

The Polyhedral Geometry of Truthful Auctions

Sylvain Spitz, joint work w/ Michael Joswig, Max Klimm

IPCO 2023 @ Madison, Wisconsin June 21, 2023

Images: flaticon.com

				0.0	
*	4.2	3.8	4.9	3.7	6.8
*	5.0	5.0	5.0	5.0	5.0
*	4.9	7.1	3.3	4.9	2.5

Images: flaticon.com

				0.0	
*	4.2	3.8	4.9	3.7	6.8
*	4.8	4.8	4.8	4.8	4.8
*	4.9	7.1	3.3	4.9	2.5

Images: flaticon.com

				000	
*	4.2	3.8	4.9	3.7	6.8
*	4.8	4.8	4.8	4.8	4.8
*	4.9	7.1	3.3	4.9	2.5

• Task: allocate *m* items among *n* agents; set of allocations:

$$\Omega = \left\{ A \in \{0,1\}^{n imes m} \ \bigg| \ \sum_{i \in [n]} a_{i,j} = 1 \text{ for all } j \in [m]
ight\}$$

• Task: allocate *m* items among *n* agents; set of allocations:

$$\Omega = \left\{ A \in \{0,1\}^{n \times m} \ \bigg| \ \sum_{i \in [n]} a_{i,j} = 1 \text{ for all } j \in [m] \right\}$$

• Agents have valuation vectors for the items $\theta_i \in \mathbb{R}^m$, $i \in [n]$.

• Task: allocate *m* items among *n* agents; set of allocations:

$$\Omega \; = \; \left\{ A \in \{0,1\}^{n \times m} \; \bigg| \; \sum_{i \in [n]} \mathsf{a}_{i,j} = 1 \; \text{for all} \; j \in [m] \right\}$$

- Agents have valuation vectors for the items $\theta_i \in \mathbb{R}^m$, $i \in [n]$.
- Compute an allocation $f : \Theta \to \Omega$ and payments $p : \Theta \to \mathbb{R}^n$. $(\Theta = \mathbb{R}^{n \times m})$

• Task: allocate *m* items among *n* agents; set of allocations:

$$\Omega = \left\{ A \in \{0,1\}^{n \times m} \ \bigg| \ \sum_{i \in [n]} a_{i,j} = 1 \text{ for all } j \in [m] \right\}$$

- Agents have valuation vectors for the items $\theta_i \in \mathbb{R}^m$, $i \in [n]$.
- Compute an allocation f : Θ → Ω and payments p : Θ → ℝⁿ.
 (Θ = ℝ^{n×m})
- Agent *i* will misreport a valuation θ'_i if it benefits their utility $u_i(\theta' | \theta_i) = f_i(\theta') \cdot \theta_i - p_i(\theta')$

• Task: allocate *m* items among *n* agents; set of allocations:

$$\Omega = \left\{ A \in \{0,1\}^{n \times m} \ \bigg| \ \sum_{i \in [n]} a_{i,j} = 1 \text{ for all } j \in [m] \right\}$$

- Agents have valuation vectors for the items $\theta_i \in \mathbb{R}^m$, $i \in [n]$.
- Compute an allocation f : Θ → Ω and payments p : Θ → ℝⁿ.
 (Θ = ℝ^{n×m})
- Agent i will misreport a valuation θ_i' if it benefits their utility

$$u_i(\theta' | \theta_i) = f_i(\theta') \cdot \theta_i - p_i(\theta')$$

 A mechanism M = (f, p) is incentive compatible (IC), if misreporting never benefits the agent. Example (local mechanism): One agent, two items. Example (local mechanism): One agent, two items. Choose prices for bundles $q_{10}, q_{01}, q_{11} \in \mathbb{R}. \ q_{00} = 0$

Difference Sets

 θ_2 Example (local mechanism): One agent, two items. D_{01} Choose prices for bundles D_{11} $q_{10}, q_{01}, q_{11} \in \mathbb{R}. \ q_{00} = 0$ **q**01 $\theta_1 + \theta_2 = q_{11}$ $\max_{a\in\{0,1\}^2}\{a\cdot(\theta_1,\theta_2)-q_a\}$ D_{00} 0 q_{10} D_{10}

Difference sets: $D_a = \{ \theta \in \Theta \mid u(\theta) \text{ maximized by } a \}$

Difference Sets

Difference sets: $D_a = \{ \theta \in \Theta \mid u(\theta) \text{ maximized by } a \}$

Lemma (Nisan et al. - 2007)

M = (f, p) is IC if and only if for all $i \in [n]$ and all $\theta \in \mathbb{R}^{n \times m}$, p_i is given by some function $p_{i,\theta_{-i}} : \{0,1\}^m \to \mathbb{R}$, and

$$f(heta) \in \arg \max \bigg\{ A_i \cdot heta_i - p_{i, heta_{-i}}(A_i) \ \bigg| \ A \in \Omega \bigg\}.$$

 A_i is the *i*-th row of the matrix A.

Lemma (Nisan et al. - 2007)

M = (f, p) is IC if and only if for all $i \in [n]$ and all $\theta \in \mathbb{R}^{n \times m}$, p_i is given by some function $p_{i,\theta_{-i}} : \{0,1\}^m \to \mathbb{R}$, and

$$f(heta) \in rg\maxigg\{A_i \cdot heta_i - p_{i, heta_{-i}}(A_i) \ \Big| \ A \in \Omegaigg\}.$$

 A_i is the *i*-th row of the matrix A.

 \Rightarrow Multi-agent mechanisms are characterized by local one-agent mechanisms.

Definition

The *indifference complex* $\mathcal{I}(f)$ of an allocation function f is the abstract simplicial complex defined as

$$\mathcal{I}(f) \;=\; \left\{\mathcal{O}\subseteq\Omega\; \middle|\; igcap_{A\in\mathcal{O}}ar{D}_{A}
eq \emptyset
ight\}\;,$$

 $\mathcal{I} \text{ is an ASC} \Leftrightarrow (\mathsf{i}) \ \mathcal{I} \neq \emptyset, \quad (\mathsf{ii}) \ E \subset F, F \in \mathcal{I} \Rightarrow E \in \mathcal{I}$

Definition

The *indifference complex* $\mathcal{I}(f)$ of an allocation function f is the abstract simplicial complex defined as

$$\mathcal{I}(f) \;=\; \left\{\mathcal{O}\subseteq\Omega\; \middle|\; igcap_{A\in\mathcal{O}}ar{D}_{A}
eq \emptyset
ight\}\;.$$

 $\mathcal{I} \text{ is an ASC} \Leftrightarrow \text{(i)} \ \mathcal{I} \neq \emptyset, \quad \text{(ii)} \ E \subset F, F \in \mathcal{I} \Rightarrow E \in \mathcal{I}$

Definition

The *indifference complex* $\mathcal{I}(f)$ of an allocation function f is the abstract simplicial complex defined as

$$\mathcal{I}(f) \;=\; \left\{\mathcal{O}\subseteq\Omega\; \middle|\; igcap_{A\in\mathcal{O}}ar{D}_{A}
eq \emptyset
ight\}\;,$$

 $\mathcal{I} \text{ is an ASC} \Leftrightarrow (\mathsf{i}) \ \mathcal{I} \neq \emptyset, \quad (\mathsf{ii}) \ E \subset F, F \in \mathcal{I} \Rightarrow E \in \mathcal{I}$

$$\begin{split} \mathcal{I}(f) &= \\ \Big\{ \{00\}, \{01\}, \{10\}, \{11\}, \\ \{00, 10\}, \{10, 11\}, \{11, 01\}, \\ \{01, 00\}, \{00, 11\}, \end{split}$$

Definition

The *indifference complex* $\mathcal{I}(f)$ of an allocation function f is the abstract simplicial complex defined as

$$\mathcal{I}(f) \;=\; \left\{\mathcal{O}\subseteq\Omega\; \middle|\; igcap_{A\in\mathcal{O}}ar{D}_{A}
eq \emptyset
ight\}\;,$$

 \mathcal{I} is an ASC \Leftrightarrow (i) $\mathcal{I} \neq \emptyset$, (ii) $E \subset F, F \in \mathcal{I} \Rightarrow E \in \mathcal{I}$

 $\mathcal{I}(f) =$ $\{\{00\},\{01\},\{10\},\{11\},$ $\{00, 10\}, \{10, 11\}, \{11, 01\},$ $\{01, 00\}, \{00, 11\},\$ $\{00, 10, 11\}, \{00, 01, 11\}$

Which indifference complexes arise from IC mechanisms?

Which indifference complexes arise from IC mechanisms?

Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21) An indifference complex \mathcal{I} for m items and one agent arises from a local IC mechanism if and only if it corresponds to a regular subdivision of the m-cube.

Definition

Let $\mathcal{S} \subset \mathbb{R}^n$ be finite

Definition

Let $\mathcal{S} \subset \mathbb{R}^n$ be finite

Definition

Let $\mathcal{S} \subset \mathbb{R}^n$ be finite and $\lambda : \mathcal{S} \to \mathbb{R}$ be a lifting.

 $\lambda = (6, 5, 7, 7, 5)$

Definition

Let $S \subset \mathbb{R}^n$ be finite and $\lambda : S \to \mathbb{R}$ be a lifting. Consider the lifted polytope

$$P(S,\lambda) = \operatorname{conv}\left\{(x,\lambda(x)) \in \mathbb{R}^{n+1} \mid x \in S
ight\}.$$

 $\lambda = (6, 5, 7, 7, 5)$

Definition

Let $S \subset \mathbb{R}^n$ be finite and $\lambda : S \to \mathbb{R}$ be a lifting. Consider the lifted polytope

$$P(S,\lambda) = \operatorname{conv}\left\{(x,\lambda(x)) \in \mathbb{R}^{n+1} \mid x \in S
ight\}.$$

Projecting its lower faces onto conv(S) yields the *regular subdivision* of S induced by λ .

 $\lambda = (6, 5, 7, 7, 5)$

Definition

Let $S \subset \mathbb{R}^n$ be finite and $\lambda : S \to \mathbb{R}$ be a lifting. Consider the lifted polytope

$$P(S,\lambda) = \operatorname{conv}\left\{(x,\lambda(x)) \in \mathbb{R}^{n+1} \mid x \in S
ight\}.$$

Projecting its lower faces onto conv(S) yields the *regular subdivision* of S induced by λ .

 $\lambda = (6, 5, 7, 8, 5)$

$\lambda = (6, 5, 7, 8, 5)$

Definition

Let $S \subset \mathbb{R}^n$ be finite and $\lambda : S \to \mathbb{R}$ be a lifting. Consider the lifted polytope

$$P(S,\lambda) = \operatorname{conv}\left\{(x,\lambda(x)) \in \mathbb{R}^{n+1} \mid x \in S
ight\}.$$

Projecting its lower faces onto conv(S) yields the *regular subdivision* of S induced by λ .

Not all subdivisions are regular, e.g.:

Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21)

An indifference complex \mathcal{I} for m items and one agent arises from a local IC mechanism if and only if it corresponds to a regular subdivision of the m-cube.

Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21) An indifference complex \mathcal{I} for m items and one agent arises from a local IC mechanism if and only if it corresponds to a regular subdivision of the m-cube.

• A mechanism is nondegenerate, if the associated regular subdivision is a triangulation.

Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21) An indifference complex \mathcal{I} for m items and one agent arises from a local IC mechanism if and only if it corresponds to a regular subdivision of the m-cube.

- A mechanism is nondegenerate, if the associated regular subdivision is a triangulation.
- Number of triangulations of the *m*-cube:

т	all	regular
2	2	2
3	74	74
4	92,487,256	87,959,448

Symmetries of the Cube

S_m acts by permuting the coordinates of the cube.
 → corresponds to permutation of items

Symmetries of the Cube

- S_m acts by permuting the coordinates of the cube.
 → corresponds to permutation of items
- The full automorphism group Γ_m is generated by S_m and coordinate flips.

Symmetries of the Cube

- S_m acts by permuting the coordinates of the cube.
 → corresponds to permutation of items
- The full automorphism group Γ_m is generated by S_m and coordinate flips.

т	all	regular	S_m -orbits	Γ _m -orbits
2	2	2	2	1
3	74	74	23*	6
4	92,487,256	87,959,448	3,706,261*	235,277

*Computations made using MPTOPCOM

Γ_3 -Orbits

Γ_3 -Orbits

• Type A – E have been found by Vidali(2009)

• Allocations may change drastically by slight perturbations of the valuations.

- Allocations may change drastically by slight perturbations of the valuations.
- Let $d: \{0,1\}^m \times \{0,1\}^m \to \mathbb{R}$ be a (pseudo)metric.

- Allocations may change drastically by slight perturbations of the valuations.
- Let $d: \{0,1\}^m \times \{0,1\}^m \to \mathbb{R}$ be a (pseudo)metric.
- The sensitivity of an allocation function f is

 $\mu(f) = \max \left\{ d(a, b) \mid a, b \in F \text{ for some } F \in \mathcal{I}(f) \right\}$

- Allocations may change drastically by slight perturbations of the valuations.
- Let $d: \{0,1\}^m \times \{0,1\}^m \to \mathbb{R}$ be a (pseudo)metric.
- The sensitivity of an allocation function f is

 $\mu(f) = \max \left\{ d(a, b) \mid a, b \in F \text{ for some } F \in \mathcal{I}(f) \right\}$

• Cardinality distance: $d_c(a,b) = \left| |a|_1 - |b|_1 \right| \longrightarrow \mu_c(f)$

- Allocations may change drastically by slight perturbations of the valuations.
- Let $d: \{0,1\}^m \times \{0,1\}^m \to \mathbb{R}$ be a (pseudo)metric.
- The sensitivity of an allocation function f is

 $\mu(f) = \max \left\{ d(a, b) \mid a, b \in F \text{ for some } F \in \mathcal{I}(f) \right\}$

- Cardinality distance: $d_c(a,b) = \Big||a|_1 |b|_1\Big| o \mu_c(f)$
- Hamming distance: $d_h(a,b) = |a-b|_1 \longrightarrow \mu_h(f)$

- Allocations may change drastically by slight perturbations of the valuations.
- Let $d: \{0,1\}^m \times \{0,1\}^m \to \mathbb{R}$ be a (pseudo)metric.
- The sensitivity of an allocation function f is

 $\mu(f) = \max \left\{ d(a, b) \mid a, b \in F \text{ for some } F \in \mathcal{I}(f) \right\}$

- Cardinality distance: $d_c(a,b) = \Big||a|_1 |b|_1\Big| o \mu_c(f)$
- Hamming distance: $d_h(a,b) = |a-b|_1 \longrightarrow \mu_h(f)$
- What is $M_c(m) = \min_{f \in \Phi_m} \mu_c(f)$? (Resp. $M_h(m)$?)

 Φ_m = set of local allocation functions for *m* items

The minimal cardinality sensitivity of an IC single agent mechanism for m items is $M_c(m) = 1$.

Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for $m \ge 3$ items is bounded by $2 \le M_h(m) \le m - 1$.

The minimal cardinality sensitivity of an IC single agent mechanism for m items is $M_c(m) = 1$.

Proof. Cut the cube with the hyperplanes

$$H_k = \left\{ x \in \mathbb{R}^m \mid \sum_{i \in [m]} x_i = k \right\}.$$

The resulting subdivision proves the claim. If can be obtained with the prices $q_a = |a|_{+}^2$.

The minimal cardinality sensitivity of an IC single agent mechanism for m items is $M_c(m) = 1$.

Proof. Cut the cube with the hyperplanes

$$H_k = \left\{ x \in \mathbb{R}^m \mid \sum_{i \in [m]} x_i = k \right\}.$$

The resulting subdivision proves the claim. If can be obtained with the prices $q_a = |a|_{+}^2$.

The minimal cardinality sensitivity of an IC single agent mechanism for m items is $M_c(m) = 1$.

Proof. Cut the cube with the hyperplanes

$$H_k = \left\{ x \in \mathbb{R}^m \mid \sum_{i \in [m]} x_i = k \right\}.$$

The resulting subdivision proves the claim. I can be obtained with the prices $q_a = |a|_{+}^2$.

The minimal cardinality sensitivity of an IC single agent mechanism for m items is $M_c(m) = 1$.

Proof. Cut the cube with the hyperplanes

$$H_k = \left\{ x \in \mathbb{R}^m \mid \sum_{i \in [m]} x_i = k \right\}.$$

The resulting subdivision proves the claim. It can be obtained with the prices $q_a = |a|_1^2$.

The minimal Hamming sensitivity of an IC single agent mechanism for $m \ge 3$ items is bounded by $2 \le M_h(m) \le m - 1$.

Proof. Upper bound, *m* odd: Cut off all corners with even number of ones \Rightarrow no antipodal vertices in the same cell.

The minimal Hamming sensitivity of an IC single agent mechanism for $m \ge 3$ items is bounded by $2 \le M_h(m) \le m - 1$.

Proof. Upper bound, *m* odd: Cut off all corners with even number of ones \Rightarrow no antipodal vertices in the same cell.

The minimal Hamming sensitivity of an IC single agent mechanism for $m \ge 3$ items is bounded by $2 \le M_h(m) \le m - 1$.

Proof. Upper bound, *m* odd: Cut off all corners with even number of ones \Rightarrow no antipodal vertices in the same cell.

The minimal Hamming sensitivity of an IC single agent mechanism for $m \ge 3$ items is bounded by $2 \le M_h(m) \le m - 1$.

Proof. Upper bound, *m* odd: Cut off all corners with even number of ones \Rightarrow no antipodal vertices in the same cell.

The minimal Hamming sensitivity of an IC single agent mechanism for $m \ge 3$ items is bounded by $2 \le M_h(m) \le m - 1$.

Proof. Upper bound, *m* odd: Cut off all corners with even number of ones \Rightarrow no antipodal vertices in the same cell.

The minimal Hamming sensitivity of an IC single agent mechanism for $m \ge 3$ items is bounded by $2 \le M_h(m) \le m - 1$.

Proof. Upper bound, *m* odd: Cut off all corners with even number of ones \Rightarrow no antipodal vertices in the same cell.

• The indifference complex captures the combinatorial information of mechanisms.

- The indifference complex captures the combinatorial information of mechanisms.
- Indifference complexes arise from local IC mechanisms if and only if they correspond to a regular subdivision of the cube.

- The indifference complex captures the combinatorial information of mechanisms.
- Indifference complexes arise from local IC mechanisms if and only if they correspond to a regular subdivision of the cube.
- The sensitivity measures how drastically an outcome may change by only small perturbations of the valuations.

- The indifference complex captures the combinatorial information of mechanisms.
- Indifference complexes arise from local IC mechanisms if and only if they correspond to a regular subdivision of the cube.
- The sensitivity measures how drastically an outcome may change by only small perturbations of the valuations.

Thank You for Your attention!

Allocation space for n agents and m items:

$$\Omega = \left\{ A \in \{0,1\}^{n \times m} \ \bigg| \ \sum_{i \in [n]} A_{i,j} = 1 \text{ for all } j \in [m] \right\}$$

f is an *affine maximizer* \Leftrightarrow There exist $w_1, \ldots, w_n \in \mathbb{R}$ and $c_A \in \mathbb{R}$ for all $A \in \Omega$, such that

$$f(heta) \in rg\max\left\{c_A + \sum_{i\in[n]} w_i heta_i \mid A\in\Omega
ight\}$$

 $\Omega = ext{vertex set of } \Delta_{n-1}^m \quad \left(\Delta_{n-1} = ext{conv} \{ e_1, \dots, e_n \}
ight)$

Affine maximizer:

$$f(\theta) \in \arg \max \left\{ c_A + \sum_{i \in [n]} w_i \theta_i \cdot A_i \mid A \in \Omega \right\}$$
.

Theorem (Joswig, Klimm, S.)

An indifference complex \mathcal{I} for n agents and m items arises from an affine maximizer if and only if it corresponds to a regular subdivision of Δ_{n-1}^m .

Symmetries of Δ_{n-1}^m

$$\Omega = \left\{ A \in \{0,1\}^{n \times m} \ \bigg| \ \sum_{i \in [n]} A_{i,j} = 1 \text{ for all } j \in [m] \right\}$$

• Regular subdivisions of Δ_{n-1}^2 have been studied before.

- Denote by $S_n \times S_n$ the automorphism group which permutes the vertices of each simplex separately.
- Denote by $S_m \times S_n$ the automorphism group which permutes the rows and columns of allocations $A \in \{0, 1\}^{n \times m}$.

Symmetries of Δ_{n-1}^m

- Denote by $S_n \times S_n$ the automorphism group which permutes the vertices of each simplex separately.
- Denote by $S_m \times S_n$ the automorphism group which permutes the rows and columns of allocations $A \in \{0, 1\}^{n \times m}$.

Results for m = 2:

n	regular	$[S_2 \times S_n]$ -orbits	$[S_n \times S_n]$ -orbits
3	108	21	5
4	4,494,288	96,722	7,869

Computations made using MPTOPCOM

Triangulations of Δ_2^2

Туре А	Туре В	Туре С	Type D	Type E
6 regular	12 regular	36 regular	36 regular	18 regular
$3 S_3 \times S_3$	4 $S_3 \times S_3$	5 $S_3 imes S_3$	5 $S_3 imes S_3$	4 $S_3 \times S_3$

Sensitivity of Affine Maximizers

Cardinality distance: $d_c(a, b) = ||a|_1 - |b|_1|$. The cardinality sensitivity of an affine maximizer f is

 $\mu_c(f) = \max \left\{ d_c(A_i, B_i) \mid A, B \in F \text{ for some } F \in \mathcal{I}(f) \text{ and } i \in [n] \right\}$

Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of affine maximizers for $n \ge 3$ agents and m items is bounded by $\mu_c(f) \le \left\lceil \frac{m}{2} \right\rceil$.

This sensitivity can be achieved by the allocation biases

$$c_A = -\max_{i\in[n]} \left(\sum_{j\in[m]} a_{i,j}\right)^2$$