
From approximate to exact
integer programming

Daniel Dadush, Fritz Eisenbrand,

Thomas Rothvoss

Integer programming

max{cTx | Ax ≤ b, x ∈ Z
n} K

c

b b

b b b

b b b

b b

Integer programming

max{cTx | Ax ≤ b, x ∈ Z
n} K

c

b b

b b b

b b b

b b

opt

Integer programming

max{cTx | Ax ≤ b, x ∈ Z
n} K

c

b b

b b b

b b b

b b

opt

Applications:

◮ Logistics / transportation

◮ Scheduling / timetabling

◮ Chip design

◮ Inventory management

Integer programming

max{cTx | Ax ≤ b, x ∈ Z
n} K

c

b b

b b b

b b b

b b

opt

Mathematics at intersection of

◮ Convex geometry

◮ Geometry of numbers

◮ Convex optimization

Integer programming

Known results:

◮ NP-hard [Karp ’72]

Integer programming

Known results:

◮ NP-hard [Karp ’72]

◮ Can be solved in time f(n) · poly(m, 〈A, b, c〉)
[Lenstra 1983]

◮ Improved to nO(n)-time algorithm [Kannan 1983]

Integer programming

Known results:

◮ NP-hard [Karp ’72]

◮ Can be solved in time f(n) · poly(m, 〈A, b, c〉)
[Lenstra 1983]

◮ Improved to nO(n)-time algorithm [Kannan 1983]

◮ Very different 2O(n)nn-time algorithm by [Dadush 2012]
(rather involved, following [Kannan, Lovász 1988])

Currently best Lenstra-type bound: (Õ(n4/3)))n

Modern interp. of Lenstra’s algorithm

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

K

Modern interp. of Lenstra’s algorithm

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

K

◮ Banaszczyk (1996) + Rudelson (1998):
µ(Zn, K) · λ1(Z

n, (K −K)◦) ≤ Õ(n4/3)

Modern interp. of Lenstra’s algorithm

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

K

◮ Banaszczyk (1996) + Rudelson (1998):
µ(Zn, K) · λ1(Z

n, (K −K)◦) ≤ Õ(n4/3)

◮ Translation: If some translate of K is lattice point free,
then K ∩ Z

n is contained in Õ(n4/3) hyperplanes aTx = Z

where a ∈ Z
n

Modern interp. of Lenstra’s algorithm

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

K

≤ Õ(n4/3)a

◮ Banaszczyk (1996) + Rudelson (1998):
µ(Zn, K) · λ1(Z

n, (K −K)◦) ≤ Õ(n4/3)

◮ Translation: If some translate of K is lattice point free,
then K ∩ Z

n is contained in Õ(n4/3) hyperplanes aTx = Z

where a ∈ Z
n

Modern interp. of Lenstra’s algorithm

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

K

≤ Õ(n4/3)a

◮ Banaszczyk (1996) + Rudelson (1998):
µ(Zn, K) · λ1(Z

n, (K −K)◦) ≤ Õ(n4/3)

◮ Translation: If some translate of K is lattice point free,
then K ∩ Z

n is contained in Õ(n4/3) hyperplanes aTx = Z

where a ∈ Z
n

◮ Recurse on Õ(n4/3) many (n− 1)-dimensional subproblems

Modern interp. of Lenstra’s algorithm

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

K

≤ Õ(n4/3)a

◮ Banaszczyk (1996) + Rudelson (1998):
µ(Zn, K) · λ1(Z

n, (K −K)◦) ≤ Õ(n4/3)

◮ Translation: If some translate of K is lattice point free,
then K ∩ Z

n is contained in Õ(n4/3) hyperplanes aTx = Z

where a ∈ Z
n

◮ Recurse on Õ(n4/3) many (n− 1)-dimensional subproblems

◮ ⇒ Õ(n4/3)n-time algorithm

Approximate IP

Theorem (Dadush 2014)

Given convex set K with barycenter 0, can find a 2-apx to
min{‖x− t‖K : x ∈ Z

n} in time 2O(n).

b b b b b b b

b b b b b b b

b b b b b b b

t+Kt

Approximate IP

Theorem (Dadush 2014)

Given convex set K with barycenter 0, can find a 2-apx to
min{‖x− t‖K : x ∈ Z

n} in time 2O(n).

b b b b b b b

b b b b b b b

b b b b b b b

t+Kt

Approximate IP

Theorem (Dadush 2014)

Given convex set K with barycenter 0, can find a 2-apx to
min{‖x− t‖K : x ∈ Z

n} in time 2O(n).

b b b b b b b

b b b b b b b

b b b b b b b

t+Kt

◮ Suffices if Voln(K ∩ (−K)) ≥ 2−Θ(n)Voln(K)

0 K

Approximate IP

Theorem (Dadush 2014)

Given convex set K with barycenter 0, can find a 2-apx to
min{‖x− t‖K : x ∈ Z

n} in time 2O(n).

b b b b b b b

b b b b b b b

b b b b b b b

t+Kt

◮ Suffices if Voln(K ∩ (−K)) ≥ 2−Θ(n)Voln(K)

0 K−K

Main results

◮ Using approximate IP we can get:

Theorem (Dadush, Eisenbrand, R.)

There is a (simpler) 2O(n)nn time algorithm for integer
programming. Moreover if we are given x∗ mod 5(n+ 1) for
some feasible x∗ ∈ K ∩ Z

n we can solve IP in time 2O(n).

Main results

◮ Using approximate IP we can get:

Theorem (Dadush, Eisenbrand, R.)

There is a (simpler) 2O(n)nn time algorithm for integer
programming. Moreover if we are given x∗ mod 5(n+ 1) for
some feasible x∗ ∈ K ∩ Z

n we can solve IP in time 2O(n).

Theorem (Dadush, Eisenbrand, R.)

The capacitated IP

max{cTx | Ax = b, 0 ≤ x ≤ u, x ∈ Z
n}

can be solved in time (log ‖u‖∞)O(n).

Part I

A new 2O(n)nn-time algorithm for

general IP

Algorithm I

K

Algorithm I

K

c+ Bn
2

c
c+ (n+ 1)Bn

2

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.

Algorithm I

K

c+ Bn
2

c
c+ (n+ 1)Bn

2

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.

Algorithm I

K

c

z

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.
(2) Find z ∈ Λ in 2-scaling of K

Algorithm I

K

c

z

c′
Q

−(z − c)

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.
(2) Find z ∈ Λ in 2-scaling of K
(2) FOR k = 1 TO poly(n) DO

(3) Find y ∈ Λ in 2-scaling of
Q := K ∩ {x | 〈z − c, x− c〉 ≤ − 1

poly(n)}

(4) Update z′ := (1− 1
k)z +

1
ky

Algorithm I

K

c

z

c′
Q

−(z − c)

y

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.
(2) Find z ∈ Λ in 2-scaling of K
(2) FOR k = 1 TO poly(n) DO

(3) Find y ∈ Λ in 2-scaling of
Q := K ∩ {x | 〈z − c, x− c〉 ≤ − 1

poly(n)}

(4) Update z′ := (1− 1
k)z +

1
ky

Algorithm I

K

c

zy z′

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.
(2) Find z ∈ Λ in 2-scaling of K
(2) FOR k = 1 TO poly(n) DO

(3) Find y ∈ Λ in 2-scaling of
Q := K ∩ {x | 〈z − c, x− c〉 ≤ − 1

poly(n)}

(4) Update z′ := (1− 1
k)z +

1
ky

Algorithm I

K

c

zy z′

(1) After lin. transf. c+Bn
2 ⊆ K ⊆ c+ (n+ 1)Bn

2 , c baryc.
(2) Find z ∈ Λ in 2-scaling of K
(2) FOR k = 1 TO poly(n) DO

(3) Find y ∈ Λ in 2-scaling of
Q := K ∩ {x | 〈z − c, x− c〉 ≤ − 1

poly(n)}

(4) Update z′ := (1− 1
k)z +

1
ky

(5) IF successfull THEN find point in K ∩ Λ
5(n+1)

(6) ELSE update K ′ := K ∩ {x | 〈z − c, x− c〉 ≥ − 1
poly(n)

}

Analysis (1)

Case I: No lattice point in Q ⇒ volume of K decreases by
constant factor.

K

c

Analysis (1)

Case I: No lattice point in Q ⇒ volume of K decreases by
constant factor.

K

c

c′
Q

Analysis (1)

Case I: No lattice point in Q ⇒ volume of K decreases by
constant factor.

KK ′

c

Analysis (1)

Case I: No lattice point in Q ⇒ volume of K decreases by
constant factor.

KK ′

c

Theorem (Grünbaum)

Let K ⊆ R
n be a convex body. Any hyperplane H through the

barycenter splits K into two parts with volume ≥ 1
e
Voln(K)

each.

Anaylsis (2)

Case II: If we always find a lattice point in Q (scaled by
factor 2), then c is (approx) convex combination of lattice
points X ⊆ Λ ∩ 3(K − c) + c.

K

c

z

Anaylsis (2)

Case II: If we always find a lattice point in Q (scaled by
factor 2), then c is (approx) convex combination of lattice
points X ⊆ Λ ∩ 3(K − c) + c.

K

c

z

−(z − c)

y

Anaylsis (2)

Case II: If we always find a lattice point in Q (scaled by
factor 2), then c is (approx) convex combination of lattice
points X ⊆ Λ ∩ 3(K − c) + c.

K

c

z

−(z − c)

y
z′

◮ After k iterations ‖z − c‖2 ≤ O(n√
k
).

◮ After k = poly(n) iterations z ≈ c

Asym. Approximate Caratheodory Thm

Lemma
If 0 ∈ P := conv(X), then for any k, there are u1, . . . , uk ∈ X
with ‖ 1

k

∑k
i=1 ui‖P ≤ n+1

k
.

b

b b

b
b

∈ X
0

Asym. Approximate Caratheodory Thm

Lemma
If 0 ∈ P := conv(X), then for any k, there are u1, . . . , uk ∈ X
with ‖ 1

k

∑k
i=1 ui‖P ≤ n+1

k
.

b

b b

b
b

∈ X
0

Asym. Approximate Caratheodory Thm

Lemma
If 0 ∈ P := conv(X), then for any k, there are u1, . . . , uk ∈ X
with ‖ 1

k

∑k
i=1 ui‖P ≤ n+1

k
.

b

b b

b
b

∈ X
0

Our application: P := 3-scaling of K.
◮ c ≈ convex comb. of lattice points in 3-scaling

⇒ unweighted average of 5(n+ 1) lattice points in K

K

c

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

Asym. Approximate Caratheodory Thm

Lemma
If 0 ∈ P := conv(X), then for any k, there are u1, . . . , uk ∈ X
with ‖ 1

k

∑k
i=1 ui‖P ≤ n+1

k
.

b

b b

b
b

∈ X
0

Our application: P := 3-scaling of K.
◮ c ≈ convex comb. of lattice points in 3-scaling

⇒ unweighted average of 5(n+ 1) lattice points in K

K

c

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

Asym. Approximate Caratheodory Thm

Lemma
If 0 ∈ P := conv(X), then for any k, there are u1, . . . , uk ∈ X
with ‖ 1

k

∑k
i=1 ui‖P ≤ n+1

k
.

b

b b

b
b

∈ X
0

Our application: P := 3-scaling of K.
◮ c ≈ convex comb. of lattice points in 3-scaling

⇒ unweighted average of 5(n+ 1) lattice points in K

K

c

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

Recursion is needed

◮ Recursion similar to Ellipsoid method is needed

Lemma
Suppose initially K ⊆ rBn

2 . Then after O(n2 log(nr
λ1(Λ)

))

iterations all points in K ∩ Λ contained in (n− 1)-dim.
subspace (which can be found in time 2O(n))

b b b b b

b b b b b

b b b b b

b b b b b

K

Recursion is needed

◮ Recursion similar to Ellipsoid method is needed

Lemma
Suppose initially K ⊆ rBn

2 . Then after O(n2 log(nr
λ1(Λ)

))

iterations all points in K ∩ Λ contained in (n− 1)-dim.
subspace (which can be found in time 2O(n))

b b b b b

b b b b b

b b b b b

b b b b b
U

y
K

Conclusion

Conclusion: For any lattice Λ, if K ∩ Λ 6= ∅ then we can find
a point in K ∩ Λ

5(n+1)
in time 2O(n).

Conclusion

Conclusion: For any lattice Λ, if K ∩ Λ 6= ∅ then we can find
a point in K ∩ Λ

5(n+1)
in time 2O(n).

Theorem
One can find a point in K ∩ Z

n in time (O(n))n.

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

K

Conclusion

Conclusion: For any lattice Λ, if K ∩ Λ 6= ∅ then we can find
a point in K ∩ Λ

5(n+1)
in time 2O(n).

Theorem
One can find a point in K ∩ Z

n in time (O(n))n.

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

Kx∗

◮ For some x∗ ∈ K ∩ Z
n, guess x∗ mod (5n+ 1)

Conclusion

Conclusion: For any lattice Λ, if K ∩ Λ 6= ∅ then we can find
a point in K ∩ Λ

5(n+1)
in time 2O(n).

Theorem
One can find a point in K ∩ Z

n in time (O(n))n.

K

b b b b b

b b b b b

b b b b b

x∗

◮ For some x∗ ∈ K ∩ Z
n, guess x∗ mod (5n+ 1)

◮ Run algorithm with Λ := (5n+ 1)Zn + (x∗ mod (5n+ 1))
and K

Conclusion

Conclusion: For any lattice Λ, if K ∩ Λ 6= ∅ then we can find
a point in K ∩ Λ

5(n+1)
in time 2O(n).

Theorem
One can find a point in K ∩ Z

n in time (O(n))n.

K

b b b b b

b b b b b

b b b b b

x∗

◮ For some x∗ ∈ K ∩ Z
n, guess x∗ mod (5n+ 1)

◮ Run algorithm with Λ := (5n+ 1)Zn + (x∗ mod (5n+ 1))
and K

Part II

A new algorithm for capacitated IPs

Solving IPs in equality form

Theorem (Dadush, Eisenbrand, R.)

One can find a feasible point with

Ax = b, 0 ≤ x ≤ u, x ∈ Z
n

in time (log ‖u‖∞)O(n).

Solving IPs in equality form (2)

x1

x2

0 u1

0

u2

Ax = b

Solving IPs in equality form (2)

x1

x2

1
2
1 20 u1

1/21
2

0

u2

Ax = b

◮ Consider hyperplanes H of the form xi = 2Z≥−1 ,
xi = ui − 2Z≥−1 , xi = 0, xi = ui.

Solving IPs in equality form (2)

x1

x2

1
2
1 20 u1

1/21
2

0

u2

Ax = b

K

cell

◮ Consider hyperplanes H of the form xi = 2Z≥−1 ,
xi = ui − 2Z≥−1 , xi = 0, xi = ui.

◮ Call 2-apx IP for any K := {x | Ax = b} ∩ cell

Solving IPs in equality form (2)

x1

x2

1
2
1 20 u1

1/21
2

0

u2

Ax = b

K

cell

◮ Consider hyperplanes H of the form xi = 2Z≥−1 ,
xi = ui − 2Z≥−1 , xi = 0, xi = ui.

◮ Call 2-apx IP for any K := {x | Ax = b} ∩ cell

Solving IPs in equality form (2)

x1

x2

1
2
1 20 u1

1/21
2

0

u2

Ax = b

◮ Consider hyperplanes H of the form xi = 2Z≥−1 ,
xi = ui − 2Z≥−1 , xi = 0, xi = ui.

◮ Call 2-apx IP for any K := {x | Ax = b} ∩ cell

Solving IPs in equality form (2)

x1

x2

1
2
1 20 u1

1/21
2

0

u2

Ax = b

◮ Consider hyperplanes H of the form xi = 2Z≥−1 ,
xi = ui − 2Z≥−1 , xi = 0, xi = ui.

◮ Call 2-apx IP for any K := {x | Ax = b} ∩ cell

Solving IPs in equality form (2)

x1

x2

1
2
1 20 u1

1/21
2

0

u2

Ax = b

◮ Number of cells is |H| ≤ O(log ‖u‖∞)n

Extension

Theorem (Dadush, Eisenbrand, R.)

One can solve

max{cTx | Ax ≤ b, 0 ≤ x ≤ u, x ∈ Z
n}

in time nO(m) · (log ‖u‖∞)O(n).

Extension

Theorem (Dadush, Eisenbrand, R.)

One can solve

max{cTx | Ax ≤ b, 0 ≤ x ≤ u, x ∈ Z
n}

in time nO(m) · (log ‖u‖∞)O(n).

◮ Suffices to solve feasibility

◮ May assume A, b integral with

‖A‖∞, ‖b‖∞ ≤ 2O(n3)‖u‖O(n2)
∞ [Frank, Tardos ’87]

Extension

Theorem (Dadush, Eisenbrand, R.)

One can solve

max{cTx | Ax ≤ b, 0 ≤ x ≤ u, x ∈ Z
n}

in time nO(m) · (log ‖u‖∞)O(n).

◮ Suffices to solve feasibility

◮ May assume A, b integral with

‖A‖∞, ‖b‖∞ ≤ 2O(n3)‖u‖O(n2)
∞ [Frank, Tardos ’87]

◮ Then transform

Aix ≤ bi → Aix+ si = bi, 0 ≤ si ≤ 2O(n3)‖u‖O(n2)
∞

Follow-up and open problems

More recently:

Theorem (Reis, R. ’23)

One can solve any n-variable IP in time (log n)O(n).

Follow-up and open problems

More recently:

Theorem (Reis, R. ’23)

One can solve any n-variable IP in time (log n)O(n).

Open problems:

(1) Can one solve n-variable IPs in time 2O(n)?

(2) Is there a certificate for K ∩ Z
n = ∅ that can be verified

in time 2O(n)?

(3) Can one solve shortest vector w.r.t. ‖ · ‖2 in time 2O(n)

and polynomial space?

(4) Can one find a point in K ∩ Z
n in time 2O(n) if K is a

simplex?

Follow-up and open problems

More recently:

Theorem (Reis, R. ’23)

One can solve any n-variable IP in time (log n)O(n).

Open problems:

(1) Can one solve n-variable IPs in time 2O(n)?

(2) Is there a certificate for K ∩ Z
n = ∅ that can be verified

in time 2O(n)?

(3) Can one solve shortest vector w.r.t. ‖ · ‖2 in time 2O(n)

and polynomial space?

(4) Can one find a point in K ∩ Z
n in time 2O(n) if K is a

simplex?

Thanks for your attention!

