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Applications:

◮ Logistics / transportation

◮ Scheduling / timetabling

◮ Chip design

◮ Inventory management
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Mathematics at intersection of

◮ Convex geometry

◮ Geometry of numbers

◮ Convex optimization
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Known results:

◮ NP-hard [Karp ’72]

◮ Can be solved in time f(n) · poly(m, 〈A, b, c〉)
[Lenstra 1983]

◮ Improved to nO(n)-time algorithm [Kannan 1983]

◮ Very different 2O(n)nn-time algorithm by [Dadush 2012]
(rather involved, following [Kannan, Lovász 1988])

Currently best Lenstra-type bound: (Õ(n4/3)))n
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◮ Banaszczyk (1996) + Rudelson (1998):
µ(Zn, K) · λ1(Z

n, (K −K)◦) ≤ Õ(n4/3)

◮ Translation: If some translate of K is lattice point free,
then K ∩ Z

n is contained in Õ(n4/3) hyperplanes aTx = Z

where a ∈ Z
n

◮ Recurse on Õ(n4/3) many (n− 1)-dimensional subproblems

◮ ⇒ Õ(n4/3)n-time algorithm
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◮ Using approximate IP we can get:

Theorem (Dadush, Eisenbrand, R.)

There is a (simpler) 2O(n)nn time algorithm for integer
programming. Moreover if we are given x∗ mod 5(n+ 1) for
some feasible x∗ ∈ K ∩ Z

n we can solve IP in time 2O(n).

Theorem (Dadush, Eisenbrand, R.)

The capacitated IP

max{cTx | Ax = b, 0 ≤ x ≤ u, x ∈ Z
n}

can be solved in time (log ‖u‖∞)O(n).



Part I

A new 2O(n)nn-time algorithm for

general IP



Algorithm I

K



Algorithm I

K

c+ Bn
2

c
c+ (n+ 1)Bn

2

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.



Algorithm I

K

c+ Bn
2

c
c+ (n+ 1)Bn

2

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.



Algorithm I

K

c

z

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.
(2) Find z ∈ Λ in 2-scaling of K



Algorithm I

K

c

z

c′
Q

−(z − c)

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.
(2) Find z ∈ Λ in 2-scaling of K
(2) FOR k = 1 TO poly(n) DO

(3) Find y ∈ Λ in 2-scaling of
Q := K ∩ {x | 〈z − c, x− c〉 ≤ − 1

poly(n)}

(4) Update z′ := (1− 1
k )z +

1
ky



Algorithm I

K

c

z

c′
Q

−(z − c)

y

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.
(2) Find z ∈ Λ in 2-scaling of K
(2) FOR k = 1 TO poly(n) DO

(3) Find y ∈ Λ in 2-scaling of
Q := K ∩ {x | 〈z − c, x− c〉 ≤ − 1

poly(n)}

(4) Update z′ := (1− 1
k )z +

1
ky



Algorithm I

K

c

zy z′

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.
(2) Find z ∈ Λ in 2-scaling of K
(2) FOR k = 1 TO poly(n) DO

(3) Find y ∈ Λ in 2-scaling of
Q := K ∩ {x | 〈z − c, x− c〉 ≤ − 1

poly(n)}

(4) Update z′ := (1− 1
k )z +

1
ky



Algorithm I

K

c

zy z′

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.
(2) Find z ∈ Λ in 2-scaling of K
(2) FOR k = 1 TO poly(n) DO

(3) Find y ∈ Λ in 2-scaling of
Q := K ∩ {x | 〈z − c, x− c〉 ≤ − 1

poly(n)}

(4) Update z′ := (1− 1
k )z +

1
ky

(5) IF successfull THEN find point in K ∩ Λ
5(n+1)

(6) ELSE update K ′ := K ∩ {x | 〈z − c, x− c〉 ≥ − 1
poly(n)

}
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Case I: No lattice point in Q ⇒ volume of K decreases by
constant factor.

KK ′

c

Theorem (Grünbaum)

Let K ⊆ R
n be a convex body. Any hyperplane H through the

barycenter splits K into two parts with volume ≥ 1
e
Voln(K)

each.
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Case II: If we always find a lattice point in Q (scaled by
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Case II: If we always find a lattice point in Q (scaled by
factor 2), then c is (approx) convex combination of lattice
points X ⊆ Λ ∩ 3(K − c) + c.

K

c

z

−(z − c)

y
z′

◮ After k iterations ‖z − c‖2 ≤ O( n√
k
).

◮ After k = poly(n) iterations z ≈ c
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◮ Recursion similar to Ellipsoid method is needed
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Suppose initially K ⊆ rBn
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A new algorithm for capacitated IPs



Solving IPs in equality form

Theorem (Dadush, Eisenbrand, R.)

One can find a feasible point with

Ax = b, 0 ≤ x ≤ u, x ∈ Z
n

in time (log ‖u‖∞)O(n).
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Solving IPs in equality form (2)
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◮ Number of cells is |H| ≤ O(log ‖u‖∞)n
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Extension

Theorem (Dadush, Eisenbrand, R.)

One can solve

max{cTx | Ax ≤ b, 0 ≤ x ≤ u, x ∈ Z
n}

in time nO(m) · (log ‖u‖∞)O(n).

◮ Suffices to solve feasibility

◮ May assume A, b integral with

‖A‖∞, ‖b‖∞ ≤ 2O(n3)‖u‖O(n2)
∞ [Frank, Tardos ’87]

◮ Then transform

Aix ≤ bi → Aix+ si = bi, 0 ≤ si ≤ 2O(n3)‖u‖O(n2)
∞
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Thanks for your attention!


