Constant-Competitive Random Assignment MSP Without Knowing the Matroid

Richard Santiago ${ }^{1}$, Ivan Sergeev ${ }^{1}$, Rico Zenklusen ${ }^{1}$
${ }^{1}$ ETH Zürich, Switzerland
IPCO, June 2023

Classical Secretary Problem

Competitive Ratio $=\mathbb{E}[$ selected $] /$ optimal

Classical Secretary Problem

Competitive Ratio $=\mathbb{E}[$ selected $] /$ optimal

Theorem [Dynkin 1963]

There exists an optimal $\frac{1}{e}$-competitive algorithm.

Matroid Secretary Problem

Competitive Ratio $=\mathbb{E}$ [selected] /optimal

Matroid Secretary Problem

Competitive Ratio $=\mathbb{E}[$ selected $]$ /optimal

Conjecture [Babaioff, Immorlica, Kleinberg 2007]

There exists a constant-competitive algorithm for general matroids.

Prior Work

- Current best for general matroids: O ($\log \log r a n k)$-competitive - [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]

Prior Work

- Current best for general matroids: O (log log rank)-competitive - [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:

Prior Work

- Current best for general matroids: O (log log rank)-competitive - [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
- Graphic [Soto, Turkieltaub, Verdugo 2018]

Prior Work

- Current best for general matroids: O (log log rank)-competitive - [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
- Graphic [Soto, Turkieltaub, Verdugo 2018]
- Laminar [Soto, Turkieltaub, Verdugo 2018]

Prior Work

- Current best for general matroids: O (log log rank)-competitive - [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
- Graphic [Soto, Turkieltaub, Verdugo 2018]
- Laminar [Soto, Turkieltaub, Verdugo 2018]
- Transversal [Kasselheim et al. 2013]

Prior Work

- Current best for general matroids: O (log log rank)-competitive - [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
- Graphic [Soto, Turkieltaub, Verdugo 2018]
- Laminar [Soto, Turkieltaub, Verdugo 2018]
- Transversal [Kasselheim et al. 2013]
- Regular [Dinitz, Kortsarz 2013]

Prior Work

- Current best for general matroids: O (log log rank)-competitive - [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
- Graphic [Soto, Turkieltaub, Verdugo 2018]
- Laminar [Soto, Turkieltaub, Verdugo 2018]
- Transversal [Kasselheim et al. 2013]
- Regular [Dinitz, Kortsarz 2013]

Prior Work

- Current best for general matroids: O (log log rank)-competitive
- [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
- Graphic [Soto, Turkieltaub, Verdugo 2018]
- Laminar [Soto, Turkieltaub, Verdugo 2018]
- Transversal [Kasselheim et al. 2013]
- Regular [Dinitz, Kortsarz 2013]
- Cographic [Soto 2011]

Prior Work

- Current best for general matroids: O (log log rank)-competitive - [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
- Graphic [Soto, Turkieltaub, Verdugo 2018]
- Laminar [Soto, Turkieltaub, Verdugo 2018]
- Transversal [Kasselheim et al. 2013]
- Regular [Dinitz, Kortsarz 2013]
- Cographic [Soto 2011]

Prior Work

- Current best for general matroids: O (log log rank)-competitive - [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
- Graphic [Soto, Turkieltaub, Verdugo 2018]
- Laminar [Soto, Turkieltaub, Verdugo 2018]
- Transversal [Kasselheim et al. 2013]
- Regular [Dinitz, Kortsarz 2013]
- Cographic [Soto 2011]
- Constant-competitive for certain variants:

Prior Work

- Current best for general matroids: O (log log rank)-competitive - [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
- Graphic [Soto, Turkieltaub, Verdugo 2018]
- Laminar [Soto, Turkieltaub, Verdugo 2018]
- Transversal [Kasselheim et al. 2013]
- Regular [Dinitz, Kortsarz 2013]
- Cographic [Soto 2011]
- Constant-competitive for certain variants:
- Free order model [Jaillet, Soto, Zenklusen 2013]

Prior Work

- Current best for general matroids: O (log log rank)-competitive - [Lachish 2014], [Feldman, Svensson, Zenklusen 2014]
- Constant-competitive for specific matroid classes:
- Graphic [Soto, Turkieltaub, Verdugo 2018]
- Laminar [Soto, Turkieltaub, Verdugo 2018]
- Transversal [Kasselheim et al. 2013]
- Regular [Dinitz, Kortsarz 2013]
- Cographic [Soto 2011]
- Constant-competitive for certain variants:
- Free order model [Jaillet, Soto, Zenklusen 2013]
- Random assignment [Soto 2011; Oveis Gharan, Vondrák 2013]

Prior Information

Prior Information

Prior Information

Prior Information

Intuition: Knowing complete matroid structure in advance shouldn't help

Prior Information

Intuition: Knowing complete matroid structure in advance shouldn't help
Goal: Reduce amount of required prior information in RAMSP

Random Assignment Model

- Setting:

Random Assignment Model

- Setting:
- Elements of matroid $\mathcal{M}=(N, \mathcal{I})$ revealed online one by one

Random Assignment Model

- Setting:

- Elements of matroid $\mathcal{M}=(N, \mathcal{I})$ revealed online one by one
- Weights chosen adversarially, but assigned to elements randomly

Random Assignment Model

- Setting:

- Elements of matroid $\mathcal{M}=(N, \mathcal{I})$ revealed online one by one
- Weights chosen adversarially, but assigned to elements randomly
- Goal: Select $S \in \mathcal{I}$ with weight $w(S)$ as large as possible

Random Assignment Model

- Setting:
- Elements of matroid $\mathcal{M}=(N, \mathcal{I})$ revealed online one by one
- Weights chosen adversarially, but assigned to elements randomly
- Goal: Select $S \in \mathcal{I}$ with weight $w(S)$ as large as possible
- Motivation:

Random Assignment Model

- Setting:
- Elements of matroid $\mathcal{M}=(N, \mathcal{I})$ revealed online one by one
- Weights chosen adversarially, but assigned to elements randomly
- Goal: Select $S \in \mathcal{I}$ with weight $w(S)$ as large as possible
- Motivation:
- Left as open question in [Babaioff, Immorlica, Kleinberg 2007]

Random Assignment Model

- Setting:
- Elements of matroid $\mathcal{M}=(N, \mathcal{I})$ revealed online one by one
- Weights chosen adversarially, but assigned to elements randomly
- Goal: Select $S \in \mathcal{I}$ with weight $w(S)$ as large as possible
- Motivation:
- Left as open question in [Babaioff, Immorlica, Kleinberg 2007]
- Easier than MSP

Random Assignment Model

- Setting:
- Elements of matroid $\mathcal{M}=(N, \mathcal{I})$ revealed online one by one
- Weights chosen adversarially, but assigned to elements randomly
- Goal: Select $S \in \mathcal{I}$ with weight $w(S)$ as large as possible
- Motivation:
- Left as open question in [Babaioff, Immorlica, Kleinberg 2007]
- Easier than MSP
- Prior work:

Random Assignment Model

- Setting:

- Elements of matroid $\mathcal{M}=(N, \mathcal{I})$ revealed online one by one
- Weights chosen adversarially, but assigned to elements randomly
- Goal: Select $S \in \mathcal{I}$ with weight $w(S)$ as large as possible
- Motivation:
- Left as open question in [Babaioff, Immorlica, Kleinberg 2007]
- Easier than MSP
- Prior work:
- [Soto 2011]: Constant-competitive algorithm, but need full matroid in advance

Random Assignment Model

- Setting:
- Elements of matroid $\mathcal{M}=(N, \mathcal{I})$ revealed online one by one
- Weights chosen adversarially, but assigned to elements randomly
- Goal: Select $S \in \mathcal{I}$ with weight $w(S)$ as large as possible
- Motivation:
- Left as open question in [Babaioff, Immorlica, Kleinberg 2007]
- Easier than MSP
- Prior work:
- [Soto 2011]: Constant-competitive algorithm, but need full matroid in advance
- [Oveis Gharan, Vondrák 2013]: Extended to adversarial arrival order, but same limitation

Random Assignment Model

- Setting:
- Elements of matroid $\mathcal{M}=(N, \mathcal{I})$ revealed online one by one
- Weights chosen adversarially, but assigned to elements randomly
- Goal: Select $S \in \mathcal{I}$ with weight $w(S)$ as large as possible
- Motivation:
- Left as open question in [Babaioff, Immorlica, Kleinberg 2007]
- Easier than MSP
- Prior work:
- [Soto 2011]: Constant-competitive algorithm, but need full matroid in advance
- [Oveis Gharan, Vondrák 2013]: Extended to adversarial arrival order, but same limitation
- Our main result:

Random Assignment Model

- Setting:
- Elements of matroid $\mathcal{M}=(N, \mathcal{I})$ revealed online one by one
- Weights chosen adversarially, but assigned to elements randomly
- Goal: Select $S \in \mathcal{I}$ with weight $w(S)$ as large as possible
- Motivation:
- Left as open question in [Babaioff, Immorlica, Kleinberg 2007]
- Easier than MSP
- Prior work:
- [Soto 2011]: Constant-competitive algorithm, but need full matroid in advance
- [Oveis Gharan, Vondrák 2013]: Extended to adversarial arrival order, but same limitation
- Our main result:
- Constant-competitive algorithm without knowing matroid upfront

Approach from [Soto 2013]

- Density of a set of edges U is

$$
\frac{|U|}{r(U)}=\frac{|U|}{\max \text { size of forest contained in } U}
$$

Approach from [Soto 2013]

- Density of a set of edges U is

$$
\frac{|U|}{r(U)}=\frac{|U|}{\max \text { size of forest contained in } U}
$$

- S_{1} is the densest set in \mathcal{M}

Approach from [Soto 2013]

- Density of a set of edges U is

$$
\frac{|U|}{r(U)}=\frac{|U|}{\max \text { size of forest contained in } U}
$$

- S_{1} is the densest set in \mathcal{M}
- $S_{2} \backslash S_{1}$ is the densest set in \mathcal{M} / S_{1}

Approach from [Soto 2013]

- Density of a set of edges U is

$$
\frac{|U|}{r(U)}=\frac{|U|}{\max \text { size of forest contained in } U}
$$

- S_{1} is the densest set in \mathcal{M}
- $S_{2} \backslash S_{1}$ is the densest set in \mathcal{M} / S_{1}

Approach from [Soto 2013]

- Density of a set of edges U is

$$
\frac{|U|}{r(U)}=\frac{|U|}{\max \text { size of forest contained in } U}
$$

- S_{1} is the densest set in \mathcal{M}
- $S_{2} \backslash S_{1}$ is the densest set in \mathcal{M} / S_{1}
- $S_{i+1} \backslash S_{i}$ is the densest set in \mathcal{M} / S_{i}

Approach from [Soto 2013]

- Density of a set of edges U is

$$
\frac{|U|}{r(U)}=\frac{|U|}{\text { max size of forest contained in } U}
$$

- S_{1} is the densest set in \mathcal{M}
- $S_{2} \backslash S_{1}$ is the densest set in \mathcal{M} / S_{1}
- $S_{i+1} \backslash S_{i}$ is the densest set in \mathcal{M} / S_{i}

Approach from [Soto 2013]

- Density of a set of edges U is

$$
\frac{|U|}{r(U)}=\frac{|U|}{\max \text { size of forest contained in } U}
$$

- S_{1} is the densest set in \mathcal{M}
- $S_{2} \backslash S_{1}$ is the densest set in \mathcal{M} / S_{1}
- $S_{i+1} \backslash S_{i}$ is the densest set in \mathcal{M} / S_{i}

Approach from [Soto 2013]

- Density of a set of edges U is

$$
\frac{|U|}{r(U)}=\frac{|U|}{\max \text { size of forest contained in } U}
$$

- S_{1} is the densest set in \mathcal{M}
- $S_{2} \backslash S_{1}$ is the densest set in \mathcal{M} / S_{1}
- $S_{i+1} \backslash S_{i}$ is the densest set in \mathcal{M} / S_{i}

Approach from [Soto 2013]

- Density of a set of edges U is

$$
\frac{|U|}{r(U)}=\frac{|U|}{\max \text { size of forest contained in } U}
$$

- S_{1} is the densest set in \mathcal{M}
- $S_{2} \backslash S_{1}$ is the densest set in \mathcal{M} / S_{1}
- $S_{i+1} \backslash S_{i}$ is the densest set in \mathcal{M} / S_{i}
- Build matroids $\mathcal{M}_{i}=\left.\left(\mathcal{M} / S_{i}\right)\right|_{S_{i+1} \backslash S_{i}}$ (principal sequence of $\left.\mathcal{M}\right)$

Approach from [Soto 2013]

- Density of a set of edges U is

$$
\frac{|U|}{r(U)}=\frac{|U|}{\max \text { size of forest contained in } U}
$$

- S_{1} is the densest set in \mathcal{M}
- $S_{2} \backslash S_{1}$ is the densest set in \mathcal{M} / S_{1}
- $S_{i+1} \backslash S_{i}$ is the densest set in \mathcal{M} / S_{i}
- Build matroids $\mathcal{M}_{i}=\left.\left(\mathcal{M} / S_{i}\right)\right|_{S_{i+1} \backslash S_{i}}$ (principal sequence of $\left.\mathcal{M}\right)$
- Devise constant-competitive algorithm for (very well-structured) \mathcal{M}_{i} 's

Approach from [Soto 2013]

- Density of a set of edges U is

$$
\frac{|U|}{r(U)}=\frac{|U|}{\max \text { size of forest contained in } U}
$$

- S_{1} is the densest set in \mathcal{M}
- $S_{2} \backslash S_{1}$ is the densest set in \mathcal{M} / S_{1}
- $S_{i+1} \backslash S_{i}$ is the densest set in \mathcal{M} / S_{i}
- Build matroids $\mathcal{M}_{i}=\left.\left(\mathcal{M} / S_{i}\right)\right|_{S_{i+1} \backslash S_{i}}$ (principal sequence of $\left.\mathcal{M}\right)$
- Devise constant-competitive algorithm for (very well-structured) \mathcal{M}_{i} 's
- Use $\operatorname{OPT}(\mathcal{M})=\Theta\left(\sum_{i=1}^{k} \operatorname{OPT}\left(\mathcal{M}_{i}\right)\right)$

Issues With Generalization

- Can't compute principal decomposition without knowing full structure

Issues With Generalization

- Can't compute principal decomposition without knowing full structure
- Natural approach: sample constant fraction of elements

Issues With Generalization

- Can't compute principal decomposition without knowing full structure
- Natural approach: sample constant fraction of elements
- Decompositions for sample and whole matroid might differ significantly

Issues With Generalization

- Can't compute principal decomposition without knowing full structure
- Natural approach: sample constant fraction of elements
- Decompositions for sample and whole matroid might differ significantly
- Elements might end up in different partitions depending on sample

Rank-Density Curves

Rank-Density Curves

Rank-Density Curves

- Advantages of RDCs:

Rank-Density Curves

- Advantages of RDCs:
- Capture key parameters of principal sequence

Rank-Density Curves

- Advantages of RDCs:
- Capture key parameters of principal sequence
- Can be compared to OPT and competitiveness

Rank-Density Curves

- Advantages of RDCs:
- Capture key parameters of principal sequence
- Can be compared to OPT and competitiveness
- Can be exploited algorithmically

Our Approach and Technical Contributions

- Sample constant fraction of elements \rightarrow set S

Our Approach and Technical Contributions

- Sample constant fraction of elements \rightarrow set S

Theorem

With constant probability, $R D C_{s}$ of $\mathcal{M},\left.\mathcal{M}\right|_{S}$, and $\left.\mathcal{M}\right|_{N \backslash S}$ are close to each other.

Our Approach and Technical Contributions

- Sample constant fraction of elements \rightarrow set S
- Use RDC of $\left.\mathcal{M}\right|_{S}$ to approximate RDC of $\left.\mathcal{M}\right|_{N \backslash S}$

Theorem

With constant probability, $R D C s$ of $\mathcal{M},\left.\mathcal{M}\right|_{S}$, and $\left.\mathcal{M}\right|_{N \backslash S}$ are close to each other.

Our Approach and Technical Contributions

- Sample constant fraction of elements \rightarrow set S
- Use RDC of $\left.\mathcal{M}\right|_{S}$ to approximate RDC of $\left.\mathcal{M}\right|_{N \backslash S}$

Theorem

With constant probability, $R D C s$ of $\mathcal{M},\left.\mathcal{M}\right|_{S}$, and $\left.\mathcal{M}\right|_{N \backslash S}$ are close to each other.

Theorem

There is an algorithm that, given a good approximate RDC of \mathcal{M}, returns Ω (OPT) weight in expectation.

Our Approach and Technical Contributions

- Sample constant fraction of elements \rightarrow set S
- Use RDC of $\left.\mathcal{M}\right|_{S}$ to approximate RDC of $\left.\mathcal{M}\right|_{N \backslash S}$
- Use approximate RDC to retrieve Ω (OPT) weight from $\left.\mathcal{M}\right|_{N \backslash S}$ in expectation

Theorem

With constant probability, $R D C s$ of $\mathcal{M},\left.\mathcal{M}\right|_{S}$, and $\left.\mathcal{M}\right|_{N \backslash S}$ are close to each other.

Theorem

There is an algorithm that, given a good approximate RDC of \mathcal{M}, returns Ω (OPT) weight in expectation.

Our Approach and Technical Contributions

- Sample constant fraction of elements \rightarrow set S
- Use RDC of $\left.\mathcal{M}\right|_{S}$ to approximate RDC of $\left.\mathcal{M}\right|_{N \backslash S}$
- Use approximate RDC to retrieve Ω (OPT) weight from $\left.\mathcal{M}\right|_{N \backslash S}$ in expectation
- Conclude that we return $\Omega(\mathrm{OPT})$ weight from \mathcal{M} in expectation

Theorem

With constant probability, $R D C s$ of $\mathcal{M},\left.\mathcal{M}\right|_{S}$, and $\left.\mathcal{M}\right|_{N \backslash S}$ are close to each other.

Theorem

There is an algorithm that, given a good approximate RDC of \mathcal{M}, returns Ω (OPT) weight in expectation.

Conclusion

- Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront

Conclusion

- Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront
- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]

Conclusion

- Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront
- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]
- First constant-competitive algorithm for "matroid unknown" setting

Conclusion

- Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront
- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]
- First constant-competitive algorithm for "matroid unknown" setting
- Bonus: works in "random sample + adversarial order" setting

Conclusion

- Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront
- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]
- First constant-competitive algorithm for "matroid unknown" setting
- Bonus: works in "random sample + adversarial order" setting
- Open questions:

Conclusion

- Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront
- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]
- First constant-competitive algorithm for "matroid unknown" setting
- Bonus: works in "random sample + adversarial order" setting
- Open questions:
- Improve competitive ratio?

Conclusion

- Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront
- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]
- First constant-competitive algorithm for "matroid unknown" setting
- Bonus: works in "random sample + adversarial order" setting
- Open questions:
- Improve competitive ratio?
- Utilize rank-density curves or densities in general MSP?

Conclusion

- Main result: Constant-competitive algorithm for RAMSP when matroid not given upfront
- Solves open question from [Babaioff, Immorlica, Kleinberg 2007]
- First constant-competitive algorithm for "matroid unknown" setting
- Bonus: works in "random sample + adversarial order" setting
- Open questions:
- Improve competitive ratio?
- Utilize rank-density curves or densities in general MSP?
- Resolve general MSP conjecture from [Babaioff, Immorlica, Kleinberg 2007]?

