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Allocation Mechanism

� Task: allocate m items among n agents; set of allocations:

Ω =

{
A ∈ {0, 1}n×m

∣∣∣∣∣ ∑
i∈[n]

ai ,j = 1 for all j ∈ [m]

}

� Agents have valuation vectors for the items θi ∈ Rm, i ∈ [n].

� Compute an allocation f : Θ→ Ω and payments p : Θ→ Rn.

(Θ = Rn×m)

� Agent i will misreport a valuation θ′i if it benefits their utility

ui (θ
′ | θi ) = fi (θ

′) · θi − pi (θ
′)

� A mechanism M = (f , p) is incentive compatible (IC), if

misreporting never benefits the agent.
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Difference Sets

Example (local mechanism):

One agent, two items.

Choose prices for bundles

q10, q01, q11 ∈ R. q00 = 0

θ1

θ2

q10

q01

θ1 + θ2 = q11

D00

D10

D01 D11

0

Difference sets: Da = {θ ∈ Θ | u(θ) maximized by a}
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Difference Sets

Example (local mechanism):

One agent, two items.

Choose prices for bundles

q10, q01, q11 ∈ R. q00 = 0
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a∈{0,1}2

{a·(θ1, θ2)−qa}

p(θ) = qf (θ) θ1
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Reduction to Single Agent

Lemma (Nisan et al. - 2007)

M = (f , p) is IC if and only if for all i ∈ [n] and all θ ∈ Rn×m, pi is

given by some function pi ,θ−i
: {0, 1}m → R, and

f (θ) ∈ arg max

{
Ai · θi − pi ,θ−i

(Ai )

∣∣∣∣ A ∈ Ω

}
.

Ai is the i-th row of the matrix A.

⇒ Multi-agent mechanisms are characterized by local one-agent

mechanisms.
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Indifference Complex

Definition

The indifference complex I(f ) of an allocation function f is the

abstract simplicial complex defined as

I(f ) =

{
O ⊆ Ω

∣∣∣∣ ⋂
A∈O

D̄A 6= ∅
}
.

I is an ASC ⇔ (i) I 6= ∅, (ii) E ⊂ F ,F ∈ I ⇒ E ∈ I

D00

D10

D01 D11

00 10

01 11

I(f ) ={
{00}, {01}, {10}, {11},
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Central Question

Which indifference complexes arise from IC mechanisms?

Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21)

An indifference complex I for m items and one agent arises from a

local IC mechanism if and only if it corresponds to a regular

subdivision of the m-cube.
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Regular Subdivisions

a
b

c
d

e

λ = (6, 5, 7, 7, 5)

Definition

Let S ⊂ Rn be finite

and λ : S → R be a

lifting. Consider the lifted polytope

P(S , λ) = conv
{

(x , λ(x)) ∈ Rn+1 | x ∈ S
}
.

Projecting its lower faces onto conv(S) yields

the regular subdivision of S induced by λ.
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Regular Subdivisions
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Number of IC Mechanisms

Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21)

An indifference complex I for m items and one agent arises from a

local IC mechanism if and only if it corresponds to a regular

subdivision of the m-cube.

� A mechanism is nondegenerate, if the associated regular

subdivision is a triangulation.

� Number of triangulations of the m-cube:

m all regular

2 2 2

3 74 74

4 92,487,256 87,959,448
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Symmetries of the Cube

� Sm acts by permuting the coordinates of the cube.

→ corresponds to permutation of items

� The full automorphism group Γm is generated by Sm and

coordinate flips.

m all regular Sm-orbits Γm-orbits

2 2 2 2 1

3 74 74 23? 6

4 92,487,256 87,959,448 3,706,261? 235,277

?Computations made using MPTOPCOM
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Γ3-Orbits

Type A
(4 reg, 2 S3)

Type B
(8 reg, 4 S3)

Type C
(24 reg, 6 S3)

Type D
(24 reg, 6 S3)

Type E
(12 reg, 3 S3)

Type F
(2 reg, 2 S3)

� Type A – E have been found by Vidali(2009)
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Sensitivity of Mechanisms

� Allocations may change drastically by slight perturbations of

the valuations.

� Let d : {0, 1}m × {0, 1}m → R be a (pseudo)metric.

� The sensitivity of an allocation function f is

µ(f ) = max {d(a, b) | a, b ∈ F for some F ∈ I(f )}

� Cardinality distance: dc(a, b) =
∣∣∣|a|1 − |b|1∣∣∣ → µc(f )

� Hamming distance: dh(a, b) = |a− b|1 → µh(f )

� What is Mc(m) = minf ∈Φm µc(f )? (Resp. Mh(m)?)

Φm = set of local allocation functions for m items
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Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism

for m items is Mc(m) = 1.

Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism

for m ≥ 3 items is bounded by 2 ≤ Mh(m) ≤ m − 1.

13



Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism

for m items is Mc(m) = 1.

Proof. Cut the cube with the hyperplanes

Hk =

x ∈ Rm |
∑
i∈[m]

xi = k

 .

The resulting subdivision proves the claim. It

can be obtained with the prices qa = |a|21.
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Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism

for m ≥ 3 items is bounded by 2 ≤ Mh(m) ≤ m − 1.

Proof. Upper bound, m odd: Cut off all

corners with even number of ones ⇒ no

antipodal vertices in the same cell.

m even: Consider m-cube as prism over

(m−1)-cube. Cut off corners as before. Cells of

m-cube are prisms over cells of (m−1)-cube.

0

15
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Summary

� The indifference complex captures the combinatorial

information of mechanisms.

� Indifference complexes arise from local IC mechanisms if and

only if they correspond to a regular subdivision of the cube.

� The sensitivity measures how drastically an outcome may

change by only small perturbations of the valuations.
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Affine Maximizers

Allocation space for n agents and m items:

Ω =

{
A ∈ {0, 1}n×m

∣∣∣∣∣ ∑
i∈[n]

Ai ,j = 1 for all j ∈ [m]

}

f is an affine maximizer ⇔ There exist w1, . . . ,wn ∈ R and cA ∈ R
for all A ∈ Ω, such that

f (θ) ∈ arg max

{
cA +

∑
i∈[n]

wiθi · Ai

∣∣∣∣ A ∈ Ω

}
.

Ω = vertex set of ∆m
n−1 (∆n−1 = conv{e1, . . . , en})



Indifference Complexes of Affine Maximizers

Affine maximizer:

f (θ) ∈ arg max

{
cA +

∑
i∈[n]

wiθi · Ai

∣∣∣∣ A ∈ Ω

}
.

Theorem (Joswig, Klimm, S.)

An indifference complex I for n agents and m items arises from an

affine maximizer if and only if it corresponds to a regular

subdivision of ∆m
n−1.



Symmetries of ∆m
n−1

Ω =

{
A ∈ {0, 1}n×m

∣∣∣∣∣ ∑
i∈[n]

Ai ,j = 1 for all j ∈ [m]

}

� Regular subdivisions of ∆2
n−1 have been studied before.

� Denote by Sn × Sn the automorphism group which permutes

the vertices of each simplex separately.

� Denote by Sm × Sn the automorphism group which permutes

the rows and columns of allocations A ∈ {0, 1}n×m.



Symmetries of ∆m
n−1

� Denote by Sn × Sn the automorphism group which permutes

the vertices of each simplex separately.

� Denote by Sm × Sn the automorphism group which permutes

the rows and columns of allocations A ∈ {0, 1}n×m.

Results for m = 2:

n regular [S2 × Sn]-orbits [Sn × Sn]-orbits

3 108 21 5

4 4,494,288 96,722 7,869

Computations made using MPTOPCOM



Triangulations of ∆2
2

Type A

6 regular

3 S3 × S3

Type B

12 regular

4 S3 × S3

Type C

36 regular

5 S3 × S3

Type D

36 regular

5 S3 × S3

Type E

18 regular

4 S3 × S3



Sensitivity of Affine Maximizers

Cardinality distance: dc(a, b) =
∣∣∣|a|1 − |b|1∣∣∣. The cardinality

sensitivity of an affine maximizer f is

µc(f ) = max {dc(Ai ,Bi ) | A,B ∈ F for some F ∈ I(f ) and i ∈ [n]}

Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of affine maximizers for n ≥ 3

agents and m items is bounded by µc(f ) ≤
⌈
m
2

⌉
.

This sensitivity can be achieved by the allocation biases

cA = −max
i∈[n]

∑
j∈[m]

ai ,j

2
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