_{\text {SDP }}:=\inf _{x \in \mathbb{R}^{n}}\left(\sup _{\gamma \in \Gamma_{1}} q(\gamma, x)\right)
$$

This is a minimization problem in the original space $\longrightarrow n$ variables

- Exactness (regularity) will allow us to efficiently deal with max-type obj. structure

Linear-time algorithm for the Generalized TRS

- Generalized TRS: \quad Opt $=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\text {obj }}(x): q_{1}(x) \leq 0\right\}$

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020]

Linear-time algorithm for the Generalized TRS

- Generalized TRS: \quad Opt $=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\text {obj }}(x): q_{1}(x) \leq 0\right\}$
- Recall convex hull exactness holds: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }}=\left\{(x, t): \sup _{\gamma \in \Gamma_{1}} q(\gamma, x) \leq t\right\}$

Linear-time algorithm for the Generalized TRS

- Generalized TRS: \quad Opt $=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\text {obj }}(x): q_{1}(x) \leq 0\right\}$
- Recall convex hull exactness holds: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }}=\left\{(x, t): \sup _{\gamma \in \Gamma_{1}} q(\gamma, x) \leq t\right\}$
- where $\Gamma_{1}=\left\{\gamma \in \mathbb{R}_{+}: q(\gamma, x)\right.$ is convex in $\left.x\right\}$

Linear-time algorithm for the Generalized TRS

- Generalized TRS: \quad Opt $=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\text {obj }}(x): q_{1}(x) \leq 0\right\}$
- Recall convex hull exactness holds: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }}=\left\{(x, t): \sup _{\gamma \in \Gamma_{1}} q(\gamma, x) \leq t\right\}$
- where $\Gamma_{1}=\left\{\gamma \in \mathbb{R}_{+}: q(\gamma, x)\right.$ is convex in $\left.x\right\}$

[^1]
Linear-time algorithm for the Generalized TRS

- Generalized TRS: \quad Opt $=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\text {obj }}(x): q_{1}(x) \leq 0\right\}$
- Recall convex hull exactness holds: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }}=\left\{(x, t): \sup _{\gamma \in \Gamma_{1}} q(\gamma, x) \leq t\right\}$
- where $\Gamma_{1}=\left\{\gamma \in \mathbb{R}_{+}: q(\gamma, x)\right.$ is convex in $\left.x\right\}$

[^2]
Linear-time algorithm for the Generalized TRS

- $\Gamma_{1}=\left[\gamma_{-}, \gamma_{+}\right]$

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020], Wang and K.-K. [2022b]

Linear-time algorithm for the Generalized TRS

- $\Gamma_{1}=\left[\gamma_{-}, \gamma_{+}\right] \Longrightarrow \mathrm{Opt}=\mathrm{Opt}_{\mathrm{SDP}}=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left[\gamma_{-}, \gamma_{+}\right]} q(\gamma, x)$

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020], Wang and K.-K. [2022b]

Linear-time algorithm for the Generalized TRS

- $\Gamma_{1}=\left[\gamma_{-}, \gamma_{+}\right] \Longrightarrow$ Opt $=$ OptsDP $=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\gamma_{-}, \gamma_{+}\right\}} q(\gamma, x)$

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020], Wang and K.-K. [2022b]

Linear-time algorithm for the Generalized TRS

- $\Gamma_{1}=\left[\gamma_{-}, \gamma_{+}\right] \Longrightarrow$ Opt $=$ OptsDP $=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\gamma_{-}, \gamma_{+}\right\}} q(\gamma, x)$

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020], Wang and K.-K. [2022b]

Linear-time algorithm for the Generalized TRS

- $\Gamma_{1}=\left[\gamma_{-}, \gamma_{+}\right] \Longrightarrow$ Opt $=$ Opt $_{\text {SDP }}=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\gamma_{-}, \gamma_{+}\right\}} q(\gamma, x)$

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020], Wang and K.-K. [2022b]

Linear-time algorithm for the Generalized TRS

- $\Gamma_{1}=\left[\gamma_{-}, \gamma_{+}\right] \Longrightarrow$ Opt $=$ Opt $_{\text {SDP }}=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\gamma_{-}, \gamma_{+}\right\}} q(\gamma, x)$

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020], Wang and K.-K. [2022b]

Linear-time algorithm for the Generalized TRS

- $\Gamma_{1}=\left[\gamma_{-}, \gamma_{+}\right] \Longrightarrow$ Opt $=$ Opt $_{\text {SDP }}=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\gamma_{-}, \gamma_{+}\right\}} q(\gamma, x)$

- Algorithmic idea
- Compute γ_{-}and γ_{+}to some accuracy
- Apply Accelerated Gradient Descent for smooth minimax problems

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020], Wang and K.-K. [2022b]

Linear-time algorithm for the Generalized TRS

- $\Gamma_{1}=\left[\gamma_{-}, \gamma_{+}\right] \Longrightarrow$ Opt $=$ Opt $_{\text {SDP }}=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\gamma_{-}, \gamma_{+}\right\}} q(\gamma, x)$

- Algorithmic idea
- Compute γ_{-}and γ_{+}to some accuracy
- Apply Accelerated Gradient Descent for

$$
\Longrightarrow \tilde{O}\left(\frac{N}{\sqrt{\epsilon}} \log \left(\frac{n}{p}\right) \log \left(\frac{1}{\epsilon}\right)\right)
$$ smooth minimax problems

Linear-time algorithm for the Generalized TRS

- $\Gamma_{1}=\left[\gamma_{-}, \gamma_{+}\right] \Longrightarrow$ Opt $=$ Opt $_{\text {SDP }}=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\gamma_{-}, \gamma_{+}\right\}} q(\gamma, x)$

- Algorithmic idea
- Compute γ_{-}and γ_{+}to some accuracy $\Longrightarrow \tilde{O}\left(\frac{N}{\sqrt{\epsilon}} \log \left(\frac{n}{p}\right) \log \left(\frac{1}{\epsilon}\right)\right) \approx \frac{1}{\sqrt{\epsilon}}$ - Apply Accelerated Gradient Descent for smooth minimax problems

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020], Wang and K.-K. [2022b]

Regularity

- Dual problem:

$$
\text { Opt }_{\text {SDP }}:=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)=\sup _{\gamma \in \Gamma_{1}} \inf _{x \in \mathbb{R}^{n}} q(\gamma, x)
$$

Regularity

- Dual problem:

$$
\text { Opt }_{\mathbf{S D P}}:=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)=\sup _{\gamma \in \Gamma_{1}} \inf _{x \in \mathbb{R}^{n}} q(\gamma, x)
$$

Definition

Let γ^{*} be a dual optimizer. Define $\mu^{*}:=\lambda_{\min }\left(A_{\text {obj }}+\sum_{i=1}^{m} \gamma_{i}^{*} A_{i}\right)$. Note $\mu^{*} \geq 0$ by definition of Γ_{1}. QCQP instance is regular if $\mu^{*}>0$.

Regularity

- Dual problem:

$$
\text { Opt }_{\mathbf{S D P}}:=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)=\sup _{\gamma \in \Gamma_{1}} \inf _{x \in \mathbb{R}^{n}} q(\gamma, x)
$$

Definition

Let γ^{*} be a dual optimizer. Define $\mu^{*}:=\lambda_{\min }\left(A_{\text {obj }}+\sum_{i=1}^{m} \gamma_{i}^{*} A_{i}\right)$. Note $\mu^{*} \geq 0$ by definition of Γ_{1}. QCQP instance is regular if $\mu^{*}>0$.

- Regularity \Longrightarrow optimizer exactness

$$
\mu^{*}>0 \Longrightarrow \underset{x \in \mathbb{R}^{n}}{\arg \min }\left\{q_{\text {obj }}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\}=\underset{x \in \mathbb{R}^{n}}{\arg \min } \sup _{\gamma \in \Gamma_{1}} q(\gamma, x)
$$

Linear convergence for regular GTRS

- Suppose $\mu^{*}>0$

[^3]
Linear convergence for regular GTRS

- Suppose $\mu^{*}>0$

[^4]
Linear convergence for regular GTRS

- Suppose $\mu^{*}>0$

[^5]
Linear convergence for regular GTRS

- Suppose $\mu^{*}>0$
- Suppose $\gamma^{*} \in\left[\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right] \subseteq \Gamma_{1}$

Linear convergence for regular GTRS

- Suppose $\mu^{*}>0$
- Suppose $\gamma^{*} \in\left[\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right] \subseteq \Gamma_{1} \Longrightarrow$ Opt $=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right\}} q(\gamma, x)$

Linear convergence for regular GTRS

- Suppose $\mu^{*}>0$
- Suppose $\gamma^{*} \in\left[\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right] \subseteq \Gamma_{1} \Longrightarrow$ Opt $=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right\}} q(\gamma, x)$

Linear convergence for regular GTRS

- Suppose $\mu^{*}>0$
- Suppose $\gamma^{*} \in\left[\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right] \subseteq \Gamma_{1} \Longrightarrow$ Opt $=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right\}} q(\gamma, x)$
- Suffices to estimate γ^{*} to low accuracy

Linear convergence for regular GTRS

- Suppose $\mu^{*}>0$
- Suppose $\gamma^{*} \in\left[\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right] \subseteq \Gamma_{1} \Longrightarrow$ Opt $=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right\}} q(\gamma, x)$
- Suffices to estimate γ^{*} to low accuracy and then we can exploit strong convexity

Linear convergence for regular GTRS

- Suppose $\mu^{*}>0$

- Suppose $\gamma^{*} \in\left[\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right] \subseteq \Gamma_{1} \Longrightarrow$ Opt $=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right\}} q(\gamma, x)$
- Suffices to estimate γ^{*} to low accuracy and then we can exploit strong convexity

$$
\tilde{O}\left(\frac{N}{\sqrt{\mu^{*}}} \log \left(\frac{1}{\mu^{*}}\right) \log \left(\frac{n}{p}\right) \log \left(\frac{1}{\epsilon}\right)\right)
$$

Linear convergence for regular GTRS

- Suppose $\mu^{*}>0$

- Suppose $\gamma^{*} \in\left[\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right] \subseteq \Gamma_{1} \Longrightarrow$ Opt $=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right\}} q(\gamma, x)$
- Suffices to estimate γ^{*} to low accuracy and then we can exploit strong convexity

$$
\tilde{O}\left(\frac{N}{\sqrt{\mu^{*}}} \log \left(\frac{1}{\mu^{*}}\right) \log \left(\frac{n}{p}\right) \log \left(\frac{1}{\epsilon}\right)\right) \approx \log \left(\frac{1}{\epsilon}\right)
$$

Linear convergence for regular GTRS

- Suppose $\mu^{*}>0$

- Suppose $\gamma^{*} \in\left[\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right] \subseteq \Gamma_{1} \Longrightarrow$ Opt $=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\tilde{\gamma}_{-}, \tilde{\gamma}_{+}\right\}} q(\gamma, x)$
- Suffices to estimate γ^{*} to low accuracy and then we can exploit strong convexity

$$
\tilde{O}\left(\frac{N}{\sqrt{\mu^{*}}} \log \left(\frac{1}{\mu^{*}}\right) \log \left(\frac{n}{p}\right) \log \left(\frac{1}{\epsilon}\right)\right) \approx \log \left(\frac{1}{\epsilon}\right)
$$

\Longrightarrow This rate is linear in both N and $\log (1 / \epsilon)$

How to generalize?

- How to handle SDP relaxations of general QCQPs with multiple constraints?

How to generalize?

- How to handle SDP relaxations of general QCQPs with multiple constraints?
- For QCQPs, we desire rank-1 solutions in the SDP relaxations. What about SDPs in which we seek rank- k solutions?

General setup

$$
\mathrm{Opt}_{\mathrm{SDP}}=\inf _{Y \in \mathbb{S}^{n}}\left\{\begin{array}{ll}
\left\langle M_{\mathrm{obj}}, Y\right\rangle: & \left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

General setup

$$
\begin{aligned}
\mathrm{Opt}_{\mathrm{SDP}}=\inf _{Y \in \mathbb{S}^{n}}\left\{\left\langle M_{\mathrm{obj}}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
\geq \sup _{\gamma \in \mathbb{R}^{m}}\left\{d^{\top} \gamma: M_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} M_{i} \succeq 0\right\}
\end{aligned}
$$

General setup

$$
\begin{aligned}
\mathrm{Opt}_{\mathrm{SDP}}=\inf _{Y \in \mathbb{S}^{n}}\left\{\left\langle M_{\mathrm{obj}}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
\geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{M_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} M_{i}}_{:=M(\gamma)} \succeq 0\}
\end{aligned}
$$

General setup

$$
\begin{aligned}
\mathrm{Opt}_{\mathrm{SDP}}=\inf _{Y \in \mathbb{S}^{n}}\left\{\left\langle M_{\mathrm{obj}}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
\geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{\left.M_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} M_{i} \succeq 0\right\}}_{:=M(\gamma)}
\end{aligned}
$$

- k-exact SDPs:

General setup

$$
\begin{aligned}
\mathrm{Opt}_{\mathrm{SDP}}=\inf _{Y \in \mathbb{S}^{n}}\left\{\left\langle M_{\mathrm{obj}}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
\geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{M_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} M_{i}}_{:=M(\gamma)} \succeq 0\}
\end{aligned}
$$

- k-exact SDPs:
- Strong duality holds, both problems are solvable

General setup

$$
\begin{aligned}
\mathrm{Opt}_{\mathrm{SDP}}=\inf _{Y \in \mathbb{S}^{n}}\left\{\left\langle M_{\mathrm{obj}}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
\geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{\left.M_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} M_{i} \succeq 0\right\}}_{:=M(\gamma)}
\end{aligned}
$$

- k-exact SDPs:
- Strong duality holds, both problems are solvable
- W, subspace of dimension $n-k$ such that $Y_{W^{\perp}}^{*} \succ 0$ is known

General setup

$$
\begin{aligned}
\mathrm{Opt}_{\mathrm{SDP}}=\inf _{Y \in \mathbb{S}^{n}}\left\{\left\langle M_{\mathrm{obj}}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
\geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{\left.M_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} M_{i} \succeq 0\right\}}_{:=M(\gamma)}
\end{aligned}
$$

- k-exact SDPs:
- Strong duality holds, both problems are solvable
- W, subspace of dimension $n-k$ such that $Y_{W \perp}^{*} \succ 0$ is known
- This talk: $W=\mathbb{R}^{n-k}$ and $Y_{W^{\perp}}^{*}=I_{k}$

General setup

$$
\begin{aligned}
\mathrm{Opt}_{\mathrm{SDP}}=\inf _{Y \in \mathbb{S}^{n}}\left\{\left\langle M_{\mathrm{obj}}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
\geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{\left.M_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} M_{i} \succeq 0\right\}}_{:=M(\gamma)}
\end{aligned}
$$

- k-exact SDPs:
- Strong duality holds, both problems are solvable
- W, subspace of dimension $n-k$ such that $Y_{W^{\perp}}^{*} \succ 0$ is known
- This talk: $W=\mathbb{R}^{n-k}$ and $Y_{W \perp}^{*}=I_{k}$
- Strict complementarity + exactness

General setup

$$
\begin{aligned}
\mathrm{Opt}_{\mathrm{SDP}}=\inf _{Y \in \mathbb{S}^{n}}\left\{\left\langle M_{\mathrm{obj}}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
\geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{\left.M_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} M_{i} \succeq 0\right\}}_{:=M(\gamma)}
\end{aligned}
$$

- k-exact SDPs:
- Strong duality holds, both problems are solvable
- W, subspace of dimension $n-k$ such that $Y_{W \perp}^{*} \succ 0$ is known
- This talk: $W=\mathbb{R}^{n-k}$ and $Y_{W \perp}^{*}=I_{k}$
- Strict complementarity + exactness: there exists Y^{*}, γ^{*} such that $\operatorname{rank}\left(Y^{*}\right)=k$ and $\operatorname{rank}\left(M\left(\gamma^{*}\right)\right)=n-k$

Motivation

- SDP relaxation of QMP in $X \in \mathbb{R}^{(n-k) \times k}$

Motivation

- SDP relaxation of QMP in $X \in \mathbb{R}^{(n-k) \times k},\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right) \mapsto\left(\begin{array}{cc}* & * \\ * & I_{k}\end{array}\right)$

Motivation

- SDP relaxation of QMP in $X \in \mathbb{R}^{(n-k) \times k},\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right) \mapsto\left(\begin{array}{cc}* & * \\ * & I_{k}\end{array}\right)$

Motivation

- SDP relaxation of QMP in $X \in \mathbb{R}^{(n-k) \times k},\left(\begin{array}{cc}X & X^{\top} \\ X \\ X^{\top} & I_{k}\end{array}\right) \mapsto\left(\begin{array}{cc}* & * \\ * & I_{k}\end{array}\right)$

Taking $W=\mathbb{R}^{n-k}$, we know $Y_{W \perp}^{*}=I_{k} \succ 0$

Motivation

- SDP relaxation of QMP in $X \in \mathbb{R}^{(n-k) \times k},\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right) \mapsto\left(\begin{array}{cc}* & * \\ * & I_{k}\end{array}\right)$

$$
\mathrm{Opt}_{\mathrm{SDP}}=\inf _{Y \in \mathbb{S}^{n}}\left\{\begin{array}{ll}
\left\langle M_{\mathrm{obj}}, Y\right\rangle: & \left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[\mathrm{~m}] \\
Y=\binom{*}{* I_{k}} \succeq 0
\end{array}\right\}
$$

Taking $W=\mathbb{R}^{n-k}$, we know $Y_{W \perp}^{*}=I_{k} \succ 0$

- Equivalently, k-exact SDPs originate from QCQPs and QMPs that admit exact SDP relaxations

Deriving a strongly convex minimax problem

- Suppose k-exact and $Y_{W \perp}^{*}=I_{k}$

Deriving a strongly convex minimax problem

- Suppose k-exact and $Y_{W^{\perp}}^{*}=I_{k}$
- Know $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)$ for $X^{*} \in \mathbb{R}^{(n-k) \times k}$

Deriving a strongly convex minimax problem

- Suppose k-exact and $Y_{W^{\perp}}^{*}=I_{k}$
- Know $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)$ for $X^{*} \in \mathbb{R}^{(n-k) \times k} \longrightarrow$ replace $Y \mapsto\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$

Deriving a strongly convex minimax problem

- Suppose k-exact and $Y_{W^{\perp}}^{*}=I_{k}$
- Know $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)$ for $X^{*} \in \mathbb{R}^{(n-k) \times k} \longrightarrow$ replace $Y \mapsto\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$

$$
\left\langle M_{i}, Y\right\rangle+d_{i} \mapsto
$$

Deriving a strongly convex minimax problem

- Suppose k-exact and $Y_{W^{\perp}}^{*}=I_{k}$
- Know $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)$ for $X^{*} \in \mathbb{R}^{(n-k) \times k} \longrightarrow$ replace $Y \mapsto\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$

$$
\left\langle M_{i}, Y\right\rangle+d_{i} \mapsto=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & C_{i}
\end{array}\right),\left(\begin{array}{rr}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}
$$

Deriving a strongly convex minimax problem

- Suppose k-exact and $Y_{W^{\perp}}^{*}=I_{k}$
- Know $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)$ for $X^{*} \in \mathbb{R}^{(n-k) \times k} \longrightarrow$ replace $Y \mapsto\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$

$$
\left\langle M_{i}, Y\right\rangle+d_{i} \mapsto=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & C_{i}
\end{array}\right),\left(\begin{array}{rr}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}=: q_{i}(X)
$$

Deriving a strongly convex minimax problem

- Suppose k-exact and $Y_{W^{\perp}}^{*}=I_{k}$
- Know $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)$ for $X^{*} \in \mathbb{R}^{(n-k) \times k} \longrightarrow$ replace $Y \mapsto\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$

$$
\left\langle M_{i}, Y\right\rangle+d_{i} \mapsto=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & C_{i}
\end{array}\right),\left(\begin{array}{rr}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}=: q_{i}(X)
$$

- Let $q_{i}(X):=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle\tilde{B}_{i}, X\right\rangle+\tilde{c}_{i}$

Deriving a strongly convex minimax problem

- Suppose k-exact and $Y_{W^{\perp}}^{*}=I_{k}$
- Know $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)$ for $X^{*} \in \mathbb{R}^{(n-k) \times k} \longrightarrow$ replace $Y \mapsto\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$

$$
\left\langle M_{i}, Y\right\rangle+d_{i} \mapsto=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & C_{i}
\end{array}\right),\left(\begin{array}{rr}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}=: q_{i}(X)
$$

- Let $q_{i}(X):=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle\tilde{B}_{i}, X\right\rangle+\tilde{c}_{i}$
- We have reduced SDP to QMP

$$
X^{*}=\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min }\left\{q_{\mathrm{obj}}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

Deriving a strongly convex minimax problem

- Suppose k-exact and $Y_{W^{\perp}}^{*}=I_{k}$
- Know $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)$ for $X^{*} \in \mathbb{R}^{(n-k) \times k} \longrightarrow$ replace $Y \mapsto\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$

$$
\left\langle M_{i}, Y\right\rangle+d_{i} \mapsto=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & C_{i}
\end{array}\right),\left(\begin{array}{rr}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}=: q_{i}(X)
$$

- Let $q_{i}(X):=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle\tilde{B}_{i}, X\right\rangle+\tilde{c}_{i}$
- We have reduced SDP to QMP

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min }\left\{q_{\mathrm{obj}}(X): q_{i}(X)=0, \forall i \in[m]\right\} \\
& =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q_{\mathrm{obj}}(X)+\sum_{i=1}^{m} \gamma_{i} q_{i}(X)
\end{aligned}
$$

Deriving a strongly convex minimax problem

- Suppose k-exact and $Y_{W^{\perp}}^{*}=I_{k}$
- Know $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)$ for $X^{*} \in \mathbb{R}^{(n-k) \times k} \longrightarrow$ replace $Y \mapsto\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$

$$
\left\langle M_{i}, Y\right\rangle+d_{i} \mapsto=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & C_{i}
\end{array}\right),\left(\begin{array}{cc}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}=: q_{i}(X)
$$

- Let $q_{i}(X):=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle\tilde{B}_{i}, X\right\rangle+\tilde{c}_{i}$
- We have reduced SDP to QMP

$$
\begin{array}{r}
X^{*}=\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min }\left\{q_{\mathrm{obj}}(X): q_{i}(X)=0, \forall i \in[m]\right\} \\
=\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} \underbrace{q_{\mathrm{obj}}(X)+\sum_{i=1}^{m} \gamma_{i} q_{i}(X)}_{=: q(\gamma, X)}
\end{array}
$$

Deriving a strongly convex minimax problem

- Suppose k-exact and $Y_{W^{\perp}}^{*}=I_{k}$
- Know $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)$ for $X^{*} \in \mathbb{R}^{(n-k) \times k} \longrightarrow$ replace $Y \mapsto\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$

$$
\left\langle M_{i}, Y\right\rangle+d_{i} \mapsto=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & C_{i}
\end{array}\right),\left(\begin{array}{rr}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}=: q_{i}(X)
$$

- Let $q_{i}(X):=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle\tilde{B}_{i}, X\right\rangle+\tilde{c}_{i}$
- We have reduced SDP to QMP

$$
\begin{aligned}
& X^{*}=\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min }\left\{q_{\mathrm{obj}}(X): q_{i}(X)=0, \forall i \in[m]\right\} \\
&=\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} \underbrace{q_{\mathrm{obj}}(X)+\sum_{i=1}^{m} \gamma_{i} q_{i}(X)}_{=: q(\gamma, X)}=\operatorname{tr}\left(X^{\top} A(\gamma) X\right)+\ldots
\end{aligned}
$$

Deriving a strongly convex minimax problem

- Note strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

Deriving a strongly convex minimax problem

- Note strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity

Deriving a strongly convex minimax problem

- Note strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & ={\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X)}=\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\Longrightarrow A\left(\gamma^{*}\right) \succ 0$

Deriving a strongly convex minimax problem

- Note strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & ={\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X)}=\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\Longrightarrow A\left(\gamma^{*}\right) \succ 0 \Longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex

Deriving a strongly convex minimax problem

- Note strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\Longrightarrow A\left(\gamma^{*}\right) \succ 0 \Longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex
- Cert. of strict complementarity: $\gamma^{*} \in \mathcal{U} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{U}$

Deriving a strongly convex minimax problem

- Note strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\Longrightarrow A\left(\gamma^{*}\right) \succ 0 \Longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex
- Cert. of strict complementarity: $\gamma^{*} \in \mathcal{U} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{U}$

$$
X^{*}=\underset{X \in \mathbb{R}^{(n-k) \times k} \times}{\arg \min } \max _{\gamma \in \mathcal{U}} q(\gamma, X)
$$

Deriving a strongly convex minimax problem

- Note strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\Longrightarrow A\left(\gamma^{*}\right) \succ 0 \Longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex
- Cert. of strict complementarity: $\gamma^{*} \in \mathcal{U} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{U}$

$$
X^{*}=\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \max _{\gamma \in \mathcal{U}} q(\gamma, X) \quad \text { (QMMP) }
$$

Deriving a strongly convex minimax problem

- Note strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\Longrightarrow A\left(\gamma^{*}\right) \succ 0 \Longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex
- Cert. of strict complementarity: $\gamma^{*} \in \mathcal{U} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{U}$

$$
X^{*}=\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \max _{\gamma \in \mathcal{U}} q(\gamma, X) \quad \text { (QMMP) }
$$

- Questions left:

Deriving a strongly convex minimax problem

- Note strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\Longrightarrow A\left(\gamma^{*}\right) \succ 0 \Longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex
- Cert. of strict complementarity: $\gamma^{*} \in \mathcal{U} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{U}$

$$
X^{*}=\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \max _{\gamma \in \mathcal{U}} q(\gamma, X) \quad \text { (QMMP) }
$$

- Questions left:
- How to construct the certificate \mathcal{U} ?

Deriving a strongly convex minimax problem

- Note strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\Longrightarrow A\left(\gamma^{*}\right) \succ 0 \Longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex
- Cert. of strict complementarity: $\gamma^{*} \in \mathcal{U} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{U}$

$$
X^{*}=\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \max _{\gamma \in \mathcal{U}} q(\gamma, X) \quad \text { (QMMP) }
$$

- Questions left:
- How to construct the certificate \mathcal{U} ?
- How to solve the strongly convex quadratic matrix minimax problem (QMMP)?

Algorithms

- Given \mathcal{U}, how to solve strongly convex QMMP

$$
\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \max _{\gamma \in \mathcal{U}} q(\gamma, X) ?
$$

Algorithms

- Given \mathcal{U}, how to solve strongly convex QMMP

$$
\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \max _{\gamma \in \mathcal{U}} q(\gamma, X) ?
$$

- Develop an inexact variant of Nesterov's accelerated gradient descent (AGD) method for minimax functions (each "prox-map" is a saddle point problem of its own)
\longrightarrow CautiousAGD:
$O\left(\epsilon^{-1 / 2} \log \left(\epsilon^{-1}\right)\right)$

Algorithms

- Given \mathcal{U}, how to solve strongly convex QMMP

$$
\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \max _{\gamma \in \mathcal{U}} q(\gamma, X) ?
$$

- Develop an inexact variant of Nesterov's accelerated gradient descent (AGD) method for minimax functions (each "prox-map" is a saddle point problem of its own)
\longrightarrow CautiousAGD:
$O\left(\epsilon^{-1 / 2} \log \left(\epsilon^{-1}\right)\right)$
- How to find the certificate \mathcal{U} ?

Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]

Algorithms

- Given \mathcal{U}, how to solve strongly convex QMMP

$$
\underset{X \in \mathbb{R}^{(n-k) \times k}}{\arg \min } \max _{\gamma \in \mathcal{U}} q(\gamma, X) ?
$$

- Develop an inexact variant of Nesterov's accelerated gradient descent (AGD) method for minimax functions (each "prox-map" is a saddle point problem of its own)
\longrightarrow CautiousAGD: $\quad O\left(\epsilon^{-1 / 2} \log \left(\epsilon^{-1}\right)\right)$
- How to find the certificate \mathcal{U} ?
- Generate $\gamma^{(i)} \rightarrow \gamma^{*}$ and neighborhoods $\mathcal{U}^{(i)} \subseteq\{\gamma: A(\gamma) \succeq 0\}$ and monitor convergence of CautiousAGD for QMMP with $\mathcal{U}^{(i)}$.
\longrightarrow CertSDP

Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]

CertSDP guarantees

Theorem

Given $\epsilon>0$, CertSDP produces iterates X_{t} such that

$$
\left\langle M_{\mathrm{obj}},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle \leq \mathrm{Opt}_{\mathrm{SDP}}+\epsilon \quad \text { and } \quad\left\|\left(\left\langle M_{i},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}\right)_{i}\right\|_{2} \leq \epsilon .
$$

after completing

- iteration count: $t \approx O(1)+O\left(\log \left(\epsilon^{-1}\right)\right)$

CertSDP guarantees

Theorem

Given $\epsilon>0$, CertSDP produces iterates X_{t} such that

$$
\left\langle M_{\mathrm{obj}},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle \leq \operatorname{Opt}_{\mathrm{SDP}}+\epsilon \quad \text { and } \quad\left\|\left(\left\langle M_{i},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}\right)_{i}\right\|_{2} \leq \epsilon .
$$

after completing

- iteration count: $t \approx O(1)+O\left(\log \left(\epsilon^{-1}\right)\right)$
- iteration complexity: $O\left(m \epsilon^{-1}\right)$ matrix-vector products per iteration

CertSDP guarantees

Theorem

Given $\epsilon>0$, CertSDP produces iterates X_{t} such that

$$
\left\langle M_{\mathrm{obj}},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle \leq \operatorname{Opt}_{\mathrm{SDP}}+\epsilon \quad \text { and } \quad\left\|\left(\left\langle M_{i},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}\right)_{i}\right\|_{2} \leq \epsilon .
$$

after completing

- iteration count: $t \approx O(1)+O\left(\log \left(\epsilon^{-1}\right)\right)$
- iteration complexity: $O\left(m \epsilon^{-1}\right)$ matrix-vector products per iteration
- storage: $O(m+n k)$ entries

A glimpse on numerical results

- Random instances of k-exact distance-minimization QMP

$$
\inf _{X \in \mathbb{R}^{(n-k) \times k}}\left\{\|X\|_{F}^{2}: q_{i}(X)=0, \forall i \in[m]\right\}
$$

with $k=m=10,(n-k)=10^{3}, 10^{4}, 10^{5}$ (10 instances per setting)

A glimpse on numerical results

- Random instances of k-exact distance-minimization QMP

$$
\inf _{X \in \mathbb{R}^{(n-k) \times k}}\left\{\|X\|_{F}^{2}: q_{i}(X)=0, \forall i \in[m]\right\}
$$

with $k=m=10,(n-k)=10^{3}, 10^{4}, 10^{5}$ (10 instances per setting)

Algorithm	time (s)	std.	$\left\\|X-X^{*}\right\\|_{F}^{2}$	std.	memory (MB)	std.
CertSDP	1.3×10^{3}	7.6×10^{2}	1.9×10^{-22}	4.2×10^{-23}	0.0	0.0
CSSDP	3.0×10^{3}	5.8×10^{-1}	7.3×10^{-2}	3.4×10^{-2}	0.0	0.0
SketchyCGAL	3.0×10^{3}	8.5	1.1	6.6×10^{-1}	1.0×10^{1}	1.0×10^{1}
ProxSDP	2.1×10^{2}	1.1×10^{1}	1.2×10^{-19}	3.2×10^{-19}	4.8×10^{1}	1.9×10^{1}
SCS	3.1×10^{3}	2.5×10^{1}	5.1×10^{-5}	9.5×10^{-5}	5.3×10^{2}	4.3×10^{1}

$$
n-k=10^{3} \text {, time limit } 3 \times 10^{3} \text { seconds }
$$

Related: Ding et al. [2021], Yurtsever et al. [2021], Souto et al. [2020], O'Donoghue et al. [2016]

A glimpse on numerical results

- Random instances of k-exact distance-minimization QMP

$$
\inf _{X \in \mathbb{R}^{(n-k) \times k}}\left\{\|X\|_{F}^{2}: q_{i}(X)=0, \forall i \in[m]\right\}
$$

with $k=m=10,(n-k)=10^{3}, 10^{4}, 10^{5}$ (10 instances per setting)

Algorithm	time (s)	std.	$\left\\|X-X^{*}\right\\|_{F}^{2}$	std.	memory (MB)	std.
CertSDP	4.5×10^{3}	7.0×10^{2}	1.9×10^{-22}	5.2×10^{-23}	8.5	1.2×10^{1}
CSSDP	1.0×10^{4}	6.6×10^{-1}	2.7	9.4×10^{-1}	6.2	1.5×10^{1}
SketchyCGAL	9.7×10^{3}	1.8×10^{2}	4.0	1.4	2.7×10^{1}	2.2×10^{1}
ProxSDP	1.2×10^{4}	1.1×10^{2}	2.9	9.9×10^{-1}	1.9×10^{4}	1.2×10^{2}

$$
n-k=10^{4}, \text { time limit } 10^{4} \text { seconds }
$$

Related: Ding et al. [2021], Yurtsever et al. [2021], Souto et al. [2020], O'Donoghue et al. [2016]

A glimpse on numerical results

- Random instances of k-exact distance-minimization QMP

$$
\inf _{X \in \mathbb{R}^{(n-k) \times k}}\left\{\|X\|_{F}^{2}: q_{i}(X)=0, \forall i \in[m]\right\}
$$

with $k=m=10,(n-k)=10^{3}, 10^{4}, 10^{5}(10$ instances per setting $)$

Algorithm	time (s)	std.	$\left\\|X-X^{*}\right\\|_{F}^{2}$	std.	memory (MB)	std.
CertSDP	5.0×10^{4}	6.2×10^{2}	2.5×10^{-2}	6.5×10^{-2}	2.3×10^{2}	2.0×10^{2}
CSSDP	5.0×10^{4}	4.7	2.8	5.1×10^{-1}	2.0×10^{2}	2.5×10^{2}
SketchyCGAL	4.7×10^{4}	3.3×10^{3}	4.0	2.1	3.7×10^{2}	2.0×10^{2}

$$
n-k=10^{5}, \text { time limit } 5 \times 10^{4} \text { seconds }
$$

Summary

- SDPs provide exact reformulations for broad classes of QCQPs and QMPs (especially when constraints interact nicely and there are large amounts of symmetry)

Summary

- SDPs provide exact reformulations for broad classes of QCQPs and QMPs (especially when constraints interact nicely and there are large amounts of symmetry)
- Rank-k exact SDPs can be solved very efficiently via first-order methods

Summary

- SDPs provide exact reformulations for broad classes of QCQPs and QMPs (especially when constraints interact nicely and there are large amounts of symmetry)
- Rank-k exact SDPs can be solved very efficiently via first-order methods
- Future directions:

Summary

- SDPs provide exact reformulations for broad classes of QCQPs and QMPs (especially when constraints interact nicely and there are large amounts of symmetry)
- Rank-k exact SDPs can be solved very efficiently via first-order methods
- Future directions:
- Can we approach approximation quality similarly?

Summary

- SDPs provide exact reformulations for broad classes of QCQPs and QMPs (especially when constraints interact nicely and there are large amounts of symmetry)
- Rank-k exact SDPs can be solved very efficiently via first-order methods
- Future directions:
- Can we approach approximation quality similarly?
- Can these tools for proving exactness guide us to design better convex relaxations?

Summary

- SDPs provide exact reformulations for broad classes of QCQPs and QMPs (especially when constraints interact nicely and there are large amounts of symmetry)
- Rank-k exact SDPs can be solved very efficiently via first-order methods
- Future directions:
- Can we approach approximation quality similarly?
- Can these tools for proving exactness guide us to design better convex relaxations?

Summary

- SDPs provide exact reformulations for broad classes of QCQPs and QMPs (especially when constraints interact nicely and there are large amounts of symmetry)
- Rank-k exact SDPs can be solved very efficiently via first-order methods
- Future directions:
- Can we approach approximation quality similarly?
- Can these tools for proving exactness guide us to design better convex relaxations?
- More generally, exactness \approx efficiency?

Summary

- SDPs provide exact reformulations for broad classes of QCQPs and QMPs (especially when constraints interact nicely and there are large amounts of symmetry)
- Rank-k exact SDPs can be solved very efficiently via first-order methods
- Future directions:
- Can we approach approximation quality similarly?
- Can these tools for proving exactness guide us to design better convex relaxations?
- More generally, exactness \approx efficiency?
- Can we develop efficient algorithms for SDPs admitting approximately low-rank solutions?

Thank you!

Questions?

References I

Anstreicher, K. M. (2017). Kronecker product constraints with an application to the two-trust-region subproblem. SIAM Journal on Optimization, 27(1):368-378.
Argue, C., K.-K., F., and Wang, A. L. (2022+). Necessary and sufficient conditions for rank-one generated cones. Math. Oper. Res., Forthcoming, (arXiv:2007.07433).
Azuma, G., Fukuda, M., Kim, S., and Yamashita, M. (2022a). Exact sdp relaxations for quadratic programs with bipartite graph structures. Journal of Global Optimization, pages 1-21.
Azuma, G., Fukuda, M., Kim, S., and Yamashita, M. (2022b). Exact sdp relaxations of quadratically constrained quadratic programs with forest structures. Journal of Global Optimization, pages 1-20.
Barvinok, A. I. (2001). A remark on the rank of positive semidefinite matrices subject to affine constraints.
Beck, A. (2007). Quadratic matrix programming. SIAM J. Optim., 17(4):1224-1238.
Beck, A., Drori, Y., and Teboulle, M. (2012). A new semidefinite programming relaxation scheme for a class of quadratic matrix problems. Oper. Res. Lett., 40(4):298-302.
Ben-Tal, A. and den Hertog, D. (2014). Hidden conic quadratic representation of some nonconvex quadratic optimization problems. Math. Program., 143:1-29.

References II

Bomze, I. M., Jeyakumar, V., and Li, G. (2018). Extended trust-region problems with one or two balls: exact copositive and lagrangian relaxations. J. Global Optim., 71(3):551-569.
Boumal, N., Voroninski, V., and Bandeira, A. (2016). The non-convex Burer-Monteiro approach works on smooth semidefinite programs. volume 29.
Boumal, N., Voroninski, V., and Bandeira, A. S. (2020). Deterministic guarantees for burer-monteiro factorizations of smooth semidefinite programs. Communications on Pure and Applied Mathematics, 73(3):581-608.
Burer, S. (2015). A gentle, geometric introduction to copositive optimization. Math. Program., 151:89-116.
Burer, S. (2023). A slightly lifted convex relaxation for nonconvex quadratic programming with ball constraints. arXiv preprint arXiv:2303.01624.
Burer, S. and Anstreicher, K. M. (2013). Second-order-cone constraints for Extended Trust-Region Subproblems. SIAM J. Optim., 23(1):432-451.
Burer, S. and Monteiro, R. D. (2003). A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program., 95:329-357.

References III

Burer, S. and Ye, Y. (2019). Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs. Math. Program., 181:1-17.
Carmon, Y. and Duchi, J. C. (2018). Analysis of Krylov subspace solutions of regularized nonconvex quadratic problems. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, pages 10728-10738.
Devolder, O., Glineur, F., and Nesterov, Y. (2013). First-order methods with inexact oracle: the strongly convex case. Technical Report 2013016.
Devolder, O., Glineur, F., and Nesterov, Y. (2014). First-order methods of smooth convex optimization with inexact oracle. Math. Program., 146(1):37-75.
Ding, L., Yurtsever, A., Cevher, V., Tropp, J. A., and Udell, M. (2021). An optimal-storage approach to semidefinite programming using approximate complementarity. SIAM J. Optim., 31(4):2695-2725.
Ekeland, I. and Temam, R. (1999). Convex Analysis and Variational Problems, volume 28 of Classics Appl. Math. SIAM.
Fradkov, A. L. and Yakubovich, V. A. (1979). The S-procedure and duality relations in nonconvex problems of quadratic programming. Vestnik Leningrad Univ. Math., 6:101-109.

References IV

Fujie, T. and Kojima, M. (1997). Semidefinite programming relaxation for nonconvex quadratic programs. J. Global Optim., 10(4):367-380.
Hazan, E. and Koren, T. (2016). A linear-time algorithm for trust region problems. Math. Program., 158:363-381.
Ho-Nguyen, N. and K.-K., F. (2017). A second-order cone based approach for solving the Trust Region Subproblem and its variants. SIAM J. Optim., 27(3):1485-1512.
Jeyakumar, V. and Li, G. Y. (2014). Trust-region problems with linear inequality constraints: Exact SDP relaxation, global optimality and robust optimization. Math. Program., 147:171-206.
Jiang, R. and Li, D. (2019). Novel reformulations and efficient algorithms for the Generalized Trust Region Subproblem. SIAM J. Optim., 29(2):1603-1633.
Jiang, R. and Li, D. (2020). A linear-time algorithm for generalized trust region problems. SIAM J. Optim., 30(1):915-932.
K.-K., F. and Wang, A. L. (2021). Exactness in SDP relaxations of QCQPs: Theory and applications. Tut. in Oper. Res. INFORMS.
Kelly, S., Ouyang, Y., and Yang, B. (2022). A note on semidefinite representable reformulations for two variants of the trust-region subproblem. Manuscript, School of Mathematical and Statistical Sciences, Clemson University, Clemson, South Carolina, USA.

References V

Locatelli, M. (2016). Exactness conditions for an SDP relaxation of the extended trust region problem. Oper. Res. Lett., 10(6):1141-1151.
Locatelli, M. (2022). Kkt-based primal-dual exactness conditions for the shor relaxation. Journal of Global Optimization, pages 1-17.
Nesterov, Y. (2005). Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim., 16(1):235-249.
Nesterov, Y. (2018). Lectures on convex optimization, volume 137 of Springer Optimization and Its Applications. Springer.
O'Donoghue, B., Chu, E., Parikh, N., and Boyd, S. (2016). Conic optimization via operator splitting and homogeneous self-dual embedding. Journal of Optimization Theory and Applications, 169(3):1042-1068.
Pataki, G. (1998). On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res., 23(2):339-358.
Sojoudi, S. and Lavaei, J. (2014). Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure. SIAM J. Optim., 24(4):1746-1778.

References VI

Souto, M., Garcia, J. D., and Veiga, A. (2020). Exploiting low-rank structure in semidefinite programming by approximate operator splitting. Optimization, pages 1-28.
Sturm, J. F. and Zhang, S. (2003). On cones of nonnegative quadratic functions. Math. Oper. Res., 28(2):246-267.
Wang, A. L. and K.-K., F. (2020). A geometric view of SDP exactness in QCQPs and its applications. arXiv preprint, 2011.07155.
Wang, A. L. and K.-K., F. (2022a). Accelerated first-order methods for a class of semidefinite programs. arXiv preprint, 2206.00224.
Wang, A. L. and K.-K., F. (2022b). The generalized trust region subproblem: solution complexity and convex hull results. Math. Program., 191:445-486.
Wang, A. L. and K.-K., F. (2022c). On the tightness of SDP relaxations of QCQPs. Math. Program., 193:33-73.
Wang, A. L., Lu, Y., and K.-K., F. (2023+). Implicit regularity and linear convergence rates for the generalized trust-region subproblem. SIAM J. Optim., Forthcoming, (arXiv:2112.13821).
Yakubovich, V. A. (1971). S-procedure in nonlinear control theory. Vestnik Leningrad Univ. Math., pages 62-77.

References VII

Yang, B., Anstreicher, K., and Burer, S. (2018). Quadratic programs with hollows. Math. Program., 170:541-553.

Yildıran, U. (2009). Convex hull of two quadratic constraints is an LMI set. IMA J. Math. Control Inform., 26(4):417-450.
Yurtsever, A., Tropp, J. A., Fercoq, O., Udell, M., and Cevher, V. (2021). Scalable semidefinite programming. SIAM Journal on Mathematics of Data Science, 3(1):171-200.

[^0]: Related: Fujie and Kojima [1997]

[^1]: Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020]

[^2]: Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020]

[^3]: Related: Carmon and Duchi [2018]

[^4]: Related: Carmon and Duchi [2018]

[^5]: Related: Carmon and Duchi [2018]

