Optimizing Low Dimensional Functions over the Integers

Daniel Dadush, Arthur Léonard,
Lars Rohwedder, José Verschae

IPCO 2023

Inspiration

[Hunkenschröder, Pokutta, Weismantel, 2022]

$$
\min _{x \in\{0,1\}^{n}} g(W x)
$$

$g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a nice convex function
$W \in \mathbb{Z}^{n \times m}$ matrix (known or unknown),
$\|W\|_{\infty} \leq \Delta, m \ll n$.

Inspiration

[Hunkenschröder, Pokutta, Weismantel, 2022]

$$
\min _{x \in\{0,1\}^{n}} g(W x)
$$

$g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a nice convex function $W \in \mathbb{Z}^{n \times m}$ matrix (known or unknown),
$\|W\|_{\infty} \leq \Delta, m \ll n$.
\rightarrow The algorithm runs in time $O\left(n(m \Delta)^{O\left(m^{2}\right)}\right.$) when W is known and g is separable convex.

The Problem

Our contribution : an algorithm to compute an optimal solution to :

$$
\begin{aligned}
\min & c^{\top} x+g(W x) \\
& l_{i} \leq x_{i} \leq u_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

$W \in \mathbb{Z}^{m \times n},\|W\|_{\infty} \leq \Delta, m \ll n$.

The Problem

Our contribution : an algorithm to compute an optimal solution to :

$$
\begin{aligned}
\min & c^{\top} x+g(W x) \\
& l_{i} \leq x_{i} \leq u_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

$W \in \mathbb{Z}^{m \times n},\|W\|_{\infty} \leq \Delta, m \ll n$.
The complexity of this algorithm is:

$$
O\left(n^{O(m)} \cdot(m \Delta)^{O\left(m^{2}\right)} \cdot Q\right)
$$

Requirement on g

We suppose we can do oracle queries. Given :

- a partition of the variables $I \dot{U} J=[n]$ with $|I| \leq m$
- a fixing $z \in \mathbb{Z}^{J}$ of the J-variables
it solves the following problem in time Q :

$$
\begin{array}{ll}
\min & c_{I} x+g\left(W_{I} x+W_{J} z\right) \\
\text { s.t. } & l_{i} \leq x_{i} \leq u_{i} \\
& x \in \mathbb{Z}^{\prime}
\end{array} \quad \text { for all } i \in I
$$

Requirement on g

We suppose we can do oracle queries. Given :

- a partition of the variables $I \dot{U} J=[n]$ with $|I| \leq m$
- a fixing $z \in \mathbb{Z}^{J}$ of the J-variables
it solves the following problem in time Q :

$$
\begin{array}{ll}
\min & c_{I} x+g\left(W_{I} x+W_{J} z\right) \\
\text { s.t. } & l_{i} \leq x_{i} \leq u_{i} \\
& x \in \mathbb{Z}^{\prime} \quad \text { for all } i \in I, ~
\end{array}
$$

Remark

If g is convex and accessible by function and gradient evaluation, oracle queries can be implemented using the algorithm in [Kannan, 1983] in $O\left(m^{O(m)}\langle\right.$ input $\left.\rangle{ }^{O(1)}\right)$

Application: Mixed-Integer linear programming

$$
\begin{array}{ll}
\min & c^{\top} x+d^{\top} y \\
& W x+B y=b \\
& l_{i} \leq x_{i} \leq u_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}, y \in P \subset \mathbb{R}^{h}
\end{array}
$$

The polytope P imposes constraints on the continuous variables.

Application: Mixed-Integer linear programming

$$
\begin{aligned}
\min & c^{\top} x+d^{\top} y \\
& W x+B y=b \\
& l_{i} \leq x_{i} \leq u_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}, y \in P \subset \mathbb{R}^{h}
\end{aligned}
$$

The polytope P imposes constraints on the continuous variables.

Encoding

$g(W x):= \begin{cases}\min \left\{d^{\top} y: B y=b-W x, y \in P\right\} & \text { if it exists }, \\ \infty & \text { otherwise }\end{cases}$

Application : Variable-sized knapsack

$\max \left\{\sum_{i=1}^{n} p_{i} x_{i}-g\left(\sum_{i=1}^{n} w_{i} x_{i}\right): x_{i} \in\left\{0, \ldots, u_{i}\right\}\right.$ for all $\left.i\right\}$

- p_{i} : the value of item i
- w_{i} : the space needed for item i
- x_{i} : the number of item i that we take
- u_{i} : the number of available item i

Application : Variable-sized knapsack

$\max \left\{\sum_{i=1}^{n} p_{i} x_{i}-g\left(\sum_{i=1}^{n} w_{i} x_{i}\right): x_{i} \in\left\{0, \ldots, u_{i}\right\}\right.$ for all $\left.i\right\}$

- p_{i} : the value of item i
- w_{i} : the space needed for item i
- x_{i} : the number of item i that we take
- u_{i} : the number of available item i

If g is convex, our algorithm works in time $\left(n+w_{\max }\right)^{O(1)}$.

A proximity bound

$$
\max \left\{c^{\top} x: A x=b \text { and } I_{i} \leq x_{i} \leq u_{i} \text { for all } i\right\}
$$

A proximity bound

$$
\max \left\{c^{\top} x: A x=b \text { and } I_{i} \leq x_{i} \leq u_{i} \text { for all } i\right\}
$$

A proximity bound

Proximity lemma [Eisenbrand, Weismantel, 2020]

Let z be an optimal vertex solution to

$$
\max \left\{c^{\top} x: A x=b \text { and } I_{i} \leq x_{i} \leq u_{i} \text { for all } i\right\}
$$

where $A \in \mathbb{Z}^{m \times n}$ has entries of size at most Δ.

If there exists an optimal integer solution \tilde{x}, then there exists an optimal integer solution x^{*} with :

$$
\left\|x^{*}-z\right\|_{1} \leq m(2 m \Delta+1)^{m}
$$

A proximity bound

Proximity lemma [Eisenbrand, Weismantel, 2020]

Let z be an optimal vertex solution to

$$
\max \left\{c^{\top} x: A x=b \text { and } I_{i} \leq x_{i} \leq u_{i} \text { for all } i\right\}
$$

where $A \in \mathbb{Z}^{m \times n}$ has entries of size at most Δ.

If there exists an optimal integer solution \tilde{x}, then there exists an optimal integer solution x^{*} with :

$$
\left\|x^{*}-z\right\|_{1} \leq m(2 m \Delta+1)^{m}
$$

They give an algorithm solving the IP in time $O\left(n(m \Delta)^{O\left(m^{2}\right)}\right)$

A proximity bound

Proximity lemma [Eisenbrand, Weismantel, 2020]

Let z be an optimal vertex solution to

$$
\max \left\{c^{\top} x: A x=b \text { and } I_{i} \leq x_{i} \leq u_{i} \text { for all } i\right\}
$$

where $A \in \mathbb{Z}^{m \times n}$ has entries of size at most Δ.
If there exists an optimal integer solution \tilde{x}, then there exists an optimal integer solution x^{*} with :

$$
\left\|x^{*}-z\right\|_{1} \leq m(2 m \Delta+1)^{m}
$$

If $u=\infty$, the running time is $O\left(n(m \Delta)^{O(m)}\right)$.

Easier case

$$
\begin{aligned}
\min & c^{\top} x+g(W x) \\
& 0 \leq x_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

Easier case

$$
\begin{aligned}
\min & c^{\top} x+g(W x) \\
& 0 \leq x_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

Let \tilde{x} be an optimal solution, and $b^{*}=W \tilde{x}$.

Easier case

$$
\begin{aligned}
\min & c^{\top} x+g(W x) \\
& 0 \leq x_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

Let \tilde{x} be an optimal solution, and $b^{*}=W \tilde{x}$.
Let z be an optimal vertex solution of

$$
\min \left\{c^{\top} x: W x=b^{*}, x \in \mathbb{R}_{\geq 0}^{n}\right\}
$$

Easier case

$$
\begin{aligned}
\min & c^{\top} x+g(W x) \\
& 0 \leq x_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

Let \tilde{x} be an optimal solution, and $b^{*}=W \tilde{x}$.
Let z be an optimal vertex solution of

$$
\min \left\{c^{\top} x: W x=b^{*}, x \in \mathbb{R}_{\geq 0}^{n}\right\}
$$

Proximity lemma

\exists an optimal integer solution x^{*} with $\left\|x^{*}-z\right\|_{1}=O(m \Delta)^{m}$

Easier case

The vector z has at least $n-m$ zero components.

If T is the set of the zero components:

$$
\left\|x_{T}^{*}\right\|_{1} \leq\left\|x_{T}^{*}-z_{T}\right\|_{1} \leq\left\|x^{*}-z\right\|_{1} \leq O(m \Delta)^{m}
$$

Since the entries of W are bounded by Δ :

$$
\left\|W_{T} x_{T}^{*}\right\|_{1} \leq m \Delta\left\|x_{T}\right\|_{1} \leq O(m \Delta)^{m+1}
$$

We guess T and $b^{(T)}:=W_{T} x_{T}^{*}$ among the $n^{m} \times O(m \Delta)^{m(m+1)}$ choices.

Easier case

The problem is now divided into :

$$
\min \left\{c_{T}^{T} x_{T}: W_{T} x_{T}=b^{(T)} \text { and } x_{T} \in \mathbb{Z}_{\geq 0}^{|T|}\right\}
$$

and

$$
\min \left\{c_{L}^{\top} x_{L}+g\left(W_{L} x^{L}+b^{(T)}\right): x_{L} \in \mathbb{Z}_{\geq 0}^{|L|}\right\}
$$

The first can be solved in $O\left(n(m \Delta)^{m}\right)$ using the algorithm of Eisenbrand and Weismantel.
The second corresponds to an oracle query.
Final running time : $O\left(n^{O(m)} \cdot(m \Delta)^{O\left(m^{2}\right)} \cdot Q\right)$

Dealing with upper bounds

$$
\begin{array}{ll}
\min & c^{\top} x+g(W x) \\
& l_{i} \leq x_{i} \leq u_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{array}
$$

Dealing with upper bounds

$$
\begin{array}{ll}
\min & c^{\top} x+g(W x) \\
& l_{i} \leq x_{i} \leq u_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{array}
$$

Let \tilde{x} be an optimal solution, and $b^{*}=W \tilde{x}$.

Dealing with upper bounds

$$
\begin{aligned}
\min & c^{\top} x+g(W x) \\
& l_{i} \leq x_{i} \leq u_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

Let \tilde{x} be an optimal solution, and $b^{*}=W \tilde{x}$.
Let z be an optimal vertex solution of

$$
\min \left\{c^{\top} x: W x=b^{*}, I \leq x \leq u\right\}
$$

Dealing with upper bounds

$$
\begin{aligned}
\min & c^{\top} x+g(W x) \\
& l_{i} \leq x_{i} \leq u_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

Let \tilde{x} be an optimal solution, and $b^{*}=W \tilde{x}$.
Let z be an optimal vertex solution of

$$
\min \left\{c^{\top} x: W x=b^{*}, I \leq x \leq u\right\}
$$

Proximity lemma

\exists an optimal integer solution x^{*} with $\left\|x^{*}-z\right\|_{1}=O(m \Delta)^{m}$

Dealing with upper bounds

Let z be an optimal vertex solution of

$$
\min \left\{c^{\top} x: W x=b^{*}, I \leq x \leq u\right\}
$$

Dealing with upper bounds

Let z be an optimal vertex solution of

$$
\min \left\{c^{\top} x: W x=b^{*}, l \leq x \leq u\right\}
$$

The vector z is tight on $n-m$ components :
How to guess if $z_{i}=l_{i}$ or u_{i} for these ?

Dealing with upper bounds

We deduced the value of z on $n-m$ components.
We use the same algorithm as in the un-upper-bounded case.
Final running time :

$$
O\left(n^{O(m)} \cdot(m \Delta)^{O\left(m^{2}\right)} \cdot Q\right)
$$

Extensions

When g is nice and separable convex, and W is unknown, [Hunkenschröder, Pokutta, Weismantel, 2022] give a $O\left(n(m \Delta)^{O\left(m^{3}\right)}\right)$-time algorithm if we are given a value and gradient evaluation oracle for $x \mapsto g(W x)$.

Extensions

When g is nice and separable convex, and W is unknown, [Hunkenschröder, Pokutta, Weismantel, 2022] give a $O\left(n(m \Delta)^{O\left(m^{3}\right)}\right)$-time algorithm if we are given a value and gradient evaluation oracle for $x \mapsto g(W x)$.

We improved it for any separable convex function in

$$
O\left(n(m \Delta)^{O\left(m^{2}\right)}\right)
$$

\rightarrow Details in the paper!

Open Problems

Our contribution: an $O\left(n^{O(m)} \cdot(m \Delta)^{O\left(m^{2}\right)} \cdot Q\right)$-time algorithm to compute an optimal solution to :

$$
\begin{aligned}
\min & c^{\top} x+g(W x) \\
& l_{i} \leq x_{i} \leq u_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

where $W \in \mathbb{Z}^{m \times n}$ has entries bounded by Δ in absolute value.

Open Problems

Our contribution : an $O\left(n^{O(m)} \cdot(m \Delta)^{O\left(m^{2}\right)} \cdot Q\right)$-time algorithm to compute an optimal solution to :

$$
\begin{aligned}
\min & c^{\top} x+g(W x) \\
& l_{i} \leq x_{i} \leq u_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

where $W \in \mathbb{Z}^{m \times n}$ has entries bounded by Δ in absolute value. Open problems: Can we get rid of the $O(m)$ exponent ?
\rightarrow Can be removed when $c=0$ or $u=\infty$.

Open Problems

Our contribution : an $O\left(n^{O(m)} \cdot(m \Delta)^{O\left(m^{2}\right)} \cdot Q\right)$-time algorithm to compute an optimal solution to :

$$
\begin{aligned}
\min & c^{\top} x+g(W x) \\
& l_{i} \leq x_{i} \leq u_{i} \text { for all } i \in\{1, \ldots, n\} \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

where $W \in \mathbb{Z}^{m \times n}$ has entries bounded by Δ in absolute value. Open problems: Can we get rid of the $O(m)$ exponent ?
\rightarrow Can be removed when $c=0$ or $u=\infty$.
If $u=\infty$, Can we reduce the $O\left(m^{2}\right)$ exponent to $O(m)$?

Questions?

Thank you for your attention!

Questions?

Thank you for your attention!
Make the kitten happy : ask a question!

(credit: Dall-E)

Empty slide

Application : Integer compressed sensing

$$
\min \left\{\|b-W x\|_{2}: x \in\left\{0,1, \ldots, u_{i}\right\}^{n},\|x\|_{1} \leq \sigma\right\}
$$

Dealing with upper bounds

Let z be an optimal vertex solution of

$$
\min \left\{c^{\top} x: W x=b^{*}, l \leq x \leq u\right\}
$$

whose dual problem is:

$$
\begin{array}{ll}
\max & b^{* \top} y+I^{\top} s^{\prime}-u^{\top} s^{u} \\
& c-W^{\top} y=s^{\prime}-s^{u} \\
& s^{\prime}, s^{u} \in \mathbb{R}_{\geq 0}^{n} \\
& y \in \mathbb{R}^{m}
\end{array}
$$

Dealing with upper bounds

Let z be an optimal vertex solution of

$$
\min \left\{c^{\top} x: W x=b^{*}, l \leq x \leq u\right\}
$$

whose dual problem is:

$$
\begin{array}{ll}
\max & b^{* \top} y+I^{\top} s^{\prime}-u^{\top} s^{u} \\
& c-W^{\top} y=s^{\prime}-s^{u} \\
& s^{\prime}, s^{u} \in \mathbb{R}_{\geq 0}^{n} \\
& y \in \mathbb{R}^{m}
\end{array}
$$

For an optimal vertex solution of the dual, $s_{i}^{\prime}=s_{i}^{U}=0$ for at least m components such that $\left(W^{\top}\right)_{i}$ are linearly independent rows.

Dealing with upper bounds

$$
\begin{aligned}
\min \left\{c^{\top} x\right. & \left.: W x=b^{*}, I \leq x \leq u\right\} \\
\max & b^{* \top} y+I^{\top} s^{\prime}-u^{\top} s^{u} \\
& c-W^{\top} y=s^{l}-s^{u} \\
& s^{\prime}, s^{u} \in \mathbb{R}_{\geq 0}^{n} \\
& y \in \mathbb{R}^{m}
\end{aligned}
$$

By guessing these rows amongst $O\left(n^{m}\right)$ choices, we recover y exactly, thus $c-W^{\top} y$.

- If $\left(c-W^{\top} y\right)_{i}<0$ then $s_{i}^{u}>0$ and $z_{i}=u_{i}$
- If $\left(c-W^{\top} y\right)_{i}>0$ then $s_{i}^{\prime}>0$ and $z_{i}=l_{i}$

