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Integer Linear Programming (IP)

GivenAc Z™" be Z" andc € Z", solve
min{c x: Ax< b, x € Z"} .

An interesting class of efficiently solvable IPs

Atotally unimodular (TU) == Integral relaxation.

[ What if minors, in absolute value, are still bounded, but not by 1? }
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v A = 1: Immediate
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> less general:
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— total A-modularity: bounds on all subdets
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Our main result

Strongly polynomial randomized alg. for feasibility of strictly 4-modular IPs.
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Known results New result
v Optimization for depth one v/ Feasibility for depth three and general m

v Feasibility for depth two if m is prime
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Theorem: Cauchy-Davenport

For prime m and Ra, Rs C Zp,
|Ra + Rg| > min{m, |Ra| + |Rs| — 1}.




Non-prime modulus

A rk 1
rk1 )

A-subproblem \ depth 3 B-subproblem
Axa < ba Bxs < bs

O B B

3 feasible sol. assume

from depth < 2 > 2 solutions
problems X
XB

combined solution



Non-prime modulus

A rk1
(rk1 rB)ng
S 8 o

A-subproblem \ depth 3 B-subproblem
Axa < ba Bxs < bs

O B B

/ \
feasibl I assume
rom dopin < 2
problems _

Cauchy-Davenport only fails if
R=R-+HforH<Zn,
— can quotient out H.




rk 1
<
m1 B)X\b

1[ \depth3

A-subproblem B-subproblem

Axa < O Txe (mod 2) Bxs < bs
Lol « [r2] = e s | ) h1/ Lo+ 2] s e s |
ept
Lol « |72 s e s |

Cauchy-Davenport only fails if
R=R-+HforH<Zn,

— can quotient out H.




Where we are

X:

) Structural results:

— proximity

— flatness or feasibility

1 Cut baseblock: feasibility
i el
i " I // —il: Circulation baseblock:
A-modular integer programming | :!_ / rand. alg- for S Obj-
[T (ad hoc for m = 2)
min{c"x: Ax < b,x € Z"} —!_. ___________ _;‘
Ais A-modular.

JaT o Ty<b yeZn,
mln{c v 4Ty =r (mod m)

T totally unimodular, modulus m.

Equivalence:
A=2 Reduction to base block problems.
. or Base block problems
A strictly A-modular Restriction: m <x 4 )
) * A Interpretation as congruency-con-
M — progressing in hierarchy of problems

strained cut and circulation problems
*changing to multiple congruency constraints

— prime tools, e.g., Cauchy-Davenport




Transposed network matrices baseblock

Theorem: Transposed network matrix problems

There is a str. poly. algorithm for deciding feasibility of a congruency constraint TU
problem with constant modulus and a transposed network matrix.

» Reduce to question whether a weighted lattice contains a set satisfying a congruency constraint.




Transposed network matrices baseblock

Theorem: Transposed network matrix problems

There is a str. poly. algorithm for deciding feasibility of a congruency constraint TU
problem with constant modulus and a transposed network matrix.

» Reduce to question whether a weighted lattice contains a set satisfying a congruency constraint.

~(C) =2 (mod 3)
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Solving the lattice problem

If there is a feasible solution, then there is one with less than m
elements without successor.
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» Removed prime modulus requirement in propagation
More generally: Extension to arbitrary finite abelian groups

» Extended propagation to depth 3

> Feasibility for transposed network matrix baseblock for all moduli

> Base blocks:
Randomization remains necessary for congruency-constrained circulations (even feasibility)
equivalent problem: congruency-constrained bipartite red-blue matching
» General (strictly) A-modular IPs
> Optimization:
completely open beyond depth 1



