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Integer Programming

c

Integer Linear Programming (IP)

Given A ∈ Zm×n, b ∈ Zm, and c ∈ Zn, solve

min{c>x : Ax 6 b, x ∈ Zn} .

An interesting class of efficiently solvable IPs

A totally unimodular (TU) =⇒ Integral relaxation.

What if minors, in absolute value, are still bounded, but not by 1?



2

Integer Programming

c

Integer Linear Programming (IP)

Given A ∈ Zm×n, b ∈ Zm, and c ∈ Zn, solve

min{c>x : Ax 6 b, x ∈ Zn} .

An interesting class of efficiently solvable IPs

A totally unimodular (TU) =⇒ Integral relaxation.

What if minors, in absolute value, are still bounded, but not by 1?



2

Integer Programming

c

Integer Linear Programming (IP)

Given A ∈ Zm×n, b ∈ Zm, and c ∈ Zn, solve

min{c>x : Ax 6 b, x ∈ Zn} .

An interesting class of efficiently solvable IPs

A totally unimodular (TU) =⇒ Integral relaxation.

What if minors, in absolute value, are still bounded, but not by 1?



3

Bounded subdeterminants

∆-modular Integer Programming

Can IPs with ∆-modular constraint matrix
be solved efficiently for constant ∆ ∈ Z>0?

I A ∈ Zm×n is ∆-modular if

→ rank(A) = n
→ n × n subdets bounded by ∆

I less general:

→ total ∆-modularity: bounds on all subdets
→ strict ∆-modularity: subdets in {0,±∆} only

Poly-time solvable special cases

3 ∆ = 1: Immediate

3 ∆ = 2: Bimodular Integer Programming (BIP)
[Artmann, Weismantel, and Zenklusen, STOC 2017]

3 Totally ∆-modular IPs, at most 2 non-zeros per row
[Fiorini, Joret, Weltge, and Yuditsky, FOCS 2021]

3 Feasibility for strictly 3-modular IPs (randomized)
[Nägele, Santiago, and Zenklusen, SODA 2022]

Our main result

Strongly polynomial randomized alg. for feasibility of strictly 4-modular IPs.
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High-level view: BIP and strictly 3-modular feasibility
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∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.
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Congruency-Constr. TU Prb. (CCTU)

min

{
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γ>y ≡ r (mod m)

}
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Base block problems

Interpretation as congruency-con-
strained cut and circulation problems

Equivalence:
∆ = 2

or
A strictly ∆-modular

for prime ∆

Structural results:
→ proximity
→ flatness or feasibility

Restriction: m ≤ 3
→ progressing in hierarchy of problems
→ prime tools, e.g., Cauchy-Davenport

Cut baseblock:
optimization for prime power m

Circulation baseblock:
rand. alg. for unary enc. obj.
(ad hoc for m = 2)
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A hierarchy of congruency-constrained TU problems

Tx 6 b

relaxation

Tx 6 b
γ>x ≡ r (mod m)

CCTU

Tx 6 b
γ>x 6≡ r (mod m)

captures
parity constraints

Tx 6 b
γ>x ∈ R (mod m)

increasing difficulty

Known results

3 Optimization for depth one

3 Feasibility for depth two if m is prime

New result

3 Feasibility for depth three and general m

3 Test
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Exploiting the hierarchy with Cauchy-Davenport

(
A rk 1

rk 1 B

)
x 6 b

γ>x ∈ 0 1 2 3 4 5 6 (mod 7)

depth 3

A-subproblem
AxA 6 bA

B-subproblem
BxB 6 bB

x =

(
xA

xB

)
combined solution

3 feasible sol.
from depth 6 2

problems

0 1 2 3 4 5 6

assume
≥ 2 solutions0 1 2 3 4 5 6

3

Theorem: Cauchy-Davenport

For prime m and RA,RB ⊆ Zm,

|RA + RB| ≥ min{m, |RA|+ |RB| − 1}.
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Where we are

x1

x2

v

∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.

y1

y2

Congruency-Constr. TU Prb. (CCTU)

min

{
c̃>y :

Ty 6 b, y ∈ Zn,
γ>y ≡ r (mod m)

}
T totally unimodular, modulus m.

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction to base block problems.

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as congruency-con-
strained cut and circulation problems

Equivalence:
∆ = 2

or
A strictly ∆-modular

for prime ∆

Structural results:
→ proximity
→ flatness or feasibility

Restriction: m ≤ 3
→ progressing in hierarchy of problems
→ prime tools, e.g., Cauchy-Davenport

Cut baseblock:
optimization for prime power m

Circulation baseblock:
rand. alg. for unary enc. obj.
(ad hoc for m = 2)

*changing to multiple congruency constraints

*
4

feasibility
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Transposed network matrices baseblock

Theorem: Transposed network matrix problems

There is a str. poly. algorithm for deciding feasibility of a congruency constraint TU
problem with constant modulus and a transposed network matrix.

I Reduce to question whether a weighted lattice contains a set satisfying a congruency constraint.

2

1

1

1

0

2

2

1 0

1
2

2

1

γ(C) ≡ 2 (mod 3)
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Solving the lattice problem
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2

1

1

0

1

1

1

Lemma

Given m integers, there is a subset with sum divisible by m.

Lemma

If there is a feasible solution, then there is one with less than m
elements without successor.
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Conclusions & Open Questions

I Removed prime modulus requirement in propagation

More generally: Extension to arbitrary finite abelian groups

I Extended propagation to depth 3

I Feasibility for transposed network matrix baseblock for all moduli

I Base blocks:

Randomization remains necessary for congruency-constrained circulations (even feasibility)

equivalent problem: congruency-constrained bipartite red-blue matching

I General (strictly) ∆-modular IPs

I Optimization:

completely open beyond depth 1
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