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Allocation Mechanism

e Task: allocate m items among n agents; set of allocations:

Za,-lj—lforallje[m]}

i€[n]

Q = {A e {0,1}™m

Agents have valuation vectors for the items 0; € R™, i € [n].

Compute an allocation f : © — Q and payments p: © — R".
(@ — Rnxm)

Agent i will misreport a valuation ¢/ if it benefits their utility

ui(016;) = £(6')-6; — pi(9")

A mechanism M = (f, p) is incentive compatible (1C), if
misreporting never benefits the agent.
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Difference Sets

6>
Example (local mechanism):
One agent, two items.
Choose prices for bundles Do1 D11
10, 901, q11 € R. goo =0 _qo1
f(0) = arg max{a-(01,62)—qa} A==
ac{0,1}? D

Difference sets: D, = {6 € © | u(#) maximized by a}



Reduction to Single Agent

Lemma (Nisan et al. - 2007)

M = (f, p) is IC if and only if for all i € [n] and all 6 € R"™*™, p; is
given by some function pjg , : {0,1}"" = R, and

f(0) € arg max{A,- -0i — pio_.(Ai) ' Ae Q}.

A; is the i-th row of the matrix A.



Reduction to Single Agent

Lemma (Nisan et al. - 2007)

M = (f, p) is IC if and only if for all i € [n] and all 6 € R"™*™, p; is
given by some function pjg , : {0,1}"" = R, and

f(0) € arg max{A,- -0i — pio_.(Ai) ' Ae Q}.

A; is the i-th row of the matrix A.

= Multi-agent mechanisms are characterized by local one-agent
mechanisms.



qo1

Doo

D11

014 6> = qu1

q10 D10

"
69—7i

"
9—[



Do1

Doo\




Do1

Doo




Do1

Doo




Do1

Doo




Indifference Complex

Definition
The indifference complex Z(f) of an allocation function f is the
abstract simplicial complex defined as

ﬂDA#@}.

ﬂﬂ::{OgQ
AcO

TisanASC = () I#0, (VECF,FEI=EcT



Indifference Complex

Definition
The indifference complex Z(f) of an allocation function f is the
abstract simplicial complex defined as

ﬂDA#@}.

ﬂﬂ::{OgQ
AcO

TisanASC = () I#0, (VECF,FEI=EcT

01 11 Z(f) =
Doy Dy ° ° (F)
{{00}, {01}, {10}, {11},
Doo
Do 00 10



Indifference Complex

Definition
The indifference complex Z(f) of an allocation function f is the
abstract simplicial complex defined as

ﬂDA#@}.

I(f) = {0 cQ
AcO

TisanASC = () I#0, (VECF,FEI=EcT

5 01 11 I(f) =
o D1
{{00}, {01}, {10}, {11},
. {00, 10}, {10, 11}, {11,01},
00
01,00}, {00,11
Dio 00 10 {01,003, {00, 11},



Indifference Complex

Definition
The indifference complex Z(f) of an allocation function f is the
abstract simplicial complex defined as

ﬂDA#@}.

ﬂﬂ::{OgQ
AcO

TisanASC = () I#0, (VECF,FEI=EcT

5 01 11 I(f) =
o D1
{{00}, {01}, {10}, {11},
. {00, 10}, {10, 11}, {11,01},
00
01,00}, {00,11
Dio 00 10 {01,003, {00, 11},

{00,10,11},{00,01,11}}
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Which indifference complexes arise from IC mechanisms?

Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21)

An indifference complex T for m items and one agent arises from a
local IC mechanism if and only if it corresponds to a regular
subdivision of the m-cube.
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Regular Subdivisions

Definition
Let S C R” be finiteand A: S — R be a
lifting. Consider the lifted polytope

P(S,)\) = conv {(x, A\(x)) e R"™! | x € S} .

Projecting its lower faces onto conv(S) yields
the regular subdivision of S induced by A.

d Not all subdivisions are regular, e.g.:
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Number of IC Mechanisms

Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21)

An indifference complex T for m items and one agent arises from a
local IC mechanism if and only if it corresponds to a regular
subdivision of the m-cube.

e A mechanism is nondegenerate, if the associated regular
subdivision is a triangulation.

e Number of triangulations of the m-cube:

m all regular
2 2 2
3 74 74
4 92,487,256 87,959,448
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Symmetries of the Cube

e S, acts by permuting the coordinates of the cube.
— corresponds to permutation of items

e The full automorphism group I, is generated by S,, and
coordinate flips.

m all regular Sm-orbits [ ,-orbits
2 2 2 2 1
3 74 74 23" 6
4 92,487,256 87,959,448 3,706,261* 235,277

*Computations made using MPTOPCOM
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Type A Type B Type C Type D Type E Type F
4 reg, 2 24 reg, 6 S.

(4 reg, 2 S3) (8 reg, 4 S3) ( 6 S3) (24 reg, 6 S3) (12 reg, 3 S3) (2 reg, 2 S3)

e —

P=1

e Type A — E have been found by Vidali(2009) 4
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Sensitivity of Mechanisms

o Allocations may change drastically by slight perturbations of
the valuations.

Let d: {0,1}™ x {0,1}" — R be a (pseudo)metric.

The sensitivity of an allocation function f is

w(f) = max{d(a,b) | a,b € F for some F € Z(f)}

Cardinality distance: d.(a, b) = )\a\l - \b[l‘ = pe(f)

Hamming distance: dp(a, b) = |a — b|; — pp(f)
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Sensitivity of Mechanisms

o Allocations may change drastically by slight perturbations of
the valuations.

e Let d:{0,1}" x {0,1} — R be a (pseudo)metric.

e The sensitivity of an allocation function f is

w(f) = max{d(a,b) | a,b € F for some F € Z(f)}
e Cardinality distance: d.(a, b) = )\a\l - \b[l‘ = pe(f)
e Hamming distance: dj(a, b) = |a — b1 — pn(f)
e What is Mc(m) = minfeo,, pic(f)? (Resp. Mp(m)?)

®,,, = set of local allocation functions for m items

12



Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism
for m items is M.(m) = 1.

Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism
for m > 3 jtems is bounded by 2 < Mp(m) < m — 1.
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Minimal Sensitivities

Proposition (Joswig, Klimm, S.)
The minimal cardinality sensitivity of an IC single agent mechanism
for m items is M.(m) = 1.

Proof. Cut the cube with the hyperplanes

Hi =< xeR™| Zx,—k

ie[m]

The resulting subdivision proves the claim. It

can be obtained with the prices q, = |a|3.
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Minimal Sensitivities

Proposition (Joswig, Klimm, S.)
The minimal Hamming sensitivity of an IC single agent mechanism
for m > 3 jtems is bounded by 2 < Mp(m) < m— 1.

Proof. Upper bound, m odd: Cut off all
corners with even number of ones = no
antipodal vertices in the same cell.

m even: Consider m-cube as prism over

(m—1)-cube. Cut off corners as before. Cells of

m-cube are prisms over cells of (m—1)-cube.

ii5)



e The indifference complex captures the combinatorial
information of mechanisms.
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e The indifference complex captures the combinatorial
information of mechanisms.

o Indifference complexes arise from local IC mechanisms if and
only if they correspond to a regular subdivision of the cube.

e The sensitivity measures how drastically an outcome may
change by only small perturbations of the valuations.
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Summary

e The indifference complex captures the combinatorial
information of mechanisms.

o Indifference complexes arise from local IC mechanisms if and
only if they correspond to a regular subdivision of the cube.

e The sensitivity measures how drastically an outcome may
change by only small perturbations of the valuations.

Thank You for Your attention!

01 11

00 10
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Affine Maximizers

Allocation space for n agents and m items:

ZA,-leforaIIjE[m]}

i€[n]

Q = {A 2 i) e

f is an affine maximizer < There exist wy,...,w, € R and ¢4 € R
for all A € Q, such that

f(0) € arg max{cA + Z w;l; - A;
i€[n]

AEQ}.

Q = vertex set of AT ;  (Ap_1 =conv{er,...,en})



Indifference Complexes of Affine Maximizers

Affine maximizer:

f(f) € arg max{cA + Z w;0; - A;
i€[n]

AEQ}.

Theorem (Joswig, Klimm, S.)

An indifference complex T for n agents and m items arises from an
affine maximizer if and only if it corresponds to a regular
subdivision of AT ;.



Symmetries of A" |

ZA,-leforaIIjE[m]}

i€[n]

Q = {Ae{o,l}"x’"

e Regular subdivisions of A2, have been studied before.

e Denote by S, x S, the automorphism group which permutes
the vertices of each simplex separately.

e Denote by S, x S, the automorphism group which permutes
the rows and columns of allocations A € {0,1}"*™.



Symmetries of A" |

e Denote by S, x S, the automorphism group which permutes
the vertices of each simplex separately.
e Denote by S, x S,, the automorphism group which permutes

the rows and columns of allocations A € {0,1}"*™.

Results for m = 2:

n regular [S2 X Sp]-orbits [Sn % Sp]-orbits
3 108 21 5
4 4,494,288 96,722 7,869

Computations made using MPTOPCOM



Triangulations of A2

Type A Type B Type C Type D Type E

6 regular 12 regular 36 regular 36 regular 18 regular
353><53 453><53 553><53 553><53 453><53



Sensitivity of Affine Maximizers

Cardinality distance: d.(a, b) = ‘\a\l - |b|1‘. The cardinality
sensitivity of an affine maximizer f is

pe(f) = max{d.(A;, Bij) | A, B € F for some F € Z(f) and i € [n]}

Proposition (Joswig, Klimm, S.)
The minimal cardinality sensitivity of affine maximizers for n > 3
agents and m items is bounded by () < [%].
This sensitivity can be achieved by the allocation biases
2

cA = —maxX E ajj

i€[n] ieim]
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