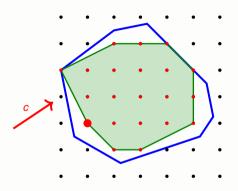
Advances on Strictly Δ -Modular IPs

Martin Nägele* Christian Nöbel** Richard Santiago** Rico Zenklusen**

*University of Bonn & HCM **ETH Zürich

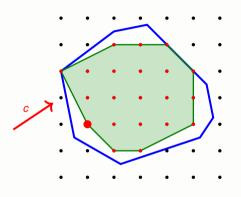
Integer Programming



Integer Linear Programming (IP)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, and $c \in \mathbb{Z}^n$, solve $\min\{c^\top x \colon Ax \leqslant b, \ x \in \mathbb{Z}^n\}$.

Integer Programming



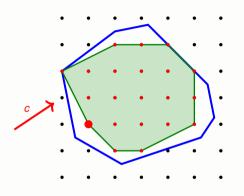
Integer Linear Programming (IP)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, and $c \in \mathbb{Z}^n$, solve $\min\{c^\top x \colon Ax \leqslant b, \ x \in \mathbb{Z}^n\}$.

An interesting class of efficiently solvable IPs

A totally unimodular (TU) \implies Integral relaxation.

Integer Programming



Integer Linear Programming (IP)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, and $c \in \mathbb{Z}^n$, solve $\min\{c^\top x : Ax \leqslant b, x \in \mathbb{Z}^n\}$.

An interesting class of efficiently solvable IPs

 $\textit{A} \ \text{totally unimodular (TU)} \quad \Longrightarrow \quad \text{Integral relaxation}.$

What if minors, in absolute value, are still bounded, but not by 1?

Bounded subdeterminants

Δ -modular Integer Programming

Can IPs with $\Delta\text{-modular}$ constraint matrix be solved efficiently for constant $\Delta\in\mathbb{Z}_{>0}\text{?}$

- ▶ $A \in \mathbb{Z}^{m \times n}$ is Δ -modular if
 - $\rightarrow \operatorname{rank}(A) = n$
 - $\,\,
 ightarrow\,\, n imes n$ subdets bounded by Δ
- less general:
 - \rightarrow total Δ -modularity: bounds on *all* subdets
 - $\rightarrow \mbox{ strict } \Delta\mbox{-modularity: subdets in } \{0,\pm\Delta\}$ only

Bounded subdeterminants

Δ-modular Integer Programming

Can IPs with $\Delta\text{-modular}$ constraint matrix be solved efficiently for constant $\Delta\in\mathbb{Z}_{>0}$?

- ▶ $A \in \mathbb{Z}^{m \times n}$ is Δ -modular if
 - \rightarrow rank(A) = n
 - ightarrow n imes n subdets bounded by Δ
- less general:
 - ightarrow total Δ -modularity: bounds on *all* subdets
 - $\rightarrow \;$ strict $\Delta\text{-modularity:}$ subdets in $\{0,\pm\Delta\}$ only

Poly-time solvable special cases

- \checkmark $\Delta = 1$: Immediate
- $^{\prime}$ $\Delta=$ 2: Bimodular Integer Programming (BIP) [Artmann, Weismantel, and Zenklusen, STOC 2017
- ✓ Totally ∆-modular IPs, at most 2 non-zeros per row [Fiorini, Joret, Weltge, and Yuditsky, FOCS 2021]
- ✓ Feasibility for strictly 3-modular IPs (randomized)

 [Nägele, Santiago, and Zenklusen, SODA 202.]

Bounded subdeterminants

Δ -modular Integer Programming

Can IPs with $\Delta\text{-modular}$ constraint matrix be solved efficiently for constant $\Delta\in\mathbb{Z}_{>0}$?

- ▶ $A \in \mathbb{Z}^{m \times n}$ is Δ -modular if
 - \rightarrow rank(A) = n
 - $\rightarrow n \times n$ subdets bounded by Δ
- less general:
 - ightarrow total Δ -modularity: bounds on *all* subdets
 - $\rightarrow \;$ strict $\Delta\text{-modularity:}$ subdets in $\{0,\pm\Delta\}$ only

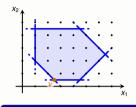
Poly-time solvable special cases

- \checkmark $\Delta = 1$: Immediate
- ✓ Δ = 2: Bimodular Integer Programming (BIP)

 [Artmann, Weismantel, and Zenklusen, STOC 201]
- ✓ Totally ∆-modular IPs, at most 2 non-zeros per row [Fiorini, Joret, Weltge, and Yuditsky, FOCS 2021
- Feasibility for strictly 3-modular IPs (randomized) [Nägele, Santiago, and Zenklusen, SODA 2022

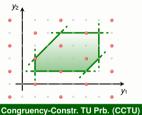
Our main result

Strongly polynomial randomized alg. for feasibility of strictly 4-modular IPs.

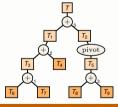


Δ -modular integer programming

 $\min\{c^{\top}x \colon Ax \leqslant b, x \in \mathbb{Z}^n\}$ A is Δ -modular.



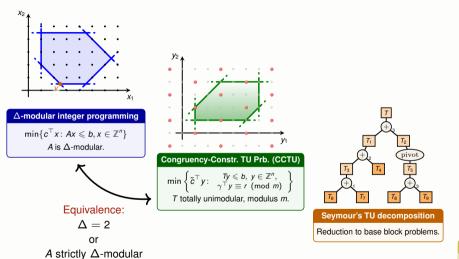
T totally unimodular, modulus m.



Seymour's TU decomposition

Reduction to base block problems.

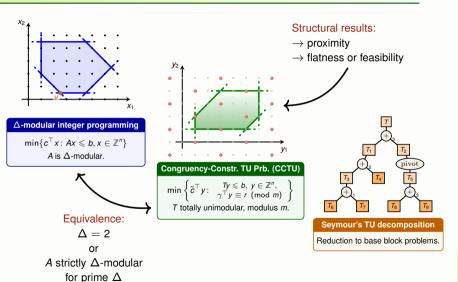
Interpretation as congruency-constrained cut and circulation problems



for prime Δ

Base block problems

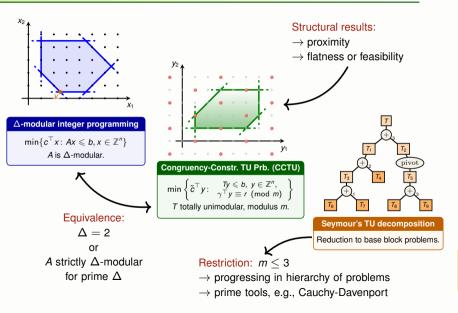
Interpretation as congruency-constrained cut and circulation problems





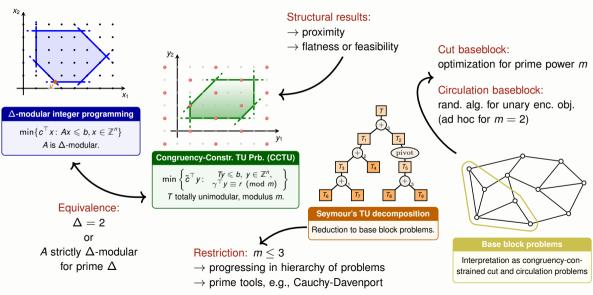
Base block problems

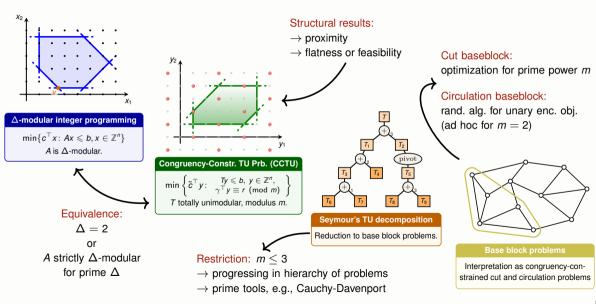
Interpretation as congruency-constrained cut and circulation problems

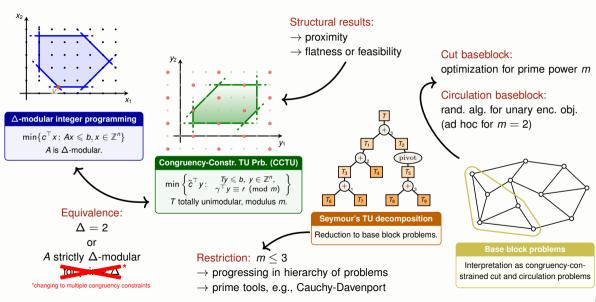


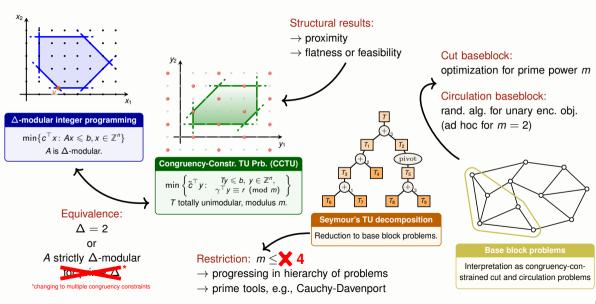
Base block problems

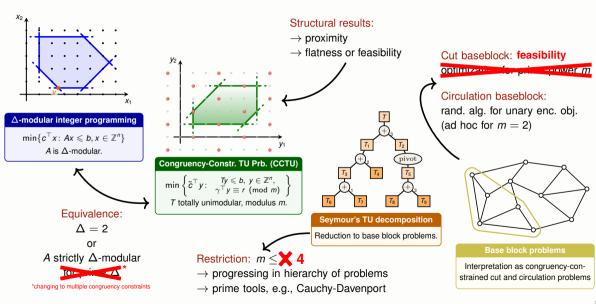
Interpretation as congruency-constrained cut and circulation problems

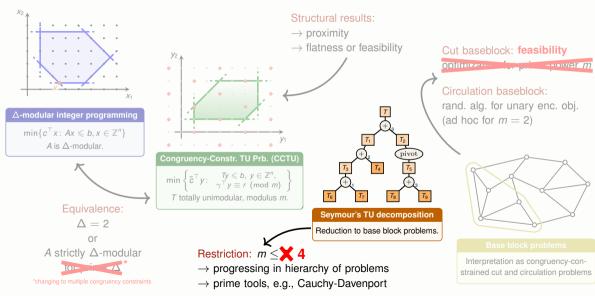




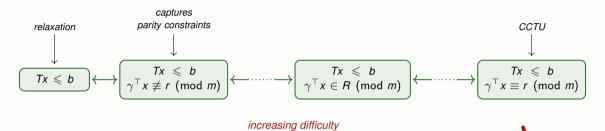




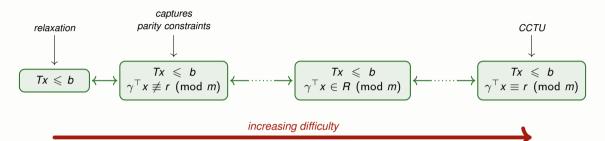




A hierarchy of congruency-constrained TU problems



A hierarchy of congruency-constrained TU problems

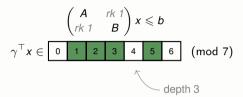


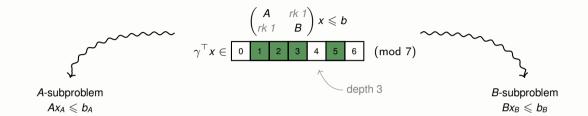
Known results

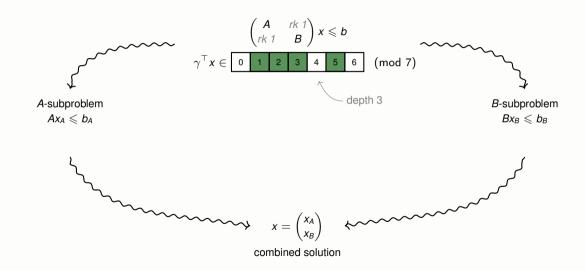
- Optimization for depth one
- ✓ Feasibility for depth two if *m* is prime

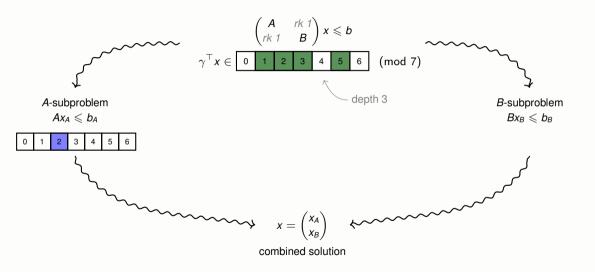
New result

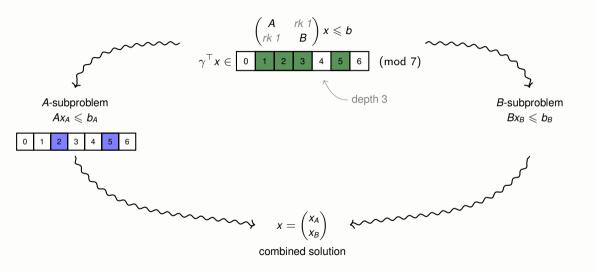
Feasibility for depth three and general *m*

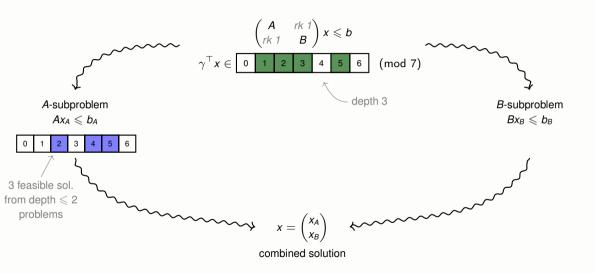


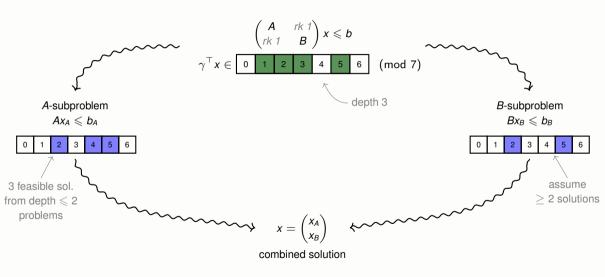


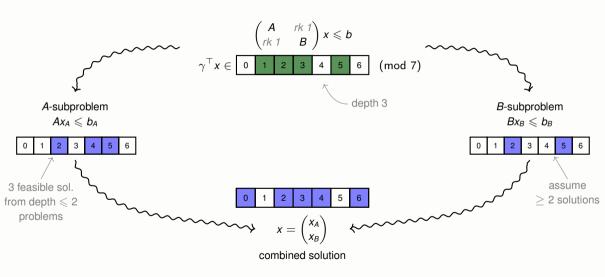


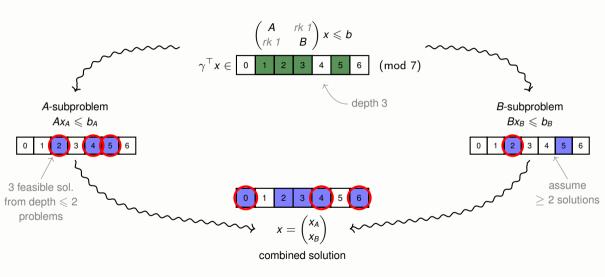


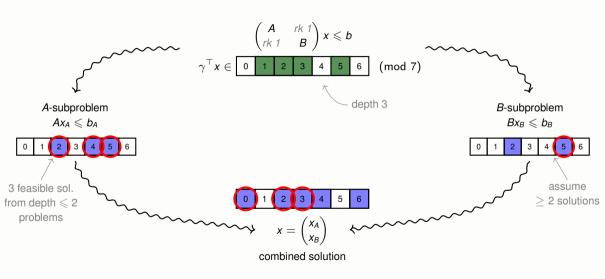


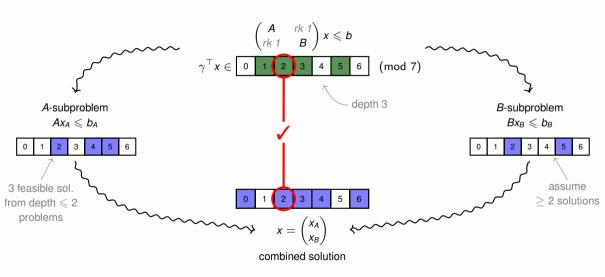


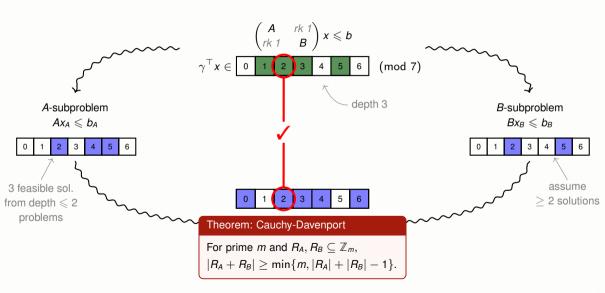




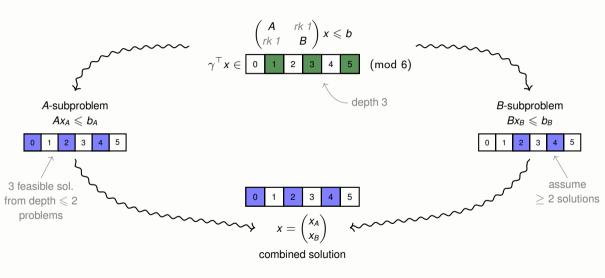




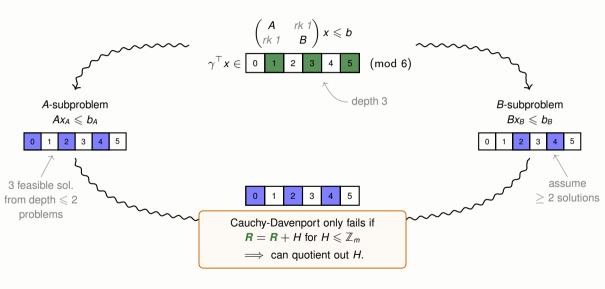




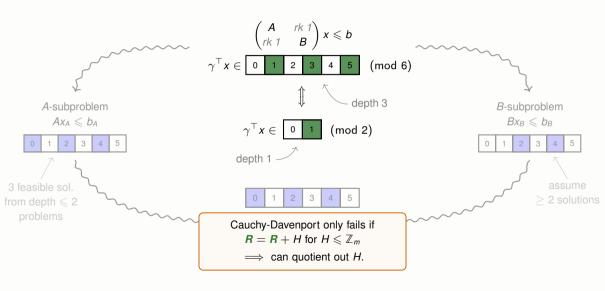
Non-prime modulus



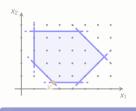
Non-prime modulus



Non-prime modulus



Where we are



\triangle -modular integer programming

$$\min\{c^\top x \colon Ax \leqslant b, x \in \mathbb{Z}^n\}$$

$$A \text{ is } \Delta\text{-modular.}$$

$$\Delta = 2$$

A strictly Δ -modular

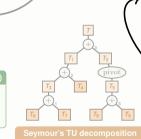
Structural results:

- \rightarrow proximity
- → flatness or feasibility

Cut baseblock: feasibility optimiza

Circulation baseblock:

rand. alg. for unary enc. obj. (ad hoc for m=2)



Reduction to base block problems.

Restriction: $m \leq \times 4$

T totally unimodular, modulus m.

- → progressing in hierarchy of problems
- → prime tools, e.g., Cauchy-Davenport

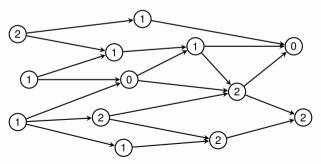
Interpretation as congruency-constrained cut and circulation problems

Transposed network matrices baseblock

Theorem: Transposed network matrix problems

There is a str. poly. algorithm for deciding feasibility of a congruency constraint TU problem with constant modulus and a transposed network matrix.

Reduce to question whether a weighted lattice contains a set satisfying a congruency constraint.

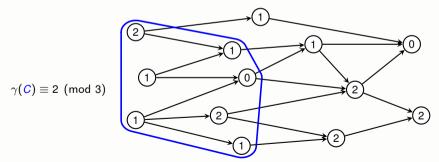


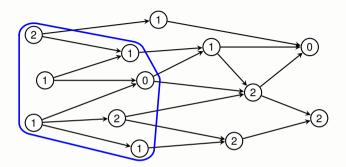
Transposed network matrices baseblock

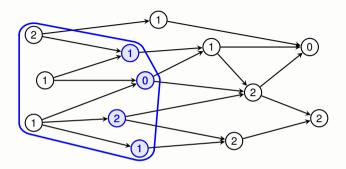
Theorem: Transposed network matrix problems

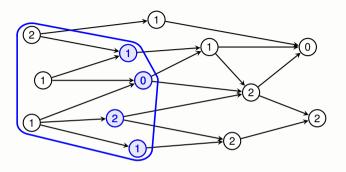
There is a str. poly. algorithm for deciding feasibility of a congruency constraint TU problem with constant modulus and a transposed network matrix.

Reduce to question whether a weighted lattice contains a set satisfying a congruency constraint.



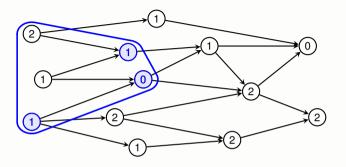






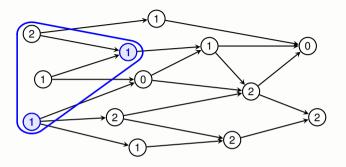
Lemma

Given m integers, there is a subset with sum divisible by m.



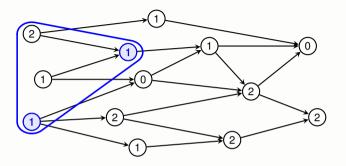
Lemma

Given m integers, there is a subset with sum divisible by m.



Lemma

Given m integers, there is a subset with sum divisible by m.



Lemma

Given m integers, there is a subset with sum divisible by m.

Lemma

If there is a feasible solution, then there is one with less than m elements without successor.

Conclusions & Open Questions

- Removed prime modulus requirement in propagation
 More generally: Extension to arbitrary finite abelian groups
- Extended propagation to depth 3
- Feasibility for transposed network matrix baseblock for all moduli

Conclusions & Open Questions

- Removed prime modulus requirement in propagation
 More generally: Extension to arbitrary finite abelian groups
- Extended propagation to depth 3
- Feasibility for transposed network matrix baseblock for all moduli

Base blocks:

Randomization remains necessary for congruency-constrained circulations (even feasibility) equivalent problem: congruency-constrained bipartite red-blue matching

- General (strictly) Δ-modular IPs
- Optimization:

completely open beyond depth 1