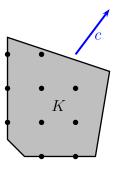
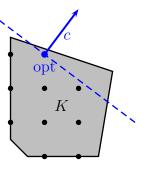
From approximate to exact integer programming

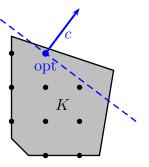
Daniel Dadush, Fritz Eisenbrand, <u>Thomas Rothvoss</u>



$$\max\{c^T x \mid Ax \le b, x \in \mathbb{Z}^n\}$$



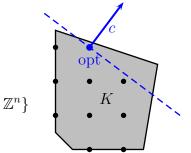
$$\max\{c^T x \mid Ax \le b, x \in \mathbb{Z}^n\}$$



$$\max\{c^T x \mid Ax \le b, x \in \mathbb{Z}^n\}$$

Applications:

- ▶ Logistics / transportation
- Scheduling / timetabling
- ► Chip design
- Inventory management



$$\max\{c^T x \mid Ax \le b, x \in \mathbb{Z}^n\}$$

Mathematics at intersection of

- ► Convex geometry
- ► Geometry of numbers
- Convex optimization

Known results:

▶ NP-hard [Karp '72]

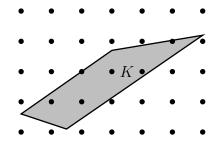
Known results:

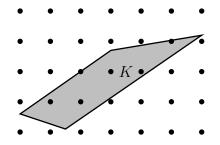
- ▶ NP-hard [Karp '72]
- ► Can be solved in time $f(n) \cdot \text{poly}(m, \langle A, b, c \rangle)$ [Lenstra 1983]
- Improved to $n^{O(n)}$ -time algorithm [Kannan 1983]

Known results:

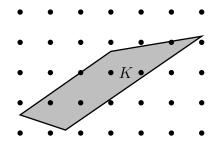
- ▶ NP-hard [Karp '72]
- ► Can be solved in time $f(n) \cdot \text{poly}(m, \langle A, b, c \rangle)$ [Lenstra 1983]
- Improved to $n^{O(n)}$ -time algorithm [Kannan 1983]
- ▶ Very different $2^{O(n)}n^n$ -time algorithm by [Dadush 2012] (rather involved, following [Kannan, Lovász 1988])

Currently best Lenstra-type bound: $(\tilde{O}(n^{4/3}))^n$

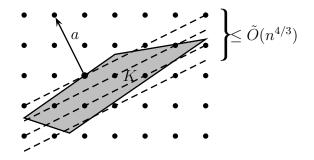




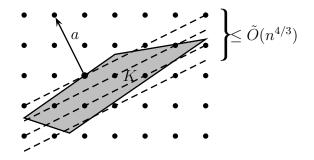
► Banaszczyk (1996) + Rudelson (1998): $\mu(\mathbb{Z}^n, K) \cdot \lambda_1(\mathbb{Z}^n, (K-K)^\circ) \leq \tilde{O}(n^{4/3})$



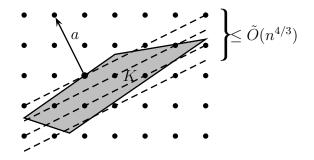
- ► Banaszczyk (1996) + Rudelson (1998): $\mu(\mathbb{Z}^n, K) \cdot \lambda_1(\mathbb{Z}^n, (K - K)^\circ) \leq \tilde{O}(n^{4/3})$
- ▶ **Translation:** If some translate of K is lattice point free, then $K \cap \mathbb{Z}^n$ is contained in $\tilde{O}(n^{4/3})$ hyperplanes $a^T x = \mathbb{Z}$ where $a \in \mathbb{Z}^n$



- ► Banaszczyk (1996) + Rudelson (1998): $\mu(\mathbb{Z}^n, K) \cdot \lambda_1(\mathbb{Z}^n, (K - K)^\circ) \leq \tilde{O}(n^{4/3})$
- ▶ **Translation:** If some translate of K is lattice point free, then $K \cap \mathbb{Z}^n$ is contained in $\tilde{O}(n^{4/3})$ hyperplanes $a^T x = \mathbb{Z}$ where $a \in \mathbb{Z}^n$



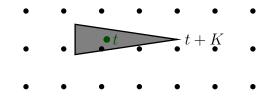
- ► Banaszczyk (1996) + Rudelson (1998): $\mu(\mathbb{Z}^n, K) \cdot \lambda_1(\mathbb{Z}^n, (K - K)^\circ) \leq \tilde{O}(n^{4/3})$
- ▶ **Translation:** If some translate of K is lattice point free, then $K \cap \mathbb{Z}^n$ is contained in $\tilde{O}(n^{4/3})$ hyperplanes $a^T x = \mathbb{Z}$ where $a \in \mathbb{Z}^n$
- ▶ Recurse on $\tilde{O}(n^{4/3})$ many (n-1)-dimensional subproblems



- ► Banaszczyk (1996) + Rudelson (1998): $\mu(\mathbb{Z}^n, K) \cdot \lambda_1(\mathbb{Z}^n, (K - K)^\circ) \leq \tilde{O}(n^{4/3})$
- ▶ **Translation:** If some translate of K is lattice point free, then $K \cap \mathbb{Z}^n$ is contained in $\tilde{O}(n^{4/3})$ hyperplanes $a^T x = \mathbb{Z}$ where $a \in \mathbb{Z}^n$
- ▶ Recurse on $\tilde{O}(n^{4/3})$ many (n-1)-dimensional subproblems
- $\Rightarrow \tilde{O}(n^{4/3})^n$ -time algorithm

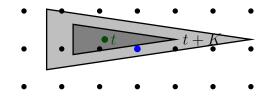
Theorem (Dadush 2014)

Given convex set K with barycenter **0**, can find a 2-apx to $\min\{||x-t||_K : x \in \mathbb{Z}^n\}$ in time $2^{O(n)}$.



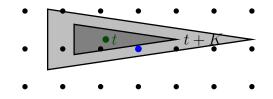
Theorem (Dadush 2014)

Given convex set K with barycenter **0**, can find a 2-apx to $\min\{||x-t||_K : x \in \mathbb{Z}^n\}$ in time $2^{O(n)}$.

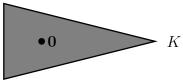


Theorem (Dadush 2014)

Given convex set K with barycenter **0**, can find a 2-apx to $\min\{||x-t||_K : x \in \mathbb{Z}^n\}$ in time $2^{O(n)}$.

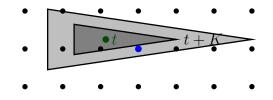


• Suffices if $\operatorname{Vol}_n(K \cap (-K)) \ge 2^{-\Theta(n)} \operatorname{Vol}_n(K)$

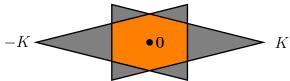


Theorem (Dadush 2014)

Given convex set K with barycenter **0**, can find a 2-apx to $\min\{||x-t||_K : x \in \mathbb{Z}^n\}$ in time $2^{O(n)}$.



• Suffices if $\operatorname{Vol}_n(K \cap (-K)) \ge 2^{-\Theta(n)} \operatorname{Vol}_n(K)$



Main results

• Using approximate IP we can get:

Theorem (Dadush, Eisenbrand, R.)

There is a (simpler) $2^{O(n)}n^n$ time algorithm for integer programming. Moreover if we are given $x^* \mod 5(n+1)$ for some feasible $x^* \in K \cap \mathbb{Z}^n$ we can solve IP in time $2^{O(n)}$.

Main results

• Using approximate IP we can get:

Theorem (Dadush, Eisenbrand, R.)

There is a (simpler) $2^{O(n)}n^n$ time algorithm for integer programming. Moreover if we are given $x^* \mod 5(n+1)$ for some feasible $x^* \in K \cap \mathbb{Z}^n$ we can solve IP in time $2^{O(n)}$.

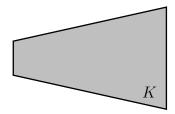
Theorem (Dadush, Eisenbrand, R.)

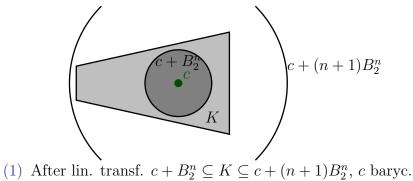
The capacitated IP

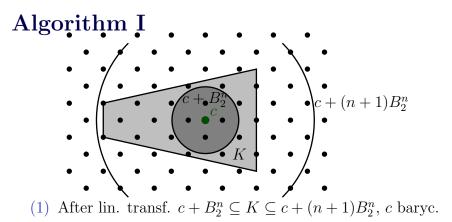
$$\max\{c^T x \mid Ax = b, \ \mathbf{0} \le x \le u, \ x \in \mathbb{Z}^n\}$$

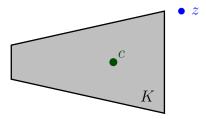
can be solved in time $(\log ||u||_{\infty})^{O(n)}$.

$\begin{array}{c} \hline \text{PART I} \\ \text{A new } 2^{O(n)} n^n \text{-time algorithm for} \\ \text{general IP} \end{array}$

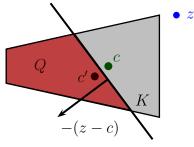






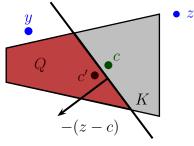


(1) After lin. transf. $c + B_2^n \subseteq K \subseteq c + (n+1)B_2^n$, c baryc. (2) Find $z \in \Lambda$ in 2-scaling of K



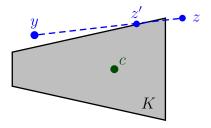
After lin. transf. c + B₂ⁿ ⊆ K ⊆ c + (n + 1)B₂ⁿ, c baryc.
 Find z ∈ Λ in 2-scaling of K
 FOR k = 1 TO poly(n) DO

 (3) Find y ∈ Λ in 2-scaling of Q := K ∩ {x | ⟨z - c, x - c⟩ ≤ -1/(poly(n))}
 (4) Update z' := (1 - 1/k)z + 1/ky



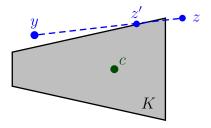
After lin. transf. c + B₂ⁿ ⊆ K ⊆ c + (n + 1)B₂ⁿ, c baryc.
 Find z ∈ Λ in 2-scaling of K
 FOR k = 1 TO poly(n) DO

 (3) Find y ∈ Λ in 2-scaling of Q := K ∩ {x | ⟨z − c, x − c⟩ ≤ -1/(poly(n))}
 (4) Update z' := (1 - 1/k)z + 1/ky



After lin. transf. c + B₂ⁿ ⊆ K ⊆ c + (n + 1)B₂ⁿ, c baryc.
 Find z ∈ Λ in 2-scaling of K
 FOR k = 1 TO poly(n) DO

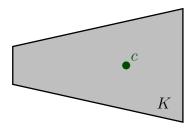
 (3) Find y ∈ Λ in 2-scaling of Q := K ∩ {x | ⟨z - c, x - c⟩ ≤ -1/poly(n)}
 (4) Update z' := (1 - 1/k)z + 1/ky



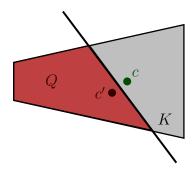
After lin. transf. c + B₂ⁿ ⊆ K ⊆ c + (n + 1)B₂ⁿ, c baryc.
 Find z ∈ Λ in 2-scaling of K
 FOR k = 1 TO poly(n) DO

 (3) Find y ∈ Λ in 2-scaling of Q := K ∩ {x | ⟨z − c, x − c⟩ ≤ − 1/poly(n)}
 (4) Update z' := (1 − 1/k)z + 1/ky
 (5) IF successfull THEN find point in K ∩ Λ/5(n+1)
 (6) ELSE update K' := K ∩ {x | ⟨z − c, x − c⟩ ≥ − 1/poly(n)}

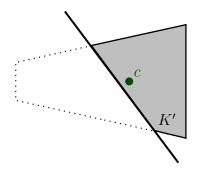
Case I: No lattice point in $Q \Rightarrow$ volume of K decreases by constant factor.



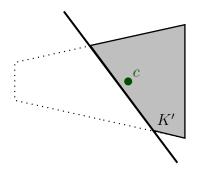
Case I: No lattice point in $Q \Rightarrow$ volume of K decreases by constant factor.



Case I: No lattice point in $Q \Rightarrow$ volume of K decreases by constant factor.



Case I: No lattice point in $Q \Rightarrow$ volume of K decreases by constant factor.

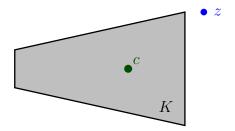


Theorem (Grünbaum)

Let $K \subseteq \mathbb{R}^n$ be a convex body. Any hyperplane H through the barycenter splits K into two parts with volume $\geq \frac{1}{e} \operatorname{Vol}_n(K)$ each.

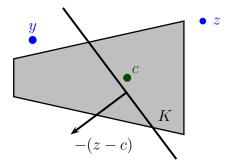
Anaylsis (2)

Case II: If we always find a lattice point in Q (scaled by factor 2), then c is (approx) convex combination of lattice points $X \subseteq \Lambda \cap 3(K - c) + c$.



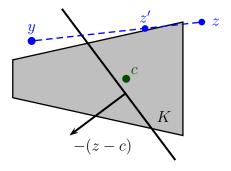
Anaylsis (2)

Case II: If we always find a lattice point in Q (scaled by factor 2), then c is (approx) convex combination of lattice points $X \subseteq \Lambda \cap 3(K - c) + c$.



Anaylsis (2)

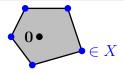
Case II: If we always find a lattice point in Q (scaled by factor 2), then c is (approx) convex combination of lattice points $X \subseteq \Lambda \cap 3(K - c) + c$.



- After k iterations $||z c||_2 \le O(\frac{n}{\sqrt{k}})$.
- After k = poly(n) iterations $z \approx c$

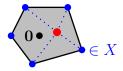
Lemma

If $\mathbf{0} \in P := conv(X)$, then for any k, there are $u_1, \ldots, u_k \in X$ with $\|\frac{1}{k} \sum_{i=1}^k u_i\|_P \leq \frac{n+1}{k}$.



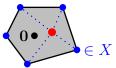
Lemma

If $\mathbf{0} \in P := conv(X)$, then for any k, there are $u_1, \ldots, u_k \in X$ with $\|\frac{1}{k} \sum_{i=1}^k u_i\|_P \leq \frac{n+1}{k}$.



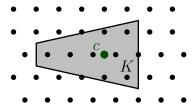
Lemma

If $\mathbf{0} \in P := conv(X)$, then for any k, there are $u_1, \ldots, u_k \in X$ with $\|\frac{1}{k} \sum_{i=1}^k u_i\|_P \leq \frac{n+1}{k}$.



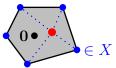
Our application: P := 3-scaling of K.

• $c \approx$ convex comb. of lattice points in 3-scaling \Rightarrow unweighted average of 5(n+1) lattice points in K



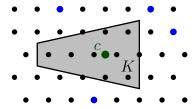
Lemma

If $\mathbf{0} \in P := conv(X)$, then for any k, there are $u_1, \ldots, u_k \in X$ with $\|\frac{1}{k} \sum_{i=1}^k u_i\|_P \leq \frac{n+1}{k}$.



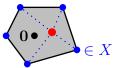
Our application: P := 3-scaling of K.

• $c \approx$ convex comb. of lattice points in 3-scaling \Rightarrow unweighted average of 5(n+1) lattice points in K



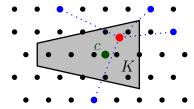
Lemma

If $\mathbf{0} \in P := conv(X)$, then for any k, there are $u_1, \ldots, u_k \in X$ with $\|\frac{1}{k} \sum_{i=1}^k u_i\|_P \leq \frac{n+1}{k}$.



Our application: P := 3-scaling of K.

• $c \approx$ convex comb. of lattice points in 3-scaling \Rightarrow unweighted average of 5(n+1) lattice points in K

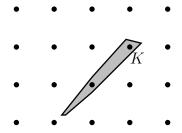


Recursion is needed

▶ Recursion similar to **Ellipsoid method** is needed

Lemma

Suppose initially $K \subseteq rB_2^n$. Then after $O(n^2 \log(\frac{nr}{\lambda_1(\Lambda)}))$ iterations all points in $K \cap \Lambda$ contained in (n-1)-dim. subspace (which can be found in time $2^{O(n)}$)

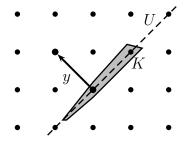


Recursion is needed

▶ Recursion similar to **Ellipsoid method** is needed

Lemma

Suppose initially $K \subseteq rB_2^n$. Then after $O(n^2 \log(\frac{nr}{\lambda_1(\Lambda)}))$ iterations all points in $K \cap \Lambda$ contained in (n-1)-dim. subspace (which can be found in time $2^{O(n)}$)

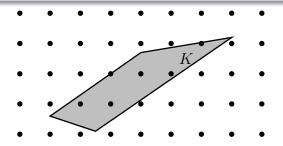


Conclusion: For any lattice Λ , if $K \cap \Lambda \neq \emptyset$ then we can find a point in $K \cap \frac{\Lambda}{5(n+1)}$ in time $2^{O(n)}$.

Conclusion: For any lattice Λ , if $K \cap \Lambda \neq \emptyset$ then we can find a point in $K \cap \frac{\Lambda}{5(n+1)}$ in time $2^{O(n)}$.

Theorem

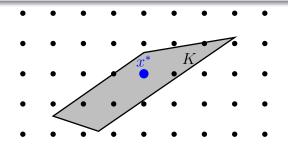
One can find a point in $K \cap \mathbb{Z}^n$ in time $(O(n))^n$.



Conclusion: For any lattice Λ , if $K \cap \Lambda \neq \emptyset$ then we can find a point in $K \cap \frac{\Lambda}{5(n+1)}$ in time $2^{O(n)}$.

Theorem

One can find a point in $K \cap \mathbb{Z}^n$ in time $(O(n))^n$.

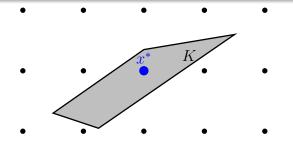


For some $x^* \in K \cap \mathbb{Z}^n$, guess $x^* \mod (5n+1)$

Conclusion: For any lattice Λ , if $K \cap \Lambda \neq \emptyset$ then we can find a point in $K \cap \frac{\Lambda}{5(n+1)}$ in time $2^{O(n)}$.

Theorem

One can find a point in $K \cap \mathbb{Z}^n$ in time $(O(n))^n$.



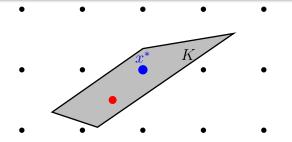
For some $x^* \in K \cap \mathbb{Z}^n$, guess $x^* \mod (5n+1)$

▶ Run algorithm with $\Lambda := (5n+1)\mathbb{Z}^n + (x^* \mod (5n+1))$ and K

Conclusion: For any lattice Λ , if $K \cap \Lambda \neq \emptyset$ then we can find a point in $K \cap \frac{\Lambda}{5(n+1)}$ in time $2^{O(n)}$.

Theorem

One can find a point in $K \cap \mathbb{Z}^n$ in time $(O(n))^n$.



For some $x^* \in K \cap \mathbb{Z}^n$, guess $x^* \mod (5n+1)$

► Run algorithm with $\Lambda := (5n+1)\mathbb{Z}^n + (x^* \mod (5n+1))$ and K

Part II

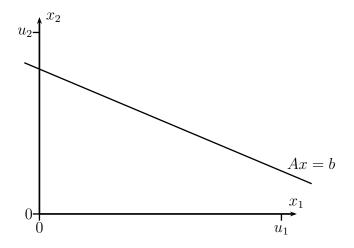
A new algorithm for capacitated IPs

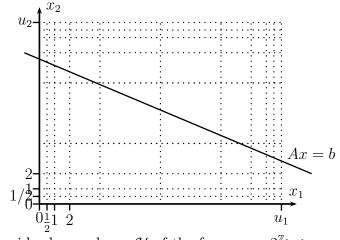
Theorem (Dadush, Eisenbrand, R.)

One can find a feasible point with

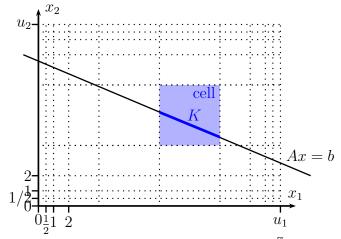
$$Ax = b, \ \mathbf{0} \le x \le u, \ x \in \mathbb{Z}^n$$

in time $(\log ||u||_{\infty})^{O(n)}$.



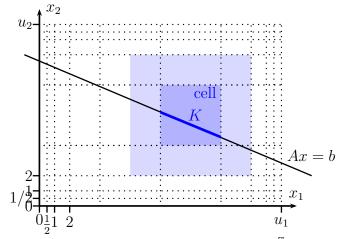


• Consider hyperplanes \mathcal{H} of the form $x_i = 2^{\mathbb{Z} \ge -1}$, $x_i = u_i - 2^{\mathbb{Z} \ge -1}$, $x_i = 0$, $x_i = u_i$.



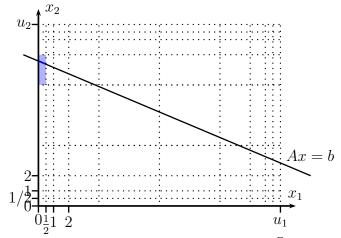
• Consider hyperplanes \mathcal{H} of the form $x_i = 2^{\mathbb{Z} \ge -1}$, $x_i = u_i - 2^{\mathbb{Z} \ge -1}$, $x_i = 0$, $x_i = u_i$.

► Call 2-apx IP for any $K := \{x \mid Ax = b\} \cap \text{cell}$

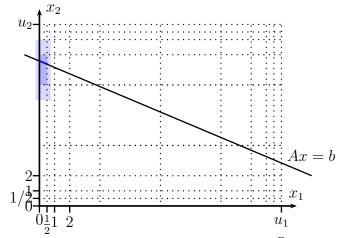


• Consider hyperplanes \mathcal{H} of the form $x_i = 2^{\mathbb{Z} \ge -1}$, $x_i = u_i - 2^{\mathbb{Z} \ge -1}$, $x_i = 0$, $x_i = u_i$.

• Call 2-apx IP for any $K := \{x \mid Ax = b\} \cap \text{cell}$

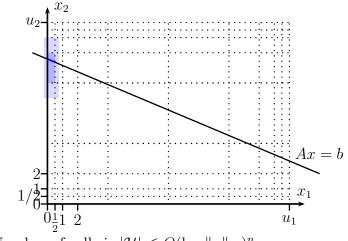


- Consider hyperplanes \mathcal{H} of the form $x_i = 2^{\mathbb{Z} \ge -1}$, $x_i = u_i 2^{\mathbb{Z} \ge -1}$, $x_i = 0$, $x_i = u_i$.
- Call 2-apx IP for any $K := \{x \mid Ax = b\} \cap \text{cell}$



• Consider hyperplanes \mathcal{H} of the form $x_i = 2^{\mathbb{Z} \ge -1}$, $x_i = u_i - 2^{\mathbb{Z} \ge -1}$, $x_i = 0$, $x_i = u_i$.

• Call 2-apx IP for any $K := \{x \mid Ax = b\} \cap \text{cell}$



• Number of cells is $|\mathcal{H}| \leq O(\log ||u||_{\infty})^n$

Extension

Theorem (Dadush, Eisenbrand, R.)

One can solve

```
\max\{c^T x \mid Ax \le b, \ \mathbf{0} \le x \le u, \ x \in \mathbb{Z}^n\}
```

in time $n^{O(m)} \cdot (\log ||u||_{\infty})^{O(n)}$.

Extension

Theorem (Dadush, Eisenbrand, R.)

One can solve

$$\max\{c^T x \mid Ax \le b, \ \mathbf{0} \le x \le u, \ x \in \mathbb{Z}^n\}$$

in time $n^{O(m)} \cdot (\log ||u||_{\infty})^{O(n)}$.

- ▶ Suffices to solve feasibility
- ► May assume A, b integral with $||A||_{\infty}, ||b||_{\infty} \leq 2^{O(n^3)} ||u||_{\infty}^{O(n^2)}$ [Frank, Tardos '87]

Extension

Theorem (Dadush, Eisenbrand, R.)

One can solve

$$\max\{c^T x \mid Ax \le b, \ \mathbf{0} \le x \le u, \ x \in \mathbb{Z}^n\}$$

in time $n^{O(m)} \cdot (\log ||u||_{\infty})^{O(n)}$.

- ▶ Suffices to solve feasibility
- ► May assume A, b integral with $\|A\|_{\infty}, \|b\|_{\infty} \leq 2^{O(n^3)} \|u\|_{\infty}^{O(n^2)}$ [Frank, Tardos '87]
- ▶ Then transform

$$A_i x \le b_i \to A_i x + s_i = b_i, \quad 0 \le s_i \le 2^{O(n^3)} \|u\|_{\infty}^{O(n^2)}$$

Follow-up and open problems

More recently:

Theorem (Reis, R. '23)

One can solve any *n*-variable IP in time $(\log n)^{O(n)}$.

Follow-up and open problems

More recently:

Theorem (Reis, R. '23)

One can solve any *n*-variable IP in time $(\log n)^{O(n)}$.

Open problems:

- (1) Can one solve *n*-variable IPs in time $2^{O(n)}$?
- (2) Is there a **certificate** for $K \cap \mathbb{Z}^n = \emptyset$ that can be **verified** in time $2^{O(n)}$?
- (3) Can one solve shortest vector w.r.t. $\|\cdot\|_2$ in time $2^{O(n)}$ and polynomial space?
- (4) Can one find a point in $K \cap \mathbb{Z}^n$ in time $2^{O(n)}$ if K is a **simplex**?

Follow-up and open problems

More recently:

Theorem (Reis, R. '23)

One can solve any *n*-variable IP in time $(\log n)^{O(n)}$.

Open problems:

- (1) Can one solve *n*-variable IPs in time $2^{O(n)}$?
- (2) Is there a **certificate** for $K \cap \mathbb{Z}^n = \emptyset$ that can be **verified** in time $2^{O(n)}$?
- (3) Can one solve shortest vector w.r.t. $\|\cdot\|_2$ in time $2^{O(n)}$ and polynomial space?
- (4) Can one find a point in $K \cap \mathbb{Z}^n$ in time $2^{O(n)}$ if K is a **simplex**?

Thanks for your attention!