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Recap: QCQP and its SDP relaxation
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Recap: forms of exactness

What does exactness mean?
Objective value exactness: Opt = OptSDP

Optimizer exactness: argminOpt = argminOptSDP

Convex hull exactness: conv(D) = DSDP  � convexification of substructures

Rank-one generated (ROG) property:

“SDP exactness that is oblivious to the objective function”
�! exactness in the lifted SDP space
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Today’s outline

Rank-one generated (ROG) property of SDPs
Sufficient (necessary) conditions
Examples

Exactness in the original space
Convex hull
Objective value

Efficient algorithms for solving SDPs
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Exactness in the lifted SDP space: ROG property

References:
Argue, C., K.-K., F., and Wang, A. L. (2022+). Necessary and sufficient conditions for rank-one generated cones.
Math. Oper. Res., Forthcoming, (arXiv:2007.07433)

K.-K., F. and Wang, A. L. (2021). Exactness in SDP relaxations of QCQPs: Theory and applications. Tut. in Oper.

Res. INFORMS
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Recap: ROG

Given M ✓ Sn+1, define S(M) :=
�
Z 2 Sn+1

+ : hM,Zi  0, 8M 2M
 

Definition
A closed cone S ✓ Sn+1

+ is rank-one generated (ROG) if

S = conv

⇣
S \

n
zz

>
: z 2 Rn+1

o⌘
.

Equivalently, if all extreme rays are generated by rank-one matrices.

Analogy: (Integer programs, integral polyhedra) ⇡ (QCQPs, ROG)
ROG implies exactness (objective value and convex hull via the projected SDP)
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ROG

S(M) :=
�
Z 2 Sn+1

+ : hM,Zi  0, 8M 2M
 

Well-known ROG sets:
Positive semidefinite cone Sn+1

+ itself!
Any single linear matrix inequality (LMI) or equation (LME):

Theorem (S-lemma)
S({M}) for any M 2 Sn+1 is ROG.
[Fradkov and Yakubovich, 1979, Sturm and Zhang, 2003]
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When is S(M) ROG?

Question: for what M ✓ Sn+1 is S(M) ROG?

Can we analyze ROG property of S(M) from ROG property of

T (M) :=
�
Z 2 Sn+1

+ : hM,Zi = 0, 8M 2M
 
?

Caveat:

When M is finite, S(M) can be “lifted” into T (M0
). But, ROG property is not

necessarily preserved in such liftings.
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Facial structure

S(M) =
�
Z 2 Sn+1

+ : hM,Zi  0, 8M 2M
 

T (M) =
�
Z 2 Sn+1

+ : hM,Zi = 0, 8M 2M
 

Proposition

S(M) is ROG every face of S(M) is ROG

S(M) is ROG T (M) is ROG
6(=

When M is compact,

S(M) is ROG 8? 6= M0 ✓M, S(M) \ T (M0
) is ROG

When M is finite, 8M0 ✓M, T (M0
) is ROG S(M) is ROG
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Facial structure! sufficient conditions

|M| = 1, then both S(M) and T (M) are ROG (S-lemma)

Not necessarily true if |M| � 2

Two LMIs hM1, Zi  0 and hM2, Zi  0 are “non-interacting” when

9(↵1,↵2) 6= (0, 0), ↵1M1 + ↵2M2 ⌫ 0

Lemma
If every pair (Mi,Mj) is “non-interacting” in M = {M1, . . . ,Mk}, then T (M) and S(M) are
ROG.

S2+

I2
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The ROG property and solutions to quadratic systems

Let E(Z,M) :=
�
z 2 Rn+1

: hM,Zi  z
>
Mz  0, 8M 2M

 

Proposition

S(M) is ROG ()
for all nonzero Z 2 S(M),

range(Z) \ E(Z,M) 6= {0}

T (M) is ROG ()
for all nonzero Z 2 T (M),

range(Z) \N (M) 6= {0} ,

where N (M) :=
�
z 2 Rn+1

: z
>
Mz = 0, 8M 2M

 

N (M) ✓ E(Z,M) for all Z 2 S(M)

Suffices to check these for all Z with rank(Z) � 2
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Sufficient conditions - II

Both S(M) and T (M) are ROG when

For all Z 2 T (M) with rank � 2, range(Z) \N (M) 6= {0}
E.g., when N (M) contains a hyperplane a

?
:=

�
⇠ 2 Rn+1

: a
>
⇠ = 0

 

N ({M}) contains a
?

() M = ab
>
+ ba

> for some b 2 Rn+1

Proposition
Let a 2 Rn+1, B ✓ Rn+1 and M :=

�
ab

>
+ ba

>
: b 2 B

 
. Then, both S(M) and

T (M) are ROG.

For any closed convex cone K ✓ Rn+1
=)

n
Z 2 Sn+1

+ : Za 2 K
o

is ROG.
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Summary for two LMIs

S({M1,M2}) =
�
Z 2 Sn+1

+ : hM1, Zi  0, hM2, Zi  0
 

Theorem
S({M1,M2}) is ROG if at least one of the following holds

1 9(↵1,↵2) 6= (0, 0) s.t. ↵1M1 + ↵2M2 ⌫ 0,
2 9a, b1, b2 2 Rn+1 s.t. M1 = ab

>
1 + b1a

> and M2 = ab
>
2 + b2a

>.

Complete characterization of ROG property in the case of two LMIs (c.f.,
S-lemma).
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What other sets are ROG?

ROG property is extensively studied in the context of Trust-region
subproblem (TRS) and its variants
[Sturm and Zhang, 2003], [Burer, 2015] and references therein, [Yang et al., 2018]

(TRS): inf
x2Rn

�
x
>
Aobjx+ 2b

>
objx : kxk2  1

 

= inf
x2Rn

⇢⌧
Mobj,

✓
xx

>
x

x
>

1

◆�
: tr(xx

>
)� 1  0

�

= inf
z2Rn+1

�⌦
Mobj, zz

>↵
: zn+1 = 1,

⌦
L, zz

>↵  0
 
, where L := Diag(1, . . . , 1,�1)

= inf
z2Rn+1,Z2Sn+1

�
hMobj, Zi : Zn+1,n+1 = 1, hL,Zi  0, Z = zz

> 

� inf
Z2Sn+1

{hMobj, Zi : Zn+1,n+1 = 1, hL,Zi  0, Z ⌫ 0}
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Trust region subproblem

(TRS): inf
z2Rn+1,Z2Sn+1

�
hMobj, Zi : Zn+1,n+1 = 1, hL,Zi  0, Z = zz

> 

� inf
Z2Sn+1

{hMobj, Zi : Zn+1,n+1 = 1, hL,Zi  0, Z ⌫ 0} ,

where L := Diag(1, . . . , 1,�1).

Theorem ([Sturm and Zhang, 2003])

cl conv
�
zz

>
:
⌦
L, zz

>↵  0
 
=
�
Z 2 Sn+1

+ : hL,Zi  0
 
= S({L}).

(recall S({L}) is ROG).
Furthermore,

cl conv
�
(x, xx

>
) : kxk2  1

 

=

⇢
(x,X) : 9Z =

✓
X x

x
>

1

◆
, Zn+1,n+1 = 1, hL,Zi  0, Z ⌫ 0

�
.
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Extended TRS

Extended TRS:

(e-TRS): inf
x2Rn

8
>>>><

>>>>:

x
>
Aobjx+ 2b

>
objx : kxk2  1, c

>
i

✓
x

1

◆

|{z}
:= z

� 0, 8i 2 [m]

9
>>>>=

>>>>;

= inf
z2Rn+1

8
<

:
⌦
Mobj, zz

>↵
: zn+1 = 1, k

=xz }| {
(z1, . . . , zn) k2  1, c

>
i z � 0, 8i 2 [m]

9
=

;

= inf
z2Rn+1,Z2Sn+1

�
hMobj, Zi : Zn+1,n+1 = 1, hL,Zi  0, c

>
i z � 0, 8i 2 [m], Z = zz

> 

? =? inf
z2Rn+1,Z2Sn+1

�
hMobj, Zi : Zn+1,n+1 = 1, hL,Zi  0, c

>
i z � 0, 8i 2 [m], Z ⌫ zz

> 

Not really! We need a stronger relaxation.
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How to strengthen the standard SDP relaxation?

(e-TRS) = inf
z2Rn+1

�⌦
Mobj, zz

>↵
: zn+1 = 1, k(z1, . . . , zn)k2  1, c

>
i z � 0, 8i 2 [m]

 

Linear RLT: c
>
1 z � 0

c
>
2 z � 0

)
=) c

>
1 zz

>
c2 � 0 =) c

>
1 Zc2 � 0

Ln+1
:=
�
z 2 Rn+1

: zn+1 � k(z1, . . . , zn)k2
 

denote the SOC in Rn+1. Then,

(e-TRS) = inf
z2Rn+1

n⌦
Mobj, zz

>↵
: zn+1 = 1, z 2 Ln+1

, c
>
i z � 0, 8i 2 [m]

o

SOC RLT: c
>
1 z � 0

z 2 Ln+1

)
=) zz

>
c1 2 Ln+1

=) Zc1 2 Ln+1
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ROG characterization of (e-TRS)

(e-TRS) = inf
z2Rn+1

�⌦
Mobj, zz

>↵
: zn+1 = 1, z 2 Ln+1

, c
>
i z � 0, 8i 2 [m]

 

Theorem ([Burer and Anstreicher, 2013, Burer, 2015] and references therein)
Suppose c

>
i z � 0 for i 2 [m] are s.t. whenever z̄ is feasible to (e-TRS) and c

>
` z̄ = 0

for some ` 2 [m], then c
>
j z̄ � 0 for all j 2 [m]. Then, the set

n
Z 2 Sn+1

+ : hL,Zi  0, Zci 2 Ln+1
, 8i 2 [m], c

>
i Zcj � 0, 8i, j 2 [m]

o

is ROG and it is equal to conv
�
zz

>
: z 2 Ln+1

, c
>
i z � 0, 8i 2 [m]

 
.
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Intersection of two Euclidean balls

ROG characterization of the intersection of two Euclidean balls is studied in
[Kelly et al., 2022, Burer, 2023]

(tb-TRS) = inf
x2Rn

�
x
>
Aobjx+ 2b

>
objx : kxk2  1, kx� ck2  r̃

 

= inf
x2Rn

�
x
>
Aobjx+ 2b

>
objx : kxk22  1, kxk22 � 2c

>
x+ kck22  r̃

 

= inf
x2Rn

8
<

:x
>
Aobjx+ 2b

>
objx : kxk22  min

8
<

:1, 2c
>
x�kck22 + r̃| {z }

:=r

9
=

;

9
=

;

= inf
x2Rn,t2R

�
x
>
Aobjx+ 2b

>
objx : kxk22  t, t = min

�
1, 2c

>
x+ r

  

Theorem ([Burer, 2023], informal)
Consider (tb-TRS) in the (x, t) space. Then, its strengthened S(M) set which contains

1 LMI from the norm constraint, 2 SOC-RLT constraints, and 1 LME from the linear RLT,
is ROG.
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What about nonconvex quadratics?

Theorem ([Yang et al., 2018], informal)
Consider the intersection of

“ball": kxk2  1

“cuts": Cx � d

“holes": x>
Aix+ 2b

>
i x+ ci � 0, where each Ai � 0, for all i 2 [k].

If none of the cuts and holes touch each other, then the strengthened S(M) set which
contains

1 LMI from the norm constraint,

all SOC-RLT and linear RLT constraints from the cuts, and

all LMIs hAi, Xi+ 2b
>
i x+ ci � 0 from the holes,

is ROG.
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Open questions

Here is a deceivingly simple looking open question:

Open question
Given A 2 Rm⇥n and c 2 Rm, what is the set S(M) that gives the ROG
characterization of

{x 2 Rn
: kxk2  1, kAx� ck2  r̃}?

Kronecker RLT constraints? [Anstreicher, 2017]

What about cuts? holes?
Fejes-Tóth conjecture (1964) (one of Kurt Anstreicher’s favorite open problems that can
significantly simplify the proof of Kepler conjecture)
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Simple ROG preserving operations

Lemma
Suppose

M =
S

↵2F M↵ for some family of matrices {M↵}↵2F , and

S(M↵) is ROG for every ↵ 2 F .

Then, S(M) is ROG iff extr(S(M)) ✓
T

↵2F extr(S(M↵)).

Lemma
Suppose

M =
Sk

i=1 Mi, i.e., a finite union of compact sets, and

the following “non-interacting” assumption holds:
for all 0 6= Z 2 Sn+1

+ and i 2 [k], if hMi, Zi = 0 for some Mi 2Mi, then hM,Zi < 0

for all M 2M\Mi.

Then, S(M) is ROG iff S(Mi) is ROG for all i 2 [k].
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Summary of the ROG property

ROG property implies (closed) convex hull exactness for any⇤ objective function

Other applications (e.g., minimizing ratios of quadratic functions, PSD matrix
completion, . . . )
Sufficient conditions based on “non-interacting” or “solutions to quadratic
systems”
Complete characterization of when S({M1,M2}) is ROG
Toolkit for ROG property
Many ROG sets arising from variants of TRS. . .
Many more open questions about ROG characterizations of sets defined by
quadratics. . .
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Exactness in the original space

References:
Wang, A. L. and K.-K., F. (2022c). On the tightness of SDP relaxations of QCQPs. Math. Program., 193:33–73

Wang, A. L. and K.-K., F. (2020). A geometric view of SDP exactness in QCQPs and its applications. arXiv preprint,

2011.07155
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The QCQP epigraph

QCQP epigraph D :=

(
(x, t) 2 Rn+1

:
qobj(x)  t

qi(x)  0, 8i 2 [m]

)

D q(�, x)  tq(�
0
, x)  t

How can we derive convex relaxations of D?

Lagrangian aggregation!

For any � 2 Rm
+ , the aggregated inequality

qobj(x) +

mX

i=1

�iqi(x)

| {z }
=: q(�, x)

 t

is valid for all (x, t) 2 D.
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SDP relaxation is Lagrangian aggregation

Assumption
Dual strict feasibility holds, i.e., 9�⇤ 2 Rm

+ s.t. Aobj +
P

i2[m] �
⇤
i Ai � 0.

Opt = inf
x2Rn

{qobj(x) : qi(x)  0, 8i 2 [m]}

= inf
x2Rn

�
x
>
Aobjx+ 2b

>
objx+ cobj : x

>
Aix+ 2b

>
i x+ ci  0, 8i 2 [m]

 

� inf
x2Rn,X2Sn

(
hAobj, Xi+ 2b

>
objx+ cobj :

X � xx
> ⌫ 0

hAi, Xi+ 2b
>
i x+ ci  0, 8i 2 [m]

)

= inf
x2Rn

inf
X2Sn

. . .

= inf
x2Rn

sup
�2�1

q(�, x) = OptSDP

where �1 :=

(
� 2 Rm

+ : Aobj +

mX

i=1

�iAi ⌫ 0

)

=
�
� 2 Rm

+ : q(�, x) is convex in x
 

Related: Fujie and Kojima [1997]
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Revisiting the SDP relaxation

OptSDP = inf
x2Rn

sup
�2�1

q(�, x) where �1 =

(
� 2 Rm

+ : Aobj +

mX

i=1

�iAi ⌫ 0

)

Define � :=

(
(�obj, �) 2 R1+m

+ : �objAobj +

mX

i=1

�iAi ⌫ 0

)
, i.e., � = cl cone {(1, �) : � 2 �1}

Then, DSDP :=

\

(�obj,�)2�

(
(x, t) : �obj(qobj(x)� t) +

mX

i=1

�iqi(x)  0

)

Projected SDP relaxation = impose all convex aggregated inequalities!

DSDP = \ \ \
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Rewriting SDP in terms of �

Lemma

DSDP =

⇢
(x, t) :

⌧✓
�obj

�

◆
,

✓
qobj(x)� t

q(x)

◆�
 0, 8

✓
�obj

�

◆
2 �

�

=

⇢
(x, t) :

✓
qobj(x)� t

q(x)

◆
2 �

�
�
,

where �
� is the polar cone of �.

For a cone K, the polar cone K� := {⇠ : h⇠, ⇣i  0, 8⇣ 2 K}

DSDP

(x, t)
�

�
�

✓
qobj(x)� t

q(x)

◆
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Convex hull exactness

conv(D)
?
= DSDP

DSDP

D

conv(D) = DSDP ()

“Given any point in DSDP \D, there
exists a direction such that we can
move forward and backward inside
DSDP”

When do these “rounding” directions exist?

 � Can carry out this idea for
QCQPs!
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Faces of � and ��

Recall DSDP =

⇢
(x, t) :

✓
qobj(x)� t

q(x)

◆
2 �

�
�
.

✓
qobj(x̂)� t̂

q(x̂)

◆

�

�
�

G

F := � \
✓
qobj(x̂)� t̂

q(x̂)

◆?

conv(D) = DSDP

() 8(x̂, t̂) 2 DSDP \ D, 9(x0
, t

0
) 6= 0 s.t.

✓
qobj(x̂± ↵x

0
)� (t̂± ↵t

0
)

q(x̂± ↵x
0
)

◆
2 �

� for some ↵ > 0.

Let G(x̂, t̂) denote the minimal face of �� containing
✓
qobj(x̂)� t̂

q(x̂)

◆
.
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Sufficient condition for convex hull exactness

Given (x̂, t̂) 2 DSDP, look for a subset of directions (x
0
, t

0
) s.t.⇥

(x̂, t̂)± ↵(x
0
, t

0
)
⇤
2 DSDP for some ↵ > 0

Theorem
If for every (x̂, t̂) 2 DSDP \ D, the set

R0
(x̂, t̂) :=

⇢
(x

0
, t

0
) 2 Rn+1

:

✓
qobj(x̂+ ↵x

0
)� (t̂+ ↵t

0
)

q(x̂+ ↵x
0
)

◆
2 span(G(x̂, t̂)), 8↵ 2 R

�
.

is nontrivial, then conv(D) = DSDP.

Whenever �� is facially exposed (e.g., whenever �� is polyhedral), this
condition identifies all rounding directions:

=) This sufficient condition becomes also necessary.
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Sufficient condition for convex hull exactness

When �
� is facially exposed, R0

(x, t) admits further simplification.

For example,

Proposition
Suppose � is strictly feasible. Consider any (x, t) 2 DSDP with t = sup�2�1

q(�, x),
and let (1, f) 2 rint(F(x, t)).
If � is polyhedral, then

R0
(x, t) =

(
(x

0
, t

0
) 2 Rn+1

:
x
0 2 ker(A(f)),

hb(�), x0i � t
0
= 0, 8(1, �) 2 F(x, t)

)
.
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Example: SDP convex hull exactness for m = 2

Consider X = {x : qi(x)  0, 8i 2 [2]}, i.e., qobj = 0 and m = 2.

Then, D = X ⇥ R+ and DSDP = XSDP ⇥ R+.

Proposition

Suppose 9�⇤ 2 R2
+ s.t. �⇤1A1 + �

⇤
2A2 � 0, and let �(1), �(2) 2 R2

+ be generators
of �1.
Suppose X is strictly feasible and q1, q2 are both nonconvex.
Then, cl conv(X ) = XSDP if and only if for both i = 1, 2, we have that

ker(A(�
(i)
)) \ b(�

(i)
)
? is nontrivial.

Related: Yıldıran [2009]
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Example: QCQPs with symmetry

Convex hull exactness in the case of “highly symmetric” QCQPs, a.k.a.,
quadratic matrix programs (QMPs):

x 2 Rn �! X 2 Rn⇥k and

x
>
Ax+ 2b

>
x+ c �! tr

�
X

>AX
�
+ 2 hB,Xi+ c

=: qi(X)

Related: Beck [2007], Beck et al. [2012]
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General QMP: min
X2Rn⇥k

{qobj(X) : qi(X)  0, 8i 2 [m]}

Applications:
Robust least squares, sphere packing problems, QCQPs with spherical
constraints, orthogonal Procrustes problem

Related: Beck [2007], Beck et al. [2012]
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X

>AX
�
+ 2 hB,Xi+ c =: qi(X)

General QMP: min
X2Rn⇥k

{qobj(X) : qi(X)  0, 8i 2 [m]}

Can be written as a QCQP by defining Aobj = Ik ⌦ Aobj, Ai = Ik ⌦ Ai 8i 2 [m]

A = Ik ⌦ A =

0

B@
A

.
.
.

A

1

CA

Convex hull exactness holds whenever k � m

Related: Beck [2007], Beck et al. [2012]
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Sufficient condition for objective value exactness

Objective value exactness has been studied a lot:
TRS and S-lemma
[Yakubovich, 1971]

Extended TRS
[Jeyakumar and Li, 2014, Ben-Tal and den Hertog, 2014, Locatelli, 2016, Ho-Nguyen and K.-K.,
2017, Bomze et al., 2018]

Sign-definite SDPs
[Sojoudi and Lavaei, 2014]

SDPs with simultaneously diagonalizable matrices
[Burer and Ye, 2019, Locatelli, 2022]

SDPs with certain sparsity patterns (forest, bipartite)
[Azuma et al., 2022b,a]

. . .
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Sufficient condition for objective value exactness

Give primal and also dual sufficient conditions for optimizer exactness, i.e.,
argmin

(x,t)2D
t = argmin

(x,t)2DSDP

t.

Dual sufficient condition originates from
OptSDP = inf

x2Rn
sup
�2�1

{q(�, x)}

= sup
�2�1

inf
x2Rn

{q(�, x)}
| {z }

:= d(�)

= sup
�2�1

d(�).

(by coercivity [Ekeland and Temam, 1999])

Theorem
Suppose sup�2�1

d(�) is achieved at some �
⇤ for which Aobj +A(�

⇤
) � 0. Then,

argmin(x,t)2D t = argmin(x,t)2DSDP
t.

Related: [Burer and Ye, 2019, Locatelli, 2022]
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Summary of exactness in the original space

Sufficient conditions for convex hull exactness

Necessary and sufficient if � is polyhedral (dual facially exposed)

Sufficient conditions for objective value exactness
Further applications:

Diagonal QCQPs with sign-definite linear terms, QCQPs with centered
constraints and polyhedral �, QCQPs with spherical constraints, random and
semi-random QCQPs, ratios of quadratic functions

SDPs provide exact reformulations for broad classes of QCQPs!
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Efficient algorithms for exact SDPs

References:
Wang, A. L., Lu, Y., and K.-K., F. (2023+). Implicit regularity and linear convergence rates for the generalized
trust-region subproblem. SIAM J. Optim., Forthcoming, (arXiv:2112.13821)

Wang, A. L. and K.-K., F. (2022a). Accelerated first-order methods for a class of semidefinite programs. arXiv

preprint, 2206.00224
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Solving the SDP relaxation

SDPs can be solved in polynomial time

 � too expensive in modern applications

Usual SDP relaxation in x 2 Rn and X 2 Sn

�! O(n
2
) variables

Classical interior point methods:

�! iterations are too expensive requiring O(mn
3
+m

2
n
2
+m

3
) operations (time)

and O(n
2
+m

2
) storage

High storage requirements and expensive iterations led to alternative approaches:

�! Burer-Monteiro method: [Burer and Monteiro, 2003], extremely popular in ML. . .

Motivation: For a primal SDP (P ) with m LMEs, 9an optimal solution Z
⇤ with

rank(Z
⇤
) 

⌃p
2m
⌥

[Pataki, 1998, Barvinok, 2001]

Main Idea: Solve (P ) as an NLP by replacing Z with V V
> where V has at least⌃p

2m
⌥

columns
Recent theory showing that under some regularity conditions, for almost all
objective functions, B-M method finds the global optimum. [Boumal et al., 2016,
2020]
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Solving the SDP relaxation

We can solve an SDP more efficiently and with O(kn+m) storage if it is
rank-k-exact (regular)!

Recall OptSDP := inf
x2Rn

 
sup
�2�1

q(�, x)

!

This is a minimization problem in the original space �! n variables
Exactness (regularity) will allow us to efficiently deal with max-type obj.
structure
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Linear-time algorithm for the Generalized TRS

Generalized TRS: Opt = inf
x2Rn

�
qobj(x) : q1(x)  0

 

Recall convex hull exactness holds: conv(D) = DSDP =

⇢
(x, t) : sup

�2�1

q(�, x)  t

�

where �1 = {� 2 R+ : q(�, x) is convex in x}

q(�, x)

� = 0

�+��

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020]
Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 37 / 50



Linear-time algorithm for the Generalized TRS

Generalized TRS: Opt = inf
x2Rn

�
qobj(x) : q1(x)  0

 

Recall convex hull exactness holds: conv(D) = DSDP =

⇢
(x, t) : sup

�2�1

q(�, x)  t

�

where �1 = {� 2 R+ : q(�, x) is convex in x}

q(�, x)

� = 0

�+��

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020]
Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 37 / 50



Linear-time algorithm for the Generalized TRS

Generalized TRS: Opt = inf
x2Rn

�
qobj(x) : q1(x)  0

 

Recall convex hull exactness holds: conv(D) = DSDP =

⇢
(x, t) : sup

�2�1

q(�, x)  t

�

where �1 = {� 2 R+ : q(�, x) is convex in x}

q(�, x)

� = 0

�+��

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020]
Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 37 / 50



Linear-time algorithm for the Generalized TRS

Generalized TRS: Opt = inf
x2Rn

�
qobj(x) : q1(x)  0

 

Recall convex hull exactness holds: conv(D) = DSDP =

⇢
(x, t) : sup

�2�1

q(�, x)  t

�

where �1 = {� 2 R+ : q(�, x) is convex in x}

q(�, x)

� = 0

�+��

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020]
Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 37 / 50



Linear-time algorithm for the Generalized TRS

Generalized TRS: Opt = inf
x2Rn

�
qobj(x) : q1(x)  0

 

Recall convex hull exactness holds: conv(D) = DSDP =

⇢
(x, t) : sup

�2�1

q(�, x)  t

�

where �1 = {� 2 R+ : q(�, x) is convex in x}

q(�, x)

� = 0 �+��

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020]
Kılınç-Karzan (CMU) SDP Relaxations of QCQPs 37 / 50



Linear-time algorithm for the Generalized TRS

�1 = [��, �+]

=) Opt = OptSDP = inf
x2Rn

max
�2[��,�+]

q(�, x)

q(��, x) q(�+, x)

max
�2{��,�+}

q(�, x)

Algorithmic idea
Compute �� and �+ to some accuracy
Apply Accelerated Gradient Descent for
smooth minimax problems

=) Õ

✓
Np
✏
log

✓
n

p

◆
log

✓
1

✏

◆◆

⇡ 1p
✏

Related: Hazan and Koren [2016], Ho-Nguyen and K.-K. [2017], Jiang and Li [2019, 2020], Wang and K.-K.
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Regularity

Dual problem:

OptSDP := inf
x2Rn

sup
�2�1

q(�, x) = sup
�2�1

inf
x2Rn

q(�, x)

Definition
Let �⇤ be a dual optimizer. Define µ

⇤
:= �min

�
Aobj +

Pm
i=1 �

⇤
i Ai
�
. Note µ

⇤ � 0 by
definition of �1. QCQP instance is regular if µ⇤

> 0.

Regularity =) optimizer exactness
µ
⇤
> 0 =) argmin

x2Rn
{qobj(x) : qi(x)  0, 8i 2 [m]} = argmin

x2Rn
sup
�2�1

q(�, x)
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Linear convergence for regular GTRS

Suppose µ
⇤
> 0

max
�2{�̃�,�̃+}

q(�, x)

Suppose �
⇤ 2 [�̃�, �̃+] ✓ �1

=) Opt = inf
x2Rn

max
�2{�̃�,�̃+}

q(�, x)

Suffices to estimate �
⇤ to low accuracy

and then we can exploit strong
convexity

Õ

✓
Np
µ⇤ log

✓
1

µ⇤

◆
log

✓
n

p

◆
log

✓
1

✏

◆◆

⇡ log

✓
1

✏

◆

=) This rate is linear in both N and log(1/✏)

Related: Carmon and Duchi [2018]
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How to generalize?

How to handle SDP relaxations of general QCQPs with multiple constraints?

For QCQPs, we desire rank-1 solutions in the SDP relaxations.
What about SDPs in which we seek rank-k solutions?
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General setup

OptSDP = inf
Y 2Sn

(
hMobj, Y i :

hMi, Y i+ di = 0, 8i 2 [m]

Y ⌫ 0

)

� sup
�2Rm

⇢
d
>
� :

Mobj +

mX

i=1

�iMi

| {z }
:= M(�)

⌫ 0

�

k-exact SDPs:

Strong duality holds, both problems are solvable

W , subspace of dimension n� k such that Y ⇤
W? � 0 is known

This talk: W = Rn�k and Y
⇤
W? = Ik

Strict complementarity + exactness: there exists Y
⇤, �⇤ such that rank(Y ⇤

) = k

and rank(M(�
⇤
)) = n� k
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OptSDP = inf
Y 2Sn

(
hMobj, Y i :

hMi, Y i+ di = 0, 8i 2 [m]

Y ⌫ 0

)

� sup
�2Rm

⇢
d
>
� : Mobj +

mX

i=1

�iMi
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:= M(�)
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Motivation

SDP relaxation of QMP in X 2 R(n�k)⇥k

,
✓
XX

>
X

X
>

Ik

◆
7!
✓
⇤ ⇤
⇤ Ik

◆

OptSDP = inf
Y 2Sn

8
<

:hMobj, Y i :
hMi, Y i+ di = 0, 8i 2 [m]

Y =

✓
⇤ ⇤
⇤ Ik

◆
⌫ 0

9
=

;

Taking W = Rn�k, we know Y
⇤
W? = Ik � 0

Equivalently, k-exact SDPs originate from QCQPs and QMPs that admit exact
SDP relaxations
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Deriving a strongly convex minimax problem

Suppose k-exact and Y
⇤
W? = Ik

Know Y
⇤
=

✓
X

⇤
X

⇤>
X

⇤

X
⇤>

Ik

◆
for X⇤ 2 R(n�k)⇥k

�! replace Y 7!
✓
XX

>
X

X
>

Ik

◆

hMi, Y i+ di 7!

=

⌧✓
Ai Bi

B
>
i Ci

◆
,

✓
XX

>
X

X
>

Ik

◆�
+ di

=: qi(X)

Let qi(X) := tr(X
>
AiX) + 2

D
B̃i, X

E
+ c̃i

We have reduced SDP to QMP
X

⇤
= argmin

X2R(n�k)⇥k

{qobj(X) : qi(X) = 0, 8i 2 [m]}

= argmin

X2R(n�k)⇥k

sup
�2Rm

qobj(X) +

mX

i=1

�iqi(X)

| {z }
=: q(�, X)

= tr(X
>
A(�)X) + . . .
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Deriving a strongly convex minimax problem

Note strong duality + strict complementarity implies
X

⇤
= argmin

X2R(n�k)⇥k

sup
�2Rm

q(�, X)

= argmin

X2R(n�k)⇥k

q( �
⇤
, X)

Strict complementarity

=) A(�
⇤
) � 0 =) q(�

⇤
, X) is strongly convex

Cert. of strict complementarity: �⇤ 2 U ✓ Rm and A(�) � 0 for all � 2 U

X
⇤
= argmin

X2R(n�k)⇥k

max
�2U

q(�, X)

(QMMP)

Questions left:

How to construct the certificate U?
How to solve the strongly convex quadratic matrix minimax problem (QMMP)?
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How to solve the strongly convex quadratic matrix minimax problem (QMMP)?
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Algorithms

Given U , how to solve strongly convex QMMP

argmin

X2R(n�k)⇥k

max
�2U

q(�, X)?

Develop an inexact variant of Nesterov’s accelerated gradient descent (AGD)
method for minimax functions (each “prox-map" is a saddle point problem of its own)

�! CautiousAGD: O

⇣
✏
�1/2

log(✏
�1

)

⌘

How to find the certificate U?

Generate �
(i) ! �

⇤ and neighborhoods U (i) ✓ {� : A(�) ⌫ 0} and monitor
convergence of CautiousAGD for QMMP with U (i).
�! CertSDP

Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]
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CertSDP guarantees

Theorem
Given ✏ > 0, CertSDP produces iterates Xt such that
⌧
Mobj,

✓
XtX

>
t Xt

X
>
t Ik

◆�
 OptSDP +✏ and

����

✓⌧
Mi,

✓
XtX

>
t Xt

X
>
t Ik

◆�
+ di

◆

i

����
2

 ✏.

after completing

iteration count: t ⇡ O(1) +O
�
log(✏

�1
)
�

iteration complexity: O(m✏
�1

) matrix-vector products per iteration

storage: O(m+ nk) entries
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A glimpse on numerical results

Random instances of k-exact distance-minimization QMP

inf
X2R(n�k)⇥k

n
kXk2F : qi(X) = 0, 8i 2 [m]

o

with k = m = 10, (n� k) = 10
3
, 10

4
, 10

5 (10 instances per setting)

Related: Ding et al. [2021], Yurtsever et al. [2021], Souto et al. [2020], O’Donoghue et al. [2016]
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Summary

SDPs provide exact reformulations for broad classes of QCQPs and QMPs
(especially when constraints interact nicely and there are large amounts of symmetry)

Rank-k exact SDPs can be solved very efficiently via first-order methods

Future directions:

Can we approach approximation quality similarly?
Can these tools for proving exactness guide us to design better convex
relaxations?

More generally, exactness ⇡ efficiency?
Can we develop efficient algorithms for SDPs admitting approximately low-rank
solutions?
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