The Polyhedral Geometry of Truthful Auctions

Sylvain Spitz, joint work w/ Michael Joswig, Max Klimm

IPCO 2023 @ Madison, Wisconsin
June 21, 2023

Allocation Mechanism

t

Allocation Mechanism

4.2
3.8
4.9
3.7
6.8

夫
5.0
5.0
5.0
5.0
5.0
*
4.9
7.1
3.3
4.9
2.5

Allocation Mechanism

3.8
4.9
3.7
6.8

夫

5.0

5.0

*

4.9

3.3
4.9
2.5

Allocation Mechanism

4.2
3.8
4.9
3.7
6.8

夫
4.8
4.8
4.8
4.8
4.8
*
4.9
7.1
3.3
4.9
2.5

Allocation Mechanism

3.7

*
4.8
4.8
4.8
4.8
4.8

3.3

2.5

Allocation Mechanism

- Task: allocate m items among n agents; set of allocations:

$$
\Omega=\left\{A \in\{0,1\}^{n \times m} \mid \sum_{i \in[n]} a_{i, j}=1 \text { for all } j \in[m]\right\}
$$

Allocation Mechanism

- Task: allocate m items among n agents; set of allocations:

$$
\Omega=\left\{A \in\{0,1\}^{n \times m} \mid \sum_{i \in[n]} a_{i, j}=1 \text { for all } j \in[m]\right\}
$$

- Agents have valuation vectors for the items $\theta_{i} \in \mathbb{R}^{m}, i \in[n]$.

Allocation Mechanism

- Task: allocate m items among n agents; set of allocations:

$$
\Omega=\left\{A \in\{0,1\}^{n \times m} \mid \sum_{i \in[n]} a_{i, j}=1 \text { for all } j \in[m]\right\}
$$

- Agents have valuation vectors for the items $\theta_{i} \in \mathbb{R}^{m}, i \in[n]$.
- Compute an allocation $f: \Theta \rightarrow \Omega$ and payments $p: \Theta \rightarrow \mathbb{R}^{n}$. $\left(\Theta=\mathbb{R}^{n \times m}\right)$

Allocation Mechanism

- Task: allocate m items among n agents; set of allocations:

$$
\Omega=\left\{A \in\{0,1\}^{n \times m} \mid \sum_{i \in[n]} a_{i, j}=1 \text { for all } j \in[m]\right\}
$$

- Agents have valuation vectors for the items $\theta_{i} \in \mathbb{R}^{m}, i \in[n]$.
- Compute an allocation $f: \Theta \rightarrow \Omega$ and payments $p: \Theta \rightarrow \mathbb{R}^{n}$.

$$
\left(\Theta=\mathbb{R}^{n \times m}\right)
$$

- Agent i will misreport a valuation θ_{i}^{\prime} if it benefits their utility

$$
u_{i}\left(\theta^{\prime} \mid \theta_{i}\right)=f_{i}\left(\theta^{\prime}\right) \cdot \theta_{i}-p_{i}\left(\theta^{\prime}\right)
$$

Allocation Mechanism

- Task: allocate m items among n agents; set of allocations:

$$
\Omega=\left\{A \in\{0,1\}^{n \times m} \mid \sum_{i \in[n]} a_{i, j}=1 \text { for all } j \in[m]\right\}
$$

- Agents have valuation vectors for the items $\theta_{i} \in \mathbb{R}^{m}, i \in[n]$.
- Compute an allocation $f: \Theta \rightarrow \Omega$ and payments $p: \Theta \rightarrow \mathbb{R}^{n}$. $\left(\Theta=\mathbb{R}^{n \times m}\right)$
- Agent i will misreport a valuation θ_{i}^{\prime} if it benefits their utility

$$
u_{i}\left(\theta^{\prime} \mid \theta_{i}\right)=f_{i}\left(\theta^{\prime}\right) \cdot \theta_{i}-p_{i}\left(\theta^{\prime}\right)
$$

- A mechanism $M=(f, p)$ is incentive compatible (IC), if misreporting never benefits the agent.

Difference Sets

Example (local mechanism):
 One agent, two items.

Difference Sets

Example (local mechanism):
One agent, two items.
Choose prices for bundles
$q_{10}, q_{01}, q_{11} \in \mathbb{R} . q_{00}=0$

Difference Sets

Example (local mechanism):
One agent, two items.
Choose prices for bundles $q_{10}, q_{01}, q_{11} \in \mathbb{R} . q_{00}=0$

$$
\max _{a \in\{0,1\}^{2}}\left\{a \cdot\left(\theta_{1}, \theta_{2}\right)-q_{a}\right\}
$$

Difference sets: $D_{a}=\{\theta \in \Theta \mid u(\theta)$ maximized by $a\}$

Difference Sets

Example (local mechanism):

One agent, two items.
Choose prices for bundles $q_{10}, q_{01}, q_{11} \in \mathbb{R} . q_{00}=0$
$f(\theta)=\underset{a \in\{0,1\}^{2}}{\arg \max }\left\{a \cdot\left(\theta_{1}, \theta_{2}\right)-q_{a}\right\}$ $p(\theta)=q_{f(\theta)}$

Difference sets: $D_{a}=\{\theta \in \Theta \mid u(\theta)$ maximized by $a\}$

Reduction to Single Agent

Lemma (Nisan et al. - 2007)
$M=(f, p)$ is IC if and only if for all $i \in[n]$ and all $\theta \in \mathbb{R}^{n \times m}, p_{i}$ is given by some function $p_{i, \theta_{-i}}:\{0,1\}^{m} \rightarrow \mathbb{R}$, and

$$
f(\theta) \in \arg \max \left\{A_{i} \cdot \theta_{i}-p_{i, \theta_{-i}}\left(A_{i}\right) \mid A \in \Omega\right\} .
$$

A_{i} is the i-th row of the matrix A.

Reduction to Single Agent

Lemma (Nisan et al. - 2007)

$M=(f, p)$ is IC if and only if for all $i \in[n]$ and all $\theta \in \mathbb{R}^{n \times m}, p_{i}$ is given by some function $p_{i, \theta_{-i}}:\{0,1\}^{m} \rightarrow \mathbb{R}$, and

$$
f(\theta) \in \arg \max \left\{A_{i} \cdot \theta_{i}-p_{i, \theta_{-i}}\left(A_{i}\right) \mid A \in \Omega\right\} .
$$

A_{i} is the i-th row of the matrix A.
\Rightarrow Multi-agent mechanisms are characterized by local one-agent mechanisms.

Indifference Complex

Definition

The indifference complex $\mathcal{I}(f)$ of an allocation function f is the abstract simplicial complex defined as

$$
\begin{gathered}
\mathcal{I}(f)=\left\{\mathcal{O} \subseteq \Omega \mid \bigcap_{A \in \mathcal{O}} \bar{D}_{A} \neq \emptyset\right\} \\
\mathcal{I} \text { is an ASC } \Leftrightarrow(\text { i) } \mathcal{I} \neq \emptyset, \quad \text { (ii) } E \subset F, F \in \mathcal{I} \Rightarrow E \in \mathcal{I}
\end{gathered}
$$

Indifference Complex

Definition

The indifference complex $\mathcal{I}(f)$ of an allocation function f is the abstract simplicial complex defined as

$$
\mathcal{I}(f)=\left\{\mathcal{O} \subseteq \Omega \mid \bigcap_{A \in \mathcal{O}} \bar{D}_{A} \neq \emptyset\right\}
$$

\mathcal{I} is an ASC $\Leftrightarrow(\mathrm{i}) \mathcal{I} \neq \emptyset$,
(ii) $E \subset F, F \in \mathcal{I} \Rightarrow E \in \mathcal{I}$

Indifference Complex

Definition

The indifference complex $\mathcal{I}(f)$ of an allocation function f is the abstract simplicial complex defined as

$$
\mathcal{I}(f)=\left\{\mathcal{O} \subseteq \Omega \mid \bigcap_{A \in \mathcal{O}} \bar{D}_{A} \neq \emptyset\right\}
$$

$$
\mathcal{I} \text { is an ASC } \Leftrightarrow(\text { i) } \mathcal{I} \neq \emptyset, \quad \text { (ii) } E \subset F, F \in \mathcal{I} \Rightarrow E \in \mathcal{I}
$$

$$
\begin{gathered}
\mathcal{I}(f)= \\
\{\{00\},\{01\},\{10\},\{11\}, \\
\{00,10\},\{10,11\},\{11,01\}, \\
\{01,00\},\{00,11\},
\end{gathered}
$$

Indifference Complex

Definition

The indifference complex $\mathcal{I}(f)$ of an allocation function f is the abstract simplicial complex defined as

$$
\mathcal{I}(f)=\left\{\mathcal{O} \subseteq \Omega \mid \bigcap_{A \in \mathcal{O}} \bar{D}_{A} \neq \emptyset\right\}
$$

$$
\mathcal{I} \text { is an ASC } \Leftrightarrow(\text { i) } \mathcal{I} \neq \emptyset, \quad \text { (ii) } E \subset F, F \in \mathcal{I} \Rightarrow E \in \mathcal{I}
$$

$$
\begin{gathered}
\mathcal{I}(f)= \\
\{\{00\},\{01\},\{10\},\{11\}, \\
\{00,10\},\{10,11\},\{11,01\}, \\
\{01,00\},\{00,11\}, \\
\{00,10,11\},\{00,01,11\}\}
\end{gathered}
$$

Central Question

Which indifference complexes arise from IC mechanisms?

Central Question

Which indifference complexes arise from IC mechanisms?
Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21)
An indifference complex \mathcal{I} for m items and one agent arises from a local IC mechanism if and only if it corresponds to a regular subdivision of the m-cube.

Regular Subdivisions

Definition

Let $\mathcal{S} \subset \mathbb{R}^{n}$ be finite
$\begin{array}{llll} & \stackrel{\bullet}{b} & \stackrel{+}{c} & \\ \stackrel{\bullet}{a} & & \dot{e} & d\end{array}$

Regular Subdivisions

Definition

Let $\mathcal{S} \subset \mathbb{R}^{n}$ be finite

Regular Subdivisions

Definition

Let $\mathcal{S} \subset \mathbb{R}^{n}$ be finite and $\lambda: \mathcal{S} \rightarrow \mathbb{R}$ be a lifting.

$$
\lambda=(6,5,7,7,5)
$$

Regular Subdivisions

Definition

Let $\mathcal{S} \subset \mathbb{R}^{n}$ be finite and $\lambda: \mathcal{S} \rightarrow \mathbb{R}$ be a lifting. Consider the lifted polytope

$$
P(S, \lambda)=\operatorname{conv}\left\{(x, \lambda(x)) \in \mathbb{R}^{n+1} \mid x \in \mathcal{S}\right\}
$$

$\lambda=(6,5,7,7,5)$

Regular Subdivisions

Definition

Let $\mathcal{S} \subset \mathbb{R}^{n}$ be finite and $\lambda: \mathcal{S} \rightarrow \mathbb{R}$ be a lifting. Consider the lifted polytope

$$
P(S, \lambda)=\operatorname{conv}\left\{(x, \lambda(x)) \in \mathbb{R}^{n+1} \mid x \in \mathcal{S}\right\}
$$

Projecting its lower faces onto conv(S) yields the regular subdivision of \mathcal{S} induced by λ.
$\lambda=(6,5,7,7,5)$

Regular Subdivisions

Definition

Let $\mathcal{S} \subset \mathbb{R}^{n}$ be finite and $\lambda: \mathcal{S} \rightarrow \mathbb{R}$ be a lifting. Consider the lifted polytope

$$
P(S, \lambda)=\operatorname{conv}\left\{(x, \lambda(x)) \in \mathbb{R}^{n+1} \mid x \in \mathcal{S}\right\}
$$

Projecting its lower faces onto conv(S) yields the regular subdivision of \mathcal{S} induced by λ.
$\lambda=(6,5,7,8,5)$

Regular Subdivisions

Definition

$\lambda=(6,5,7,8,5)$
Let $\mathcal{S} \subset \mathbb{R}^{n}$ be finite and $\lambda: \mathcal{S} \rightarrow \mathbb{R}$ be a lifting. Consider the lifted polytope

$$
P(S, \lambda)=\operatorname{conv}\left\{(x, \lambda(x)) \in \mathbb{R}^{n+1} \mid x \in \mathcal{S}\right\}
$$

Projecting its lower faces onto conv(S) yields the regular subdivision of \mathcal{S} induced by λ.

Not all subdivisions are regular, e.g.:

Number of IC Mechanisms

Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21)
An indifference complex \mathcal{I} for m items and one agent arises from a local IC mechanism if and only if it corresponds to a regular subdivision of the m-cube.

Number of IC Mechanisms

Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21)
An indifference complex \mathcal{I} for m items and one agent arises from a local IC mechanism if and only if it corresponds to a regular subdivision of the m-cube.

- A mechanism is nondegenerate, if the associated regular subdivision is a triangulation.

Number of IC Mechanisms

Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21)
An indifference complex \mathcal{I} for m items and one agent arises from a local IC mechanism if and only if it corresponds to a regular subdivision of the m-cube.

- A mechanism is nondegenerate, if the associated regular subdivision is a triangulation.
- Number of triangulations of the m-cube:

m	all	regular
2	2	2
3	74	74
4	$92,487,256$	$87,959,448$

Symmetries of the Cube

- S_{m} acts by permuting the coordinates of the cube.
\rightarrow corresponds to permutation of items

Symmetries of the Cube

- S_{m} acts by permuting the coordinates of the cube.
\rightarrow corresponds to permutation of items
- The full automorphism group Γ_{m} is generated by S_{m} and coordinate flips.

Symmetries of the Cube

- S_{m} acts by permuting the coordinates of the cube.
\rightarrow corresponds to permutation of items
- The full automorphism group Γ_{m} is generated by S_{m} and coordinate flips.

m	all	regular	$S_{m \text {-orbits }}$	$\Gamma_{m \text {-orbits }}$
2	2	2	2	1
3	74	74	23^{\star}	6
4	$92,487,256$	$87,959,448$	$3,706,261^{\star}$	235,277

*Computations made using MPTOPCOM

Γ_{3}-Orbits

Type A
$\left(4\right.$ reg, $\left.2 s_{3}\right)$$\underset{\left(8 \text { reg, } 4 s_{3}\right)}{\text { Type B }} \underset{\left(24 \text { reg, } 6 s_{3}\right)}{\text { Type C }} \underset{\left(24 \text { reg, } 6 s_{3}\right)}{\text { Type D }} \underset{\left(12 \text { reg, } 3 s_{3}\right)}{\text { Type E }} \underset{\left(2 \text { reg, } 2 s_{3}\right)}{\text { Type F }}$

Γ_{3}-Orbits

Type A Type B
Type C
Type D Type E
Type F
(4 reg, $2 S_{3}$)
($8 \mathrm{reg}, 4 S_{3}$)
(24 reg, $6 S_{3}$)
$\left(24 \mathrm{reg}, 6 S_{3}\right)$
(12 reg, $3 S_{3}$)
(2 reg, $2 S_{3}$)

- Type A - E have been found by Vidali(2009)

Sensitivity of Mechanisms

- Allocations may change drastically by slight perturbations of the valuations.

Sensitivity of Mechanisms

- Allocations may change drastically by slight perturbations of the valuations.
- Let $d:\{0,1\}^{m} \times\{0,1\}^{m} \rightarrow \mathbb{R}$ be a (pseudo)metric.

Sensitivity of Mechanisms

- Allocations may change drastically by slight perturbations of the valuations.
- Let $d:\{0,1\}^{m} \times\{0,1\}^{m} \rightarrow \mathbb{R}$ be a (pseudo)metric.
- The sensitivity of an allocation function f is

$$
\mu(f)=\max \{d(a, b) \mid a, b \in F \text { for some } F \in \mathcal{I}(f)\}
$$

Sensitivity of Mechanisms

- Allocations may change drastically by slight perturbations of the valuations.
- Let $d:\{0,1\}^{m} \times\{0,1\}^{m} \rightarrow \mathbb{R}$ be a (pseudo)metric.
- The sensitivity of an allocation function f is

$$
\mu(f)=\max \{d(a, b) \mid a, b \in F \text { for some } F \in \mathcal{I}(f)\}
$$

- Cardinality distance: $d_{c}(a, b)=\left||a|_{1}-|b|_{1}\right|$ $\rightarrow \mu_{c}(f)$

Sensitivity of Mechanisms

- Allocations may change drastically by slight perturbations of the valuations.
- Let $d:\{0,1\}^{m} \times\{0,1\}^{m} \rightarrow \mathbb{R}$ be a (pseudo)metric.
- The sensitivity of an allocation function f is

$$
\mu(f)=\max \{d(a, b) \mid a, b \in F \text { for some } F \in \mathcal{I}(f)\}
$$

- Cardinality distance: $d_{c}(a, b)=\left||a|_{1}-|b|_{1}\right|$ $\rightarrow \mu_{c}(f)$
- Hamming distance: $d_{h}(a, b)=|a-b|_{1}$

Sensitivity of Mechanisms

- Allocations may change drastically by slight perturbations of the valuations.
- Let $d:\{0,1\}^{m} \times\{0,1\}^{m} \rightarrow \mathbb{R}$ be a (pseudo)metric.
- The sensitivity of an allocation function f is

$$
\mu(f)=\max \{d(a, b) \mid a, b \in F \text { for some } F \in \mathcal{I}(f)\}
$$

- Cardinality distance: $d_{c}(a, b)=\left||a|_{1}-|b|_{1}\right|$ $\rightarrow \mu_{c}(f)$
- Hamming distance: $d_{h}(a, b)=|a-b|_{1}$
- What is $M_{c}(m)=\min _{f \in \Phi_{m}} \mu_{c}(f)$? (Resp. $M_{h}(m)$?)
$\Phi_{m}=$ set of local allocation functions for m items

Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism for m items is $M_{c}(m)=1$.

Proposition (Joswig, Klimm, S.)
The minimal Hamming sensitivity of an IC single agent mechanism for $m \geq 3$ items is bounded by $2 \leq M_{h}(m) \leq m-1$.

Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism for m items is $M_{c}(m)=1$.

Proof. Cut the cube with the hyperplanes

$$
H_{k}=\left\{x \in \mathbb{R}^{m} \mid \sum_{i \in[m]} x_{i}=k\right\}
$$

Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism for m items is $M_{c}(m)=1$.

Proof. Cut the cube with the hyperplanes

$$
H_{k}=\left\{x \in \mathbb{R}^{m} \mid \sum_{i \in[m]} x_{i}=k\right\}
$$

Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism for m items is $M_{c}(m)=1$.

Proof. Cut the cube with the hyperplanes

$$
H_{k}=\left\{x \in \mathbb{R}^{m} \mid \sum_{i \in[m]} x_{i}=k\right\}
$$

Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism for m items is $M_{c}(m)=1$.

Proof. Cut the cube with the hyperplanes

$$
H_{k}=\left\{x \in \mathbb{R}^{m} \mid \sum_{i \in[m]} x_{i}=k\right\}
$$

The resulting subdivision proves the claim. It can be obtained with the prices $q_{a}=|a|_{1}^{2}$.

Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for $m \geq 3$ items is bounded by $2 \leq M_{h}(m) \leq m-1$.

Proof. Upper bound, m odd: Cut off all corners with even number of ones \Rightarrow no antipodal vertices in the same cell.

Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for $m \geq 3$ items is bounded by $2 \leq M_{h}(m) \leq m-1$.

Proof. Upper bound, m odd: Cut off all corners with even number of ones \Rightarrow no antipodal vertices in the same cell.

Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for $m \geq 3$ items is bounded by $2 \leq M_{h}(m) \leq m-1$.

Proof. Upper bound, m odd: Cut off all corners with even number of ones \Rightarrow no antipodal vertices in the same cell.

Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for $m \geq 3$ items is bounded by $2 \leq M_{h}(m) \leq m-1$.

Proof. Upper bound, m odd: Cut off all corners with even number of ones \Rightarrow no antipodal vertices in the same cell.

Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for $m \geq 3$ items is bounded by $2 \leq M_{h}(m) \leq m-1$.

Proof. Upper bound, m odd: Cut off all corners with even number of ones \Rightarrow no antipodal vertices in the same cell.

Minimal Sensitivities

Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for $m \geq 3$ items is bounded by $2 \leq M_{h}(m) \leq m-1$.

Proof. Upper bound, m odd: Cut off all corners with even number of ones \Rightarrow no antipodal vertices in the same cell.
m even: Consider m-cube as prism over ($m-1$)-cube. Cut off corners as before. Cells of m-cube are prisms over cells of ($m-1$)-cube.

Summary

- The indifference complex captures the combinatorial information of mechanisms.

Summary

- The indifference complex captures the combinatorial information of mechanisms.
- Indifference complexes arise from local IC mechanisms if and only if they correspond to a regular subdivision of the cube.

Summary

- The indifference complex captures the combinatorial information of mechanisms.
- Indifference complexes arise from local IC mechanisms if and only if they correspond to a regular subdivision of the cube.
- The sensitivity measures how drastically an outcome may change by only small perturbations of the valuations.

Summary

- The indifference complex captures the combinatorial information of mechanisms.
- Indifference complexes arise from local IC mechanisms if and only if they correspond to a regular subdivision of the cube.
- The sensitivity measures how drastically an outcome may change by only small perturbations of the valuations.

Thank You for Your attention!

Affine Maximizers

Allocation space for n agents and m items:

$$
\Omega=\left\{A \in\{0,1\}^{n \times m} \mid \sum_{i \in[n]} A_{i, j}=1 \text { for all } j \in[m]\right\}
$$

f is an affine maximizer \Leftrightarrow There exist $w_{1}, \ldots, w_{n} \in \mathbb{R}$ and $c_{A} \in \mathbb{R}$ for all $A \in \Omega$, such that

$$
f(\theta) \in \arg \max \left\{c_{A}+\sum_{i \in[n]} w_{i} \theta_{i} \cdot A_{i} \mid A \in \Omega\right\}
$$

$\Omega=$ vertex set of $\Delta_{n-1}^{m} \quad\left(\Delta_{n-1}=\operatorname{conv}\left\{e_{1}, \ldots, e_{n}\right\}\right)$

Indifference Complexes of Affine Maximizers

Affine maximizer:

$$
f(\theta) \in \arg \max \left\{c_{A}+\sum_{i \in[n]} w_{i} \theta_{i} \cdot A_{i} \mid A \in \Omega\right\}
$$

Theorem (Joswig, Klimm, S.)
An indifference complex \mathcal{I} for n agents and m items arises from an affine maximizer if and only if it corresponds to a regular subdivision of Δ_{n-1}^{m}.

Symmetries of Δ_{n-1}^{m}

$$
\Omega=\left\{A \in\{0,1\}^{n \times m} \mid \sum_{i \in[n]} A_{i, j}=1 \text { for all } j \in[m]\right\}
$$

- Regular subdivisions of Δ_{n-1}^{2} have been studied before.

- Denote by $S_{n} \times S_{n}$ the automorphism group which permutes the vertices of each simplex separately.
- Denote by $S_{m} \times S_{n}$ the automorphism group which permutes the rows and columns of allocations $A \in\{0,1\}^{n \times m}$.

Symmetries of Δ_{n-1}^{m}

- Denote by $S_{n} \times S_{n}$ the automorphism group which permutes the vertices of each simplex separately.
- Denote by $S_{m} \times S_{n}$ the automorphism group which permutes the rows and columns of allocations $A \in\{0,1\}^{n \times m}$.

Results for $m=2$:

n	regular	$\left[S_{2} \times S_{n}\right]$-orbits	$\left[S_{n} \times S_{n}\right]$-orbits
3	108	21	5
4	$4,494,288$	96,722	7,869

Computations made using MPTOPCOM

Triangulations of Δ_{2}^{2}

Type A
Type B
Type C
Type D
Type E
6 regular
12 regular
36 regular
36 regular
18 regular
$3 S_{3} \times S_{3}$
$4 S_{3} \times S_{3}$
$5 S_{3} \times S_{3}$
$5 S_{3} \times S_{3}$
$4 S_{3} \times S_{3}$

Sensitivity of Affine Maximizers

Cardinality distance: $d_{c}(a, b)=\left||a|_{1}-|b|_{1}\right|$. The cardinality sensitivity of an affine maximizer f is
$\mu_{c}(f)=\max \left\{d_{c}\left(A_{i}, B_{i}\right) \mid A, B \in F\right.$ for some $F \in \mathcal{I}(f)$ and $\left.i \in[n]\right\}$

Proposition (Joswig, Klimm, S.)
The minimal cardinality sensitivity of affine maximizers for $n \geq 3$ agents and m items is bounded by $\mu_{c}(f) \leq\left\lceil\frac{m}{2}\right\rceil$.

This sensitivity can be achieved by the allocation biases

$$
c_{A}=-\max _{i \in[n]}\left(\sum_{j \in[m]} a_{i, j}\right)^{2}
$$

