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Applications:
» Logistics / transportation
» Scheduling / timetabling
» Chip design

» Inventory management
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Mathematics at intersection of
» Convex geometry
» Geometry of numbers

» Convex optimization
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Integer programming

Known results:
» NP-hard [Karp '72]
» Can be solved in time f(n) - poly(m, (A, b, c))
[Lenstra 1983]
» Improved to n®™-time algorithm [Kannan 1983
» Very different 20 n"-time algorithm by [Dadush 2012
(rather involved, following [Kannan, Lovész 1988])

Currently best Lenstra-type bound: (O(n¥/3))"
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Modern interp. of Lenstra’s algorithm
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Banaszczyk (1996) + Rudelson (1998):

W2 K) - (@ (K — K)P) < O(n9)

Translation: If some translate of K is lattice point free,
then K NZ" is contained in O(n*3) hyperplanes o’z = Z
where a € Z"

Recurse on O(n*/?) many (n — 1)-dimensional subproblems
= O(n*3)"-time algorithm
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There is a (simpler) 2°n" time algorithm for integer
programming. Moreover if we are given z* mod 5(n + 1) for
some feasible z* € K NZ™ we can solve IP in time 20,




Main results

» Using approximate IP we can get:

Theorem (Dadush, Eisenbrand, R.)

There is a (simpler) 2°n" time algorithm for integer
programming. Moreover if we are given z* mod 5(n + 1) for
some feasible z* € K NZ™ we can solve IP in time 20,

Theorem (Dadush, Eisenbrand, R.)
The capacitated IP

max{c’z | Az =b, 0 < x <u, v €Z"}

can be solved in time (log [|u|s0)°™.




PART 1

A new 29 p"-time algorithm for
general 1P



Algorithm 1




Algorithm 1

c+(n+1)By

K

(1) After lin. transf. ¢+ BY C K C ¢+ (n+ 1)Bj, ¢ baryc.



Algorithm [

(1) After lin. transf. ¢+ BY C K C ¢+ (n+ 1)Bj, ¢ baryc.



Algorithm I

K

(1) After lin. transf. ¢+ BY C K C ¢+ (n+ 1)BY, ¢ baryc.
(2) Find z € A in 2-scaling of K



Algorithm I

(1) After lin. transf. ¢+ BY C K C ¢+ (n+ 1)Bj, ¢ baryc.
(2) Find z € A in 2-scaling of K
(2) FOR k=1 TO poly(n) DO
(3) Find y € A in 2-scaling of
Q=Kn{z|{(z—cx—c) < —m}
(4) Update 2’ := (1 — %)z + %y



Algorithm I

(1) After lin. transf. ¢+ BY C K C ¢+ (n+ 1)Bj, ¢ baryc.
(2) Find z € A in 2-scaling of K
(2) FOR k=1 TO poly(n) DO
(3) Find y € A in 2-scaling of
Q=Kn{z|{(z—cx—c) < —m}
(4) Update 2’ := (1 — %)z + %y



Algorithm I

(1) After lin. transf. ¢+ BY C K C ¢+ (n+ 1)Bj, ¢ baryc.
(2) Find z € A in 2-scaling of K
(2) FOR k=1 TO poly(n) DO
(3) Find y € A in 2-scaling of
— K P _ 1
Q=Kn{z|{(z—cx—c) < poly(n>}
(4) Update 2’ := (1 — %)z + %y



Algorithm I

(1) After lin. transf. ¢+ BY C K C ¢+ (n+ 1)BY, ¢ baryc.
(2) Find z € A in 2-scaling of K
(2) FOR k=1 TO poly(n) DO
(3) Find y € A in 2-scaling of
— T O |
Q= Ixﬁ{7|< c,x (>§ poly(n)}
(4) Update 2’ := (1 — )z + 1y

(5) IF successfull THEN find point in K N (nl}‘rl)
(6) ELSE update K’ == K N {z | {z — ¢,z —¢) > ——-1}
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Case I: No lattice point in () = volume of K decreases by
constant factor.

Theorem (Griinbaum)

Let K CR" be a convex body. Any hyperplane H through the

barycenter splits K into two parts with volume > %VOZn(K )
each.
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factor 2), then ¢ is (approx) convex combination of lattice
points X CAN3(K —c¢) +c.
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Anaylsis (2)

Case II: If we always find a lattice point in @ (scaled by
factor 2), then ¢ is (approx) convex combination of lattice
points X CAN3(K —c¢) +c.

» After k iterations ||z — c[|s < O(\%)

» After k = poly(n) iterations z ~ ¢
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Recursion is needed

» Recursion similar to Ellipsoid method is needed

Lemma
Suppose initially K C rBY. Then after O(n? log(A ))
iterations all points in K N A contained in (n — 1)-d

subspace (which can be found in time 20™)
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PART 11

A new algorithm for capacitated IPs



Solving IPs in equality form

Theorem (Dadush, Eisenbrand, R.)

One can find a feasible point with
Ar=b0<z<u, x €7Z"

in time (log ||u|s0)°™.
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Solving IPs in equality form (2)

U=t -

P BN

1/%:§§ :

» Number of cells is |H| < O(log ||u||s )™
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Extension

Theorem (Dadush, Eisenbrand, R.)

One can solve
max{cT:C|A:c§b, 0<z<wu,xzeZ"}

in time n°™) . (log |1« ) O™

» Suffices to solve feasibility

» May assume A, b 1ntegra1 with
[ Also, 1Bl < 200 ||u ||O(" ) [Frank, Tardos ’87]

» Then transform
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Thanks for your attention!



