
Optimizing Low Dimensional Functions over

the Integers

Daniel Dadush, Arthur Léonard,

Lars Rohwedder, José Verschae

IPCO 2023

Inspiration

[Hunkenschröder, Pokutta, Weismantel, 2022]

min
x∈{0,1}n

g(Wx)

g : Rm → R is a nice convex function

W ∈ Zn×m matrix (known or unknown),

∥W ∥∞ ≤ ∆, m ≪ n.

Inspiration

[Hunkenschröder, Pokutta, Weismantel, 2022]

min
x∈{0,1}n

g(Wx)

g : Rm → R is a nice convex function

W ∈ Zn×m matrix (known or unknown),

∥W ∥∞ ≤ ∆, m ≪ n.

→ The algorithm runs in time O(n(m∆)O(m2)) when W is

known and g is separable convex.

The Problem

Our contribution : an algorithm to compute an optimal solution

to :

min c⊤x + g(Wx)

li ≤ xi ≤ ui for all i ∈ {1, . . . , n}
x ∈ Zn

W ∈ Zm×n, ∥W ∥∞ ≤ ∆, m ≪ n.

The Problem

Our contribution : an algorithm to compute an optimal solution

to :

min c⊤x + g(Wx)

li ≤ xi ≤ ui for all i ∈ {1, . . . , n}
x ∈ Zn

W ∈ Zm×n, ∥W ∥∞ ≤ ∆, m ≪ n.

The complexity of this algorithm is :

O(nO(m) · (m∆)O(m2) · Q)

Requirement on g

We suppose we can do oracle queries. Given :

• a partition of the variables I ∪̇J = [n] with |I | ≤ m

• a fixing z ∈ ZJ of the J-variables

it solves the following problem in time Q :

min cI x + g(WI x +WJz)

s.t. li ≤ xi ≤ ui for all i ∈ I ,

x ∈ ZI

Remark

If g is convex and accessible by function and gradient

evaluation, oracle queries can be implemented using the

algorithm in [Kannan, 1983] in O(mO(m)⟨input⟩O(1))

Requirement on g

We suppose we can do oracle queries. Given :

• a partition of the variables I ∪̇J = [n] with |I | ≤ m

• a fixing z ∈ ZJ of the J-variables

it solves the following problem in time Q :

min cI x + g(WI x +WJz)

s.t. li ≤ xi ≤ ui for all i ∈ I ,

x ∈ ZI

Remark

If g is convex and accessible by function and gradient

evaluation, oracle queries can be implemented using the

algorithm in [Kannan, 1983] in O(mO(m)⟨input⟩O(1))

Application : Mixed-Integer linear programming

min c⊤x + d⊤y

Wx + By = b

li ≤ xi ≤ ui for all i ∈ {1, . . . , n}
x ∈ Zn, y ∈ P ⊂ Rh

The polytope P imposes constraints on the continuous variables.

Encoding

g(Wx) :=

min{d⊤y : By = b −Wx , y ∈ P} if it exists,

∞ otherwise.

Application : Mixed-Integer linear programming

min c⊤x + d⊤y

Wx + By = b

li ≤ xi ≤ ui for all i ∈ {1, . . . , n}
x ∈ Zn, y ∈ P ⊂ Rh

The polytope P imposes constraints on the continuous variables.

Encoding

g(Wx) :=

min{d⊤y : By = b −Wx , y ∈ P} if it exists,

∞ otherwise.

Application : Variable-sized knapsack

max

{
n∑

i=1

pixi − g

(
n∑

i=1

wixi

)
: xi ∈ {0, . . . , ui} for all i

}

• pi : the value of item i

• wi : the space needed for item i

• xi : the number of item i that we take

• ui : the number of available item i

If g is convex, our algorithm works in time (n + wmax)
O(1).

Application : Variable-sized knapsack

max

{
n∑

i=1

pixi − g

(
n∑

i=1

wixi

)
: xi ∈ {0, . . . , ui} for all i

}

• pi : the value of item i

• wi : the space needed for item i

• xi : the number of item i that we take

• ui : the number of available item i

If g is convex, our algorithm works in time (n + wmax)
O(1).

A proximity bound

max{c⊤x : Ax = b and li ≤ xi ≤ ui for all i}

z

x∗ x̃

∥x∗ − z∥1 ≤ m(2m∆+ 1)m

A proximity bound

max{c⊤x : Ax = b and li ≤ xi ≤ ui for all i}

z

x∗ x̃

∥x∗ − z∥1 ≤ m(2m∆+ 1)m

A proximity bound

Proximity lemma [Eisenbrand, Weismantel, 2020]

Let z be an optimal vertex solution to

max{c⊤x : Ax = b and li ≤ xi ≤ ui for all i}

where A ∈ Zm×n has entries of size at most ∆.

If there exists an optimal integer solution x̃ , then there exists an

optimal integer solution x∗ with :

∥x∗ − z∥1 ≤ m(2m∆+ 1)m

If u = ∞, the running time is O(n(m∆)O(m)).

A proximity bound

Proximity lemma [Eisenbrand, Weismantel, 2020]

Let z be an optimal vertex solution to

max{c⊤x : Ax = b and li ≤ xi ≤ ui for all i}

where A ∈ Zm×n has entries of size at most ∆.

If there exists an optimal integer solution x̃ , then there exists an

optimal integer solution x∗ with :

∥x∗ − z∥1 ≤ m(2m∆+ 1)m

They give an algorithm solving the IP in time O(n(m∆)O(m2))

If u = ∞, the running time is O(n(m∆)O(m)).

A proximity bound

Proximity lemma [Eisenbrand, Weismantel, 2020]

Let z be an optimal vertex solution to

max{c⊤x : Ax = b and li ≤ xi ≤ ui for all i}

where A ∈ Zm×n has entries of size at most ∆.

If there exists an optimal integer solution x̃ , then there exists an

optimal integer solution x∗ with :

∥x∗ − z∥1 ≤ m(2m∆+ 1)m

If u = ∞, the running time is O(n(m∆)O(m)).

Easier case

min c⊤x + g(Wx)

0 ≤ xi for all i ∈ {1, . . . , n}
x ∈ Zn

Let x̃ be an optimal solution, and b∗ = Wx̃ .

Let z be an optimal vertex solution of

min{c⊤x : Wx = b∗, x ∈ Rn
≥0}

Proximity lemma

∃ an optimal integer solution x∗ with ∥x∗ − z∥1 = O(m∆)m

Easier case

min c⊤x + g(Wx)

0 ≤ xi for all i ∈ {1, . . . , n}
x ∈ Zn

Let x̃ be an optimal solution, and b∗ = Wx̃ .

Let z be an optimal vertex solution of

min{c⊤x : Wx = b∗, x ∈ Rn
≥0}

Proximity lemma

∃ an optimal integer solution x∗ with ∥x∗ − z∥1 = O(m∆)m

Easier case

min c⊤x + g(Wx)

0 ≤ xi for all i ∈ {1, . . . , n}
x ∈ Zn

Let x̃ be an optimal solution, and b∗ = Wx̃ .

Let z be an optimal vertex solution of

min{c⊤x : Wx = b∗, x ∈ Rn
≥0}

Proximity lemma

∃ an optimal integer solution x∗ with ∥x∗ − z∥1 = O(m∆)m

Easier case

min c⊤x + g(Wx)

0 ≤ xi for all i ∈ {1, . . . , n}
x ∈ Zn

Let x̃ be an optimal solution, and b∗ = Wx̃ .

Let z be an optimal vertex solution of

min{c⊤x : Wx = b∗, x ∈ Rn
≥0}

Proximity lemma

∃ an optimal integer solution x∗ with ∥x∗ − z∥1 = O(m∆)m

Easier case

The vector z has at least n −m zero components.

If T is the set of the zero components :

∥x∗T∥1 ≤ ∥x∗T − zT∥1 ≤ ∥x∗ − z∥1 ≤ O(m∆)m

Since the entries of W are bounded by ∆ :

∥WT x
∗
T∥1 ≤ m∆∥xT∥1 ≤ O(m∆)m+1

We guess T and b(T) := WT x
∗
T among the nm ×O(m∆)m(m+1)

choices.

Easier case

The problem is now divided into :

min
{
c⊤T xT : WT xT = b(T) and xT ∈ Z|T |

≥0

}
and

min
{
c⊤L xL + g(WLx

L + b(T)) : xL ∈ Z|L|
≥0

}

The first can be solved in O(n(m∆)m) using the algorithm of

Eisenbrand and Weismantel.

The second corresponds to an oracle query.

Final running time : O(nO(m) · (m∆)O(m2) · Q)

Dealing with upper bounds

min c⊤x + g(Wx)

li ≤ xi ≤ ui for all i ∈ {1, . . . , n}
x ∈ Zn

Let x̃ be an optimal solution, and b∗ = Wx̃ .

Let z be an optimal vertex solution of

min{c⊤x : Wx = b∗, l ≤ x ≤ u}

Proximity lemma

∃ an optimal integer solution x∗ with ∥x∗ − z∥1 = O(m∆)m

Dealing with upper bounds

min c⊤x + g(Wx)

li ≤ xi ≤ ui for all i ∈ {1, . . . , n}
x ∈ Zn

Let x̃ be an optimal solution, and b∗ = Wx̃ .

Let z be an optimal vertex solution of

min{c⊤x : Wx = b∗, l ≤ x ≤ u}

Proximity lemma

∃ an optimal integer solution x∗ with ∥x∗ − z∥1 = O(m∆)m

Dealing with upper bounds

min c⊤x + g(Wx)

li ≤ xi ≤ ui for all i ∈ {1, . . . , n}
x ∈ Zn

Let x̃ be an optimal solution, and b∗ = Wx̃ .

Let z be an optimal vertex solution of

min{c⊤x : Wx = b∗, l ≤ x ≤ u}

Proximity lemma

∃ an optimal integer solution x∗ with ∥x∗ − z∥1 = O(m∆)m

Dealing with upper bounds

min c⊤x + g(Wx)

li ≤ xi ≤ ui for all i ∈ {1, . . . , n}
x ∈ Zn

Let x̃ be an optimal solution, and b∗ = Wx̃ .

Let z be an optimal vertex solution of

min{c⊤x : Wx = b∗, l ≤ x ≤ u}

Proximity lemma

∃ an optimal integer solution x∗ with ∥x∗ − z∥1 = O(m∆)m

Dealing with upper bounds

Let z be an optimal vertex solution of

min{c⊤x : Wx = b∗, l ≤ x ≤ u}

The vector z is tight on n −m components :

How to guess if zi = li or ui for these ?

Dealing with upper bounds

Let z be an optimal vertex solution of

min{c⊤x : Wx = b∗, l ≤ x ≤ u}

The vector z is tight on n −m components :

How to guess if zi = li or ui for these ?

Dealing with upper bounds

We deduced the value of z on n −m components.

We use the same algorithm as in the un-upper-bounded case.

Final running time :

O(nO(m) · (m∆)O(m2) · Q)

Extensions

When g is nice and separable convex, and W is unknown,

[Hunkenschröder, Pokutta, Weismantel, 2022] give a

O(n(m∆)O(m3))-time algorithm if we are given a value and

gradient evaluation oracle for x 7→ g(Wx).

We improved it for any separable convex function in

O(n(m∆)O(m2)).

→ Details in the paper !

Extensions

When g is nice and separable convex, and W is unknown,

[Hunkenschröder, Pokutta, Weismantel, 2022] give a

O(n(m∆)O(m3))-time algorithm if we are given a value and

gradient evaluation oracle for x 7→ g(Wx).

We improved it for any separable convex function in

O(n(m∆)O(m2)).

→ Details in the paper !

Open Problems

Our contribution : an O(nO(m) · (m∆)O(m2) · Q)-time algorithm

to compute an optimal solution to :

min c⊤x + g(Wx)

li ≤ xi ≤ ui for all i ∈ {1, . . . , n}
x ∈ Zn

where W ∈ Zm×n has entries bounded by ∆ in absolute value.

Open problems : Can we get rid of the O(m) exponent ?

→ Can be removed when c = 0 or u = ∞.

If u = ∞, Can we reduce the O(m2) exponent to O(m) ?

Open Problems

Our contribution : an O(nO(m) · (m∆)O(m2) · Q)-time algorithm

to compute an optimal solution to :

min c⊤x + g(Wx)

li ≤ xi ≤ ui for all i ∈ {1, . . . , n}
x ∈ Zn

where W ∈ Zm×n has entries bounded by ∆ in absolute value.

Open problems : Can we get rid of the O(m) exponent ?

→ Can be removed when c = 0 or u = ∞.

If u = ∞, Can we reduce the O(m2) exponent to O(m) ?

Open Problems

Our contribution : an O(nO(m) · (m∆)O(m2) · Q)-time algorithm

to compute an optimal solution to :

min c⊤x + g(Wx)

li ≤ xi ≤ ui for all i ∈ {1, . . . , n}
x ∈ Zn

where W ∈ Zm×n has entries bounded by ∆ in absolute value.

Open problems : Can we get rid of the O(m) exponent ?

→ Can be removed when c = 0 or u = ∞.

If u = ∞, Can we reduce the O(m2) exponent to O(m) ?

Questions ?

Thank you for your attention !

Make the kitten happy : ask a question !

(credit : Dall-E)

Questions ?

Thank you for your attention !

Make the kitten happy : ask a question !

(credit : Dall-E)

Empty slide

Application : Integer compressed sensing

min {∥b −Wx∥2 : x ∈ {0, 1, . . . , ui}n, ∥x∥1 ≤ σ}

Dealing with upper bounds

Let z be an optimal vertex solution of

min{c⊤x : Wx = b∗, l ≤ x ≤ u}

whose dual problem is :

max b∗⊤y + l⊤s l − u⊤su

c −W⊤y = s l − su

s l , su ∈ Rn
≥0

y ∈ Rm

For an optimal vertex solution of the dual, s li = sui = 0 for at

least m components such that (W⊤)i are linearly independent

rows.

Dealing with upper bounds

Let z be an optimal vertex solution of

min{c⊤x : Wx = b∗, l ≤ x ≤ u}

whose dual problem is :

max b∗⊤y + l⊤s l − u⊤su

c −W⊤y = s l − su

s l , su ∈ Rn
≥0

y ∈ Rm

For an optimal vertex solution of the dual, s li = sui = 0 for at

least m components such that (W⊤)i are linearly independent

rows.

Dealing with upper bounds

min{c⊤x : Wx = b∗, l ≤ x ≤ u}

max b∗⊤y + l⊤s l − u⊤su

c −W⊤y = s l − su

s l , su ∈ Rn
≥0

y ∈ Rm

By guessing these rows amongst O(nm) choices, we recover y

exactly, thus c −W⊤y .

• If (c −W⊤y)i < 0 then sui > 0 and zi = ui

• If (c −W⊤y)i > 0 then s li > 0 and zi = li

