
Towards an Optimal Contention Resolution Scheme for
Matchings

Pranav Nuti and Jan Vondrák
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Contention resolution schemes in the simplest setting1

Imagine n people all of whom want access to a resource.

Each person requests access to the resource independently, with
probability pi . We will assume

∑n
i=1 pi = 1.

The resource can be allocated to only one person.

The resource must be allocated fairly, i.e, the chance of a person’s
request being accepted, given they make the request, is the same for
all people. In other words, there is a constant c such that the i th

person’s request is accepted with probability cpi .

1Feige 2009.
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Contention resolution schemes in the simplest setting

It is possible to prove that we can allocate to person i with probability(
1− 1

e

)
pi , but we can’t do better (when all the pi equal

1
n ).
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Contention resolution schemes for matchings

A graph G with set of edges E .

Each edge e appears independently with probability pe in a random
graph R. The vector (pe) is a fractional matching.

Amongst the edges in R, can only accept at most one edge at each
vertex, i.e., can only accept a matching M ⊂ R.

Chance that an edge e is accepted given it appears in R is the same
for all edges e, i.e, Pr[e ∈ M] = cpe .

What is the largest c we can achieve (for the worst possible choice of pe)?
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Contention resolution schemes for matchings

Roughly speaking, find as large a matching as you can in a random
graph, while being fair to every edge.
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Applications of contention resolution schemes

Combinatorial allocation problems.

Combinatorial optimization through randomized rounding2 and
correlation gap.

For the online version, prophet inequalities and sequential pricing
problems.

2Chekuri, Vondrák, and Zenklusen 2014.
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Previous literature

Upper bound of ≃ 0.544 due to Karp and Sipser3. (They prove this
upper bound without the fairness constraint.)

Lower bound of ≃ 0.476 for bipartite matchings due to Bruggmann
and Zenklusen4. This is the optimal monotone scheme.

Lower bound of 0.474 for general matchings due to MacRury, Ma,
and Grammel (actually assumes the edges appear in a random-order
online fashion)5.

3Karp and Sipser 1981.
4Bruggmann and Zenklusen 2022.
5MacRury, Ma, and Grammel 2022.
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Our contributions

Theorem 1

There is a contention resolution scheme with selectability ≃ 0.544 for
general matchings, as long as the pe are all small.

Theorem 2

There is a contention resolution scheme with selectability ≃ 0.509 for
bipartite matchings, beating the best possible monotone scheme, and the
best possible random order online scheme.
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Algorithm6 for Theorem 1

Theorem 1

There is a contention resolution scheme with selectability ≃ 0.544 for
general matchings, as long as the pe are all small.

Add a random edge adjacent to a degree 1 “leaf” vertex to the
matching. Remove both vertices from the graph and repeat.

6Karp and Sipser 1981.
Pranav Nuti Contention resolution for matchings IPCO 2023 11 / 23



Key Idea 1 behind Theorem 1

It is not harmful to add an edge adjacent to a leaf to a matching.

Either green vertex is included or not in a matching. If included, can
swap blue edge for red edge if necessary. If not, can add red edge,
making matching bigger.
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Key Idea 2 behind Theorem 1

When the pe are small, the graph R, in the neighbourhood of any
edge e, looks like a random tree.

At each vertex, the probabilities of the edges adjacent to it sum to 1.
If all the probabilities are small, it is reasonable to say that each
vertex has Poi(1) many children.

Pranav Nuti Contention resolution for matchings IPCO 2023 13 / 23



Key Idea 2 behind Theorem 1

Analyzing the performance of the Karp-Sipser algorithm is easier on
random trees than on R.

While the algorithm is due to Karp and Sipser, they only studied the
expected size of the maximum matching. We simplify and generalize
the analysis to also prove that the fairness constraint is met.
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Theorem 2

Theorem 2

There is a contention resolution scheme with selectability ≃ 0.509 for
bipartite matchings, beating the best possible monotone scheme, and the
best possible random order online scheme.
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Key Idea 1 behind Theorem 2

When performing contention resolution it is often useful to reduce the
probability of appearance of the edges most likely to appear.

If we aim for a large matching, the blue edges almost always appear,
and we will select them, stopping us from being fair to the red edges.
To combat this, it is useful to pretend as if the blue edges actually
appear with a lower probability.
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Key Idea 2 behind Theorem 2

For bipartite graphs, it is useful to run contention resolution schemes
in two stages–first selecting an edge at each vertex on the left, and
then choosing an edge amongst selected edges at each vertex on the
right.
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Key Idea 2 behind Theorem 2

In the first stage, we perform contention resolution at vertex a, and
select the red edge. At vertex b, we select the blue edge. In the
second stage, we have to run a contention resolution scheme to
choose between the red and blue edges at vertex c .
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Key Idea 3 behind Theorem 2

It is not harmful to add an edge adjacent to a leaf to a matching.
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Algorithm sketch for Theorem 2

Theorem 2

There is a contention resolution scheme with selectability ≃ 0.509 for
bipartite matchings, beating the best possible monotone scheme, and the
best possible random order online scheme.

1 Reduce the probabilities of the highest probability edges.

2 Perform contention resolution at each vertex on the left, prioritizing
picking edges adjacent to leaves.

3 Perform contention resolution at each vertex on the right amongst
the edges picked at the previous stage.
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Open Questions

Find the optimal contention resolution scheme for bipartite matchings
and general matchings. Ideas...

Find a reduction to the small pe case (at least for bipartite matchings)
to prove that the optimal factor for the problem is really ≃ 0.544.
Prove that the worst case occurs when all the edge probabilities are
equal (analogous to Van der Waerden’s conjecture).

Investigate the online version of the problem more thoroughly.
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Thank You
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