Constant-Competitive Random Assignment MSP Without Knowing the Matroid

Richard Santiago¹, Ivan Sergeev¹, Rico Zenklusen¹

¹ ETH Zürich, Switzerland

IPCO, June 2023

IPCO 2023

ъ

IPCO 2023

ъ

IPCO 2023

ъ

Ivan Sergeev (ETH Zürich)

O(1)-Competitive Matroid Unknown RAMSP

IPCO 2023

ъ

2/11

Ivan Sergeev (ETH Zürich)

O(1)-Competitive Matroid Unknown RAMSP

IPCO 2023

ъ

IPCO 2023

4 E

IPCO 2023

4 E

IPCO 2023

< E

IPCO 2023

< E

IPCO 2023

► < ∃ ►</p>

IPCO 2023

< E

Competitive Ratio = \mathbb{E} [selected] /optimal

IPCO 2023

< 3

$\mathsf{Competitive}\;\mathsf{Ratio} = \mathbb{E}\left[\mathsf{selected}\right]/\mathsf{optimal}$

Theorem [Dynkin 1963]

There exists an optimal $\frac{1}{e}$ -competitive algorithm.

IPCO 2023

► < ∃ ►</p>

IPCO 2023

▶ < ≣ ▶

IPCO 2023

▶ < ≣ ▶

IPCO 2023

▶ < ≣ >

Ivan Sergeev (ETH Zürich)

O(1)-Competitive Matroid Unknown RAMSP

3/11

IPCO 2023

▶ < ≣ >

• □ ▶ < 同 ▶ < 三</p>

ъ

IPCO 2023

▶ < ≣ >

ъ

Competitive Ratio = \mathbb{E} [selected] /optimal

IPCO 2023

4 E

Competitive Ratio = \mathbb{E} [selected] /optimal

Conjecture [Babaioff, Immorlica, Kleinberg 2007]

There exists a constant-competitive algorithm for general matroids.

3/11

• Current best for general matroids: O (log log rank)-competitive

▶ [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]

- Current best for general matroids: O (log log rank)-competitive
 - ▶ [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:

> < E</p>

- Current best for general matroids: O (log log rank)-competitive
 - ▶ [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
 - ▶ Graphic [Soto, Turkieltaub, Verdugo 2018]

▶ < ⊒ ▶

- Current best for general matroids: O (log log rank)-competitive
 - ▶ [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
 - Graphic [Soto, Turkieltaub, Verdugo 2018]
 - Laminar [Soto, Turkieltaub, Verdugo 2018]

▶ < ⊒ ▶

- Current best for general matroids: O (log log rank)-competitive
 - ▶ [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
 - ► Graphic [Soto, Turkieltaub, Verdugo 2018]
 - Laminar [Soto, Turkieltaub, Verdugo 2018]
 - ► Transversal [Kasselheim et al. 2013]

► < ∃ ►</p>

- Current best for general matroids: O (log log rank)-competitive
 - ▶ [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
 - ► Graphic [Soto, Turkieltaub, Verdugo 2018]
 - Laminar [Soto, Turkieltaub, Verdugo 2018]
 - ► Transversal [Kasselheim et al. 2013]
 - Regular [Dinitz, Kortsarz 2013]

- Current best for general matroids: O (log log rank)-competitive
 - ▶ [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
 - ► Graphic [Soto, Turkieltaub, Verdugo 2018]
 - Laminar [Soto, Turkieltaub, Verdugo 2018]
 - ► Transversal [Kasselheim et al. 2013]
 - Regular [Dinitz, Kortsarz 2013]

- Current best for general matroids: O (log log rank)-competitive
 - ▶ [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]

• Constant-competitive for specific matroid classes:

- ▶ Graphic [Soto, Turkieltaub, Verdugo 2018]
- Laminar [Soto, Turkieltaub, Verdugo 2018]
- ► Transversal [Kasselheim et al. 2013]
- Regular [Dinitz, Kortsarz 2013]
- Cographic [Soto 2011]

- Current best for general matroids: $O(\log \log \operatorname{rank})$ -competitive
 - ▶ [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
 - ▶ Graphic [Soto, Turkieltaub, Verdugo 2018]
 - Laminar [Soto, Turkieltaub, Verdugo 2018]
 - ► Transversal [Kasselheim et al. 2013]
 - Regular [Dinitz, Kortsarz 2013]
 - Cographic [Soto 2011]

...

- Current best for general matroids: O (log log rank)-competitive
 - ▶ [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
 - ▶ Graphic [Soto, Turkieltaub, Verdugo 2018]
 - Laminar [Soto, Turkieltaub, Verdugo 2018]
 - ▶ Transversal [Kasselheim et al. 2013]
 - Regular [Dinitz, Kortsarz 2013]
 - Cographic [Soto 2011]
 - ► ...
- Constant-competitive for certain variants:

► < ∃ ►</p>

- Current best for general matroids: O (log log rank)-competitive
 - ▶ [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
 - ▶ Graphic [Soto, Turkieltaub, Verdugo 2018]
 - Laminar [Soto, Turkieltaub, Verdugo 2018]
 - ▶ Transversal [Kasselheim et al. 2013]
 - Regular [Dinitz, Kortsarz 2013]
 - Cographic [Soto 2011]
 - ► ...
- Constant-competitive for certain variants:
 - Free order model [Jaillet, Soto, Zenklusen 2013]

▶ < ∃ >

- Current best for general matroids: O (log log rank)-competitive
 - ▶ [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]

• Constant-competitive for specific matroid classes:

- ▶ Graphic [Soto, Turkieltaub, Verdugo 2018]
- Laminar [Soto, Turkieltaub, Verdugo 2018]
- ▶ Transversal [Kasselheim et al. 2013]
- Regular [Dinitz, Kortsarz 2013]
- Cographic [Soto 2011]
- ► ...
- Constant-competitive for certain variants:
 - ▶ Free order model [Jaillet, Soto, Zenklusen 2013]
 - ▶ Random assignment [Soto 2011; Oveis Gharan, Vondrák 2013]

э

IPCO 2023

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

Intuition: Knowing complete matroid structure in advance shouldn't help

< □ ▶ < ⓓ ▶ < ె ▶ < ె ▶ < </p>
IPCO 2023

Intuition: Knowing complete matroid structure in advance shouldn't help Goal: Reduce amount of required prior information in RAMSP

3

• Setting:

< 注入 < 注入

э

- Setting:
 - Elements of matroid $\mathcal{M} = (N, \mathcal{I})$ revealed online one by one

Image: A matrix

- Setting:
 - ▶ Elements of matroid M = (N, I) revealed online one by one
 - ▶ Weights chosen adversarially, but assigned to elements randomly

Image: A matrix

• Setting:

- ▶ Elements of matroid M = (N, I) revealed online one by one
- ▶ Weights chosen adversarially, but assigned to elements randomly
- ▶ Goal: Select $S \in \mathcal{I}$ with weight w(S) as large as possible

N 4 E

• Setting:

- ▶ Elements of matroid M = (N, I) revealed online one by one
- > Weights chosen adversarially, but assigned to elements randomly
- ▶ Goal: Select $S \in \mathcal{I}$ with weight w(S) as large as possible
- Motivation:

N 4 E

- Setting:
 - ▶ Elements of matroid M = (N, I) revealed online one by one
 - > Weights chosen adversarially, but assigned to elements randomly
 - ▶ Goal: Select $S \in \mathcal{I}$ with weight w(S) as large as possible
- Motivation:
 - ► Left as open question in [Babaioff, Immorlica, Kleinberg 2007]

- Setting:
 - ▶ Elements of matroid M = (N, I) revealed online one by one
 - > Weights chosen adversarially, but assigned to elements randomly
 - ▶ Goal: Select $S \in \mathcal{I}$ with weight w(S) as large as possible
- Motivation:
 - Left as open question in [Babaioff, Immorlica, Kleinberg 2007]
 - Easier than MSP

- Setting:
 - ▶ Elements of matroid M = (N, I) revealed online one by one
 - > Weights chosen adversarially, but assigned to elements randomly
 - ▶ Goal: Select $S \in \mathcal{I}$ with weight w(S) as large as possible
- Motivation:
 - Left as open question in [Babaioff, Immorlica, Kleinberg 2007]
 - Easier than MSP
- Prior work:

- Setting:
 - Elements of matroid $\mathcal{M} = (N, \mathcal{I})$ revealed online one by one
 - > Weights chosen adversarially, but assigned to elements randomly
 - ▶ Goal: Select $S \in \mathcal{I}$ with weight w(S) as large as possible
- Motivation:
 - Left as open question in [Babaioff, Immorlica, Kleinberg 2007]
 - Easier than MSP
- Prior work:
 - ▶ [Soto 2011]: Constant-competitive algorithm, but need full matroid in advance

- Setting:
 - Elements of matroid $\mathcal{M} = (N, \mathcal{I})$ revealed online one by one
 - > Weights chosen adversarially, but assigned to elements randomly
 - Goal: Select $S \in \mathcal{I}$ with weight w(S) as large as possible
- Motivation:
 - Left as open question in [Babaioff, Immorlica, Kleinberg 2007]
 - Easier than MSP
- Prior work:
 - ▶ [Soto 2011]: Constant-competitive algorithm, but need full matroid in advance
 - ▶ [Oveis Gharan, Vondrák 2013]: Extended to adversarial arrival order, but same limitation

- Setting:
 - Elements of matroid $\mathcal{M} = (N, \mathcal{I})$ revealed online one by one
 - > Weights chosen adversarially, but assigned to elements randomly
 - Goal: Select $S \in \mathcal{I}$ with weight w(S) as large as possible
- Motivation:
 - Left as open question in [Babaioff, Immorlica, Kleinberg 2007]
 - Easier than MSP
- Prior work:
 - ▶ [Soto 2011]: Constant-competitive algorithm, but need full matroid in advance
 - ▶ [Oveis Gharan, Vondrák 2013]: Extended to adversarial arrival order, but same limitation
- Our main result:

- Setting:
 - Elements of matroid $\mathcal{M} = (N, \mathcal{I})$ revealed online one by one
 - > Weights chosen adversarially, but assigned to elements randomly
 - ▶ Goal: Select $S \in \mathcal{I}$ with weight w(S) as large as possible
- Motivation:
 - Left as open question in [Babaioff, Immorlica, Kleinberg 2007]
 - Easier than MSP
- Prior work:
 - ▶ [Soto 2011]: Constant-competitive algorithm, but need full matroid in advance
 - ▶ [Oveis Gharan, Vondrák 2013]: Extended to adversarial arrival order, but same limitation
- Our main result:
 - Constant-competitive algorithm without knowing matroid upfront

글 에 에 글 어

• Density of a set of edges U is

$$\frac{|U|}{r(U)} = \frac{|U|}{\text{max size of forest contained in } U}$$

э

• Density of a set of edges U is

$$\frac{|U|}{r(U)} = \frac{|U|}{\text{max size of forest contained in } U}$$

 $\bullet~{\it S}_1$ is the densest set in ${\cal M}$

► < ∃ ►</p>

э

• Density of a set of edges U is

$$\frac{|U|}{r(U)} = \frac{|U|}{\text{max size of forest contained in } U}$$

- $\bullet~{\it S}_1$ is the densest set in ${\cal M}$
- $S_2 \setminus S_1$ is the densest set in \mathcal{M}/S_1

▶ < ⊒ ▶

• Density of a set of edges U is

$$\frac{|U|}{r(U)} = \frac{|U|}{\text{max size of forest contained in } U}$$

- $\bullet~{\it S}_1$ is the densest set in ${\cal M}$
- $S_2 \setminus S_1$ is the densest set in \mathcal{M}/S_1
- . . .

► < ∃ ►</p>

• Density of a set of edges U is

 $\frac{|U|}{r(U)} = \frac{|U|}{\text{max size of forest contained in } U}$

- $\bullet~{\it S}_1$ is the densest set in ${\cal M}$
- $S_2 \setminus S_1$ is the densest set in \mathcal{M}/S_1
- . . .
- $S_{i+1} \setminus S_i$ is the densest set in \mathcal{M}/S_i

▶ < ∃ >

• Density of a set of edges U is

 $\frac{|U|}{r(U)} = \frac{|U|}{\text{max size of forest contained in } U}$

- $\bullet~{\it S}_1$ is the densest set in ${\cal M}$
- $S_2 \setminus S_1$ is the densest set in \mathcal{M}/S_1
- . . .
- $S_{i+1} \setminus S_i$ is the densest set in \mathcal{M}/S_i

• Density of a set of edges U is

 $\frac{|U|}{r(U)} = \frac{|U|}{\text{max size of forest contained in } U}$

- $\bullet~{\it S}_1$ is the densest set in ${\cal M}$
- $S_2 \setminus S_1$ is the densest set in \mathcal{M}/S_1
- . . .
- $S_{i+1} \setminus S_i$ is the densest set in \mathcal{M}/S_i

• Density of a set of edges U is

 $\frac{|U|}{r(U)} = \frac{|U|}{\text{max size of forest contained in } U}$

- $\bullet~{\it S}_1$ is the densest set in ${\cal M}$
- $S_2 \setminus S_1$ is the densest set in \mathcal{M}/S_1
- . . .
- $S_{i+1} \setminus S_i$ is the densest set in \mathcal{M}/S_i

• Density of a set of edges U is

$$\frac{|U|}{r(U)} = \frac{|U|}{\text{max size of forest contained in } U}$$

- S_1 is the densest set in \mathcal{M}
- $S_2 \setminus S_1$ is the densest set in \mathcal{M}/S_1
- . . .
- $S_{i+1} \setminus S_i$ is the densest set in \mathcal{M}/S_i

• Build matroids $\mathcal{M}_i = (\mathcal{M}/S_i)|_{S_{i+1} \setminus S_i}$ (principal sequence of \mathcal{M})

▶ < ∃ >

• Density of a set of edges U is

$$\frac{|U|}{r(U)} = \frac{|U|}{\text{max size of forest contained in } U}$$

- S_1 is the densest set in \mathcal{M}
- $S_2 \setminus S_1$ is the densest set in \mathcal{M}/S_1
- ...
- $S_{i+1} \setminus S_i$ is the densest set in \mathcal{M}/S_i
- Build matroids $\mathcal{M}_i = (\mathcal{M}/S_i)|_{S_{i+1} \setminus S_i}$ (principal sequence of \mathcal{M})
- Devise constant-competitive algorithm for (very well-structured) \mathcal{M}_i 's

• Density of a set of edges U is

$$\frac{|U|}{r(U)} = \frac{|U|}{\text{max size of forest contained in } U}$$

- S_1 is the densest set in \mathcal{M}
- $S_2 \setminus S_1$ is the densest set in \mathcal{M}/S_1
- ...
- $S_{i+1} \setminus S_i$ is the densest set in \mathcal{M}/S_i
- Build matroids $\mathcal{M}_i = (\mathcal{M}/S_i)|_{S_{i+1} \setminus S_i}$ (principal sequence of \mathcal{M})
- Devise constant-competitive algorithm for (very well-structured) \mathcal{M}_i 's

• Use OPT
$$(\mathcal{M}) = \Theta\left(\sum_{i=1}^{k} \operatorname{OPT}(\mathcal{M}_i)\right)$$

• Can't compute principal decomposition without knowing full structure

-

- Can't compute principal decomposition without knowing full structure
 - Natural approach: sample constant fraction of elements

- Can't compute principal decomposition without knowing full structure
 - Natural approach: sample constant fraction of elements
- Decompositions for sample and whole matroid might differ significantly

- Can't compute principal decomposition without knowing full structure
 - Natural approach: sample constant fraction of elements
- Decompositions for sample and whole matroid might differ significantly
- Elements might end up in different partitions depending on sample

Ivan Sergeev (ETH Zürich)

O(1)-Competitive Matroid Unknown RAMSP

IPCO 2023

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

IPCO 2023

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Ivan Sergeev (ETH Zürich)

O(1)-Competitive Matroid Unknown RAMSP

IPCO 2023

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Ivan Sergeev (ETH Zürich)

O(1)-Competitive Matroid Unknown RAMSP

IPCO 2023

(日)(同)(日)(日)(日)(日)

Ivan Sergeev (ETH Zürich)

O(1)-Competitive Matroid Unknown RAMSP

IPCO 2023

(日)(同)(日)(日)(日)(日)

3

Ivan Sergeev (ETH Zürich)

O(1)-Competitive Matroid Unknown RAMSP

9/11

Ivan Sergeev (ETH Zürich)

O(1)-Competitive Matroid Unknown RAMSP

9/11

• Advantages of RDCs:

< □ > < (日) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) <

• Advantages of RDCs:

Capture key parameters of principal sequence

• Advantages of RDCs:

- Capture key parameters of principal sequence
- \blacktriangleright Can be compared to OPT and competitiveness

• Advantages of RDCs:

- Capture key parameters of principal sequence
- Can be compared to OPT and competitiveness
- Can be exploited algorithmically

ullet Sample constant fraction of elements \rightarrow set S

IPCO 2023

▶ ∢ ⊒

• Sample constant fraction of elements ightarrow set S

Theorem

With constant probability, RDCs of \mathcal{M} , $\mathcal{M}|_S$, and $\mathcal{M}|_{N\setminus S}$ are close to each other.

- Sample constant fraction of elements ightarrow set S
- Use RDC of $\mathcal{M}|_S$ to approximate RDC of $\mathcal{M}|_{N\setminus S}$

Theorem

With constant probability, RDCs of \mathcal{M} , $\mathcal{M}|_{S}$, and $\mathcal{M}|_{N\setminus S}$ are close to each other.

- Sample constant fraction of elements ightarrow set S
- Use RDC of $\mathcal{M}|_S$ to approximate RDC of $\mathcal{M}|_{N\setminus S}$

Theorem

With constant probability, RDCs of \mathcal{M} , $\mathcal{M}|_S$, and $\mathcal{M}|_{N\setminus S}$ are close to each other.

Theorem

There is an algorithm that, given a good approximate RDC of \mathcal{M} , returns $\Omega(OPT)$ weight in expectation.

- ullet Sample constant fraction of elements \rightarrow set S
- Use RDC of $\mathcal{M}|_S$ to approximate RDC of $\mathcal{M}|_{N\setminus S}$
- Use approximate RDC to retrieve $\Omega(OPT)$ weight from $\mathcal{M}|_{N\setminus S}$ in expectation

Theorem

With constant probability, RDCs of \mathcal{M} , $\mathcal{M}|_S$, and $\mathcal{M}|_{N\setminus S}$ are close to each other.

Theorem

There is an algorithm that, given a good approximate RDC of \mathcal{M} , returns $\Omega(OPT)$ weight in expectation.

- ullet Sample constant fraction of elements \rightarrow set S
- Use RDC of $\mathcal{M}|_S$ to approximate RDC of $\mathcal{M}|_{\mathcal{N}\setminus S}$
- Use approximate RDC to retrieve $\Omega(OPT)$ weight from $\mathcal{M}|_{N\setminus S}$ in expectation
- Conclude that we return $\Omega(\mathrm{OPT})$ weight from $\mathcal M$ in expectation

Theorem

With constant probability, RDCs of \mathcal{M} , $\mathcal{M}|_{S}$, and $\mathcal{M}|_{N\setminus S}$ are close to each other.

Theorem

There is an algorithm that, given a good approximate RDC of \mathcal{M} , returns $\Omega(OPT)$ weight in expectation.

• Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront

IPCO 2023

▶ < ∃ >

• Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront

Solves open question from [Babaioff, Immorlica, Kleinberg 2007]

IPCO 2023

• Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront

- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]
- First constant-competitive algorithm for "matroid unknown" setting

▶ ∢ ⊒

• Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront

- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]
- First constant-competitive algorithm for "matroid unknown" setting
- Bonus: works in "random sample + adversarial order" setting

• Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront

- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]
- First constant-competitive algorithm for "matroid unknown" setting
- Bonus: works in "random sample + adversarial order" setting
- Open questions:

• Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront

- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]
- First constant-competitive algorithm for "matroid unknown" setting
- Bonus: works in "random sample + adversarial order" setting

• Open questions:

Improve competitive ratio?

• Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront

- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]
- First constant-competitive algorithm for "matroid unknown" setting
- Bonus: works in "random sample + adversarial order" setting

• Open questions:

- Improve competitive ratio?
- Utilize rank-density curves or densities in general MSP?

• Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront

- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]
- First constant-competitive algorithm for "matroid unknown" setting
- Bonus: works in "random sample + adversarial order" setting

• Open questions:

- Improve competitive ratio?
- Utilize rank-density curves or densities in general MSP?
- Resolve general MSP conjecture from [Babaioff, Immorlica, Kleinberg 2007]?