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Motivation: intersection cuts
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S-free set (green) (Dey and Wolsey 2010)
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Intersection cuts in pictures

Intersection cut (red) (Balas 1971)
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Deeper intersection cut (black)
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Intersection cuts in pictures
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C is maximal S-free if it is not contained in another S-free set
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Our setting

An important case: quadratic set
S={se€R”:s'As+b's+c<0}.

with 5 ¢ S.
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Our setting

An important case: quadratic set
S={se€R”:s'As+b's+c<0}.

with 5 ¢ S.
Important:

e This does not mean it only applies to problems with a single quadratic.
m
§¢ﬂ{s €RP : sTAis+ b s+ ¢ <0}
i=1
implies there is some quadratic violated.

e An LP relaxation of a QCQP carries info of all constraints, thus an
intersection cut would do so too.
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Related work

Intersection cuts in non-convex settings

e Fischetti, Ljubi¢, Monaci and Sinnl (2016)— bilevel-free sets

e Fischetti and Monaci (2019) — bilinear-free sets

e Serrano (2019) — concave underestimators of factorable functs
e Bienstock, Chen and M. (2020) — outer-product-free sets

e Xu, D'Ambrosio, Liberti and Vanier (2023) — signomial-free sets

Beyond intersection cuts

e Kiling-Karzan (2015) — minimal inequalities for disjunctive conic sets

e Burer and Kiling-Karzan (2017) — second-order cone intersected with

quadratic

e Santana and Dey (2018) — convex hull of quadratic constraint N
polytope is SOC representable
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What we’ll talk about today

The agenda for today: to show the basic step in the construction of
maximal quadratic-free sets

for homogeneous quadratics and steps toward a full characterization
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Homogeneous quadratics



A canonical form for homogeneous quadratics

In this talk, we consider a set of the form

S={seR”: s As <0}

7/25



A canonical form for homogeneous quadratics

In this talk, we consider a set of the form
S={seR”: s As <0}
Without loss of generality (via a diagonalization), it suffices to consider

Q={(x,y) €R™ : |Ix|| - llyll < 0}

7/25



A canonical form for homogeneous quadratics

In this talk, we consider a set of the form
S={seR”: s As <0}
Without loss of generality (via a diagonalization), it suffices to consider

Q={(x,y) €R™ : |Ix|| - llyll < 0}

7/25



Constructing Q-free sets

Q={0x,y) €R™ : |Ix|| < llyll}
Since A"x < ||x|| when ||| = 1, we can show that

Co={(xy) ER™™ ¢ |ly| < A"x} s
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Constructing Q-free sets

Q={0x,y) €R™ : |Ix|| < llyll}
Since A"x < ||x|| when ||| = 1, we can show that

Co={(xy) ER™™ ¢ |ly| < A"x} s

Theorem (M. and Serrano '21)

Cy is maximal Q-free.
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Maximality proof
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Maximality proof

Proof sketch.
We use an outer-description of Cy:

lyll < Xx & BTy < ATx, V3, [|8] =1
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Maximality proof

Proof sketch.
We use an outer-description of Cy:

Iyl < Xx & BTy < A'x, VB, 18] =1
The point (A, 3) is in @ N Cx (because ||[A|| = ||3]|) and “exposes” the

inequality —\"x + 8Ty < 0. O
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Having exposing points suffices for maximality
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Having exposing points suffices for maximality

@

Theorem (M. and Serrano '21)

Let S be a closed set and C = {x € R" : o’ x < 3, ¥(a, ) € T} an S-free set.
Suppose for every a." x < 3 there is an x € SN C such that

a'x=pB s the only tight inequality for X

X exposes (a, 3)

Then, C is maximal S-free.

This generalizes the sufficient part of the criterion of Dey and Wolsey (2010)
for lattice-free sets.
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Where do we go from C,?

Path #1: Extending C, to the non-homogeneous case and including
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Where do we go from C,?

Path #1: Extending C, to the non-homogeneous case and including

We refer the audience to Antonia’s talk

Path #2: Is C, all there is for Q?
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Where do we go from C,?

Path #2: Is C, all there is for Q?

NO. The following “twisted wedge” C is also maximal:

Q63
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Beyond C,




Recall that
Q={(xy) e R"™ - ||Ix|| < lyII}

Since |ly|| = max{8Ty : ||B]| = 1}, we have

Q= U {Gxy) eR™ : |Ix| < BTy}
I18l=1
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Recall that
Q={(xy) e R"™ - ||Ix|| < lyII}

Since |ly|| = max{8Ty : ||B]| = 1}, we have

Q= U {Gxy) eR™ : |Ix| < BTy}
I18l=1

— @ is the union of convex sets.

= any Q-free set can be separated from each Sg:

Ss = {(x,y) eR™™ : x| < BTy}
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A necessary condition for maximality

Sp = {(xy) eR™™ : x| < BTy}
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A necessary condition for maximality
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Note that for any unit vector '(53)
rg)'x<pg'y
is a valid inequality for Sg. This motivates the definition of

G ={(x,y) eR™™:8Ty <T(B)'x V3 e D"} whichis always Q-free.
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A necessary condition for maximality

Sp = {(xy) eR™™ : x| < BTy}
Note that for any unit vector '(53)
() x<py
is a valid inequality for Sg. This motivates the definition of
G ={(x,y) eR™": BTY < r(/B)TX V B € D™} which is always Q-free.

We can push this idea to show

Theorem (M., Paat and Serrano '23)

Let C be a full-dimensional maximal Q-free set. There exists a function
[: D™ — D" such that
C=¢C.
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G ={(x,y) eR™"™: 8Ty <T(B)'x VB D"}

In the following 3D examples y only has one dimension — [ = +1.

Thus, ['(3) is part of the slopes of the two hyperplanes

r)=r(-1 r()#r-1
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A maximality condition

Theorem (M., Paat and Serrano '23)
If T satisfies that

IF(B) - <88l B#p

“strict non-expansiveness”

the set Cr = {(x,y) : BTy <T(B)"'x V B € D™} is maximal Q-free.
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A maximality condition

Theorem (M., Paat and Serrano '23)
If T satisfies that

IF(B) - <88l B#p

“strict non-expansiveness”

the set Cr = {(x,y) : BTy <T(B)"'x V B € D™} is maximal Q-free.

Proof sketch.
For each 3, consider the point (x, y) = ([(3), ). Under the above condition

* (xy)eQNG
e Strict non-expansiveness is equivalent to 573" < [(3)"T(8') for 5 # /3’
e The only inequality of Cr which is tight at (x,y) is 8Ty < [(8)"x

In other words, every inequality has an
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[ strictly non-expansive

The simplest case of [ strictly non-expansive is a constant function, which
yields Cy
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[ strictly non-expansive

The simplest case of [ strictly non-expansive is a constant function, which
yields Cy

But we are not restricted to constant functions!

17/25



[ strictly non-expansive

For example, for n = m = 2 we can construct a I function
using polar coordinates:
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[ strictly non-expansive

For example, for n = m = 2 we can construct a I function
using polar coordinates:

A 3D slice of the resulting 4D maximal Q-free set is:
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We believe that the “strictly non-expansive” condition can be relaxed.

Conjecture

Consider the Q-free set

G ={(x,y) eR"™™: 8Ty <T(B)'x VBeD"}.

with T : D™ — D". IfT is non-expansive, then Cr is maximal Q-free.
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We believe that the “strictly non-expansive” condition can be relaxed.

Conjecture

Consider the Q-free set

G ={(x,y) eR"™™: 8Ty <T(B)'x VBeD"}.

with T : D™ — D". IfT is non-expansive, then Cr is maximal Q-free.

So far, we have the following partial result

Theorem (M., Paat and Serrano '23)
Consider the Q-free set

C={(x,y) eR"™: BTy <T(B)'x VB €D}

with T : D™ — D". If T is non-expansive and Cr is a polyhedron then Cr is
maximal Q-free.

19/25



A polyehdral example

For n = m we can consider a ['(3) = |3|. This function is non-expansive and it
can be shown that it yields a . In polar coordinates for n = m = 2:
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A polyehdral example

For n = m we can consider a ['(3) = |3|. This function is non-expansive and it
can be shown that it yields a . In polar coordinates for n = m = 2:

A 3D slice of the case n=m =2 is:

Here there's no exposing point!
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Maximality proof sketch

The idea of the proof is, for each facet, to construct an
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Maximality proof sketch

The idea of the proof is, for each facet, to construct an

The sequence is such that every separating hyperplane sequence converges to
the desired facet.

21/25



Why is this last example polyhedral?

The fact that ['(3) = || yields a polyhedral Q-free set may not be obvious. As
seen before, in polar coordinates, the I function is

30
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The fact that ['(3) = || yields a polyhedral Q-free set may not be obvious. As
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It can be shown that each break-point is a facet. Moreover, two consecutive
breaking points are always isometries:

IT(8) = r(BM =18 -4l

and inequalities that lie “between” isometries are redundant.
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Why is this last example polyhedral?

The fact that ['(3) = || yields a polyhedral Q-free set may not be obvious. As
seen before, in polar coordinates, the I function is

It can be shown that each break-point is a facet. Moreover, two consecutive
breaking points are always isometries:

IT(8) =B = 18- 8l
and inequalities that lie “between” isometries are redundant.

In M., Paat and Serrano (2023) we have a full characterization of when Cr is

a polyhedron.
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Some last fun observations

What if we consider the following family of ' functions?
(in polar coordinates)

-0.5
(=Jew](+] (=Jee(+)
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Some last fun observations

What if we consider the following family of ' functions?
(in polar coordinates)

-0.5
(=Jew](+] (=Jee(+)

They all produce maximal Q-free sets, and only the last one is polyhedral!

Maximality of the non-polyhedral sets cannot be shown with the results of this talk

23 /25



Summary




Summary and further comments

e We have shown how to construct Q-free via the construction of a (fairly
general) function '

e When the function is non-expansive, we can provide some maximality
guarantees of the resulting set
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Summ and further comments

e We have shown how to construct Q-free via the construction of a (fairly
general) function '

e When the function is non-expansive, we can provide some maximality
guarantees of the resulting set

e Qur results are accompanied with a generic maximality criterion
e We also have a characterization of

e Computationally, we have only tested the case of ' constant and its
extension to the non-homogeneous setting

Thank youl!
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Bonus construction

We can use starting isometric points to construct polyhedral Cr sets. For
instance, in 6 dimensions:

B-space I'(B3)-space
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Bonus construction

We can use starting isometric points to construct polyhedral Cr sets. For
instance, in 6 dimensions:

B-space I'(B3)-space

This yields the following set Cr (3D slice)
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