A fast combinatorial algorithm for the bilevel knapsack problem
with interdiction constraints

Noah Weninger

Joint work with Ricardo Fukasawa

IPCO 2023 @ Madison
June 22, 2023

W UNIVERSITY OF WATERLOO

/N FACULTY OF MATHEMATICS

@ Department of Combinatorics
and Optimization

1/28

Bilevel knapsack with interdiction constraints (BKP)

» A generalization of 0-1 knapsack where an adversary can block access to
(interdict) some items

2/28

Bilevel knapsack with interdiction constraints (BKP)

» A generalization of 0-1 knapsack where an adversary can block access to
(interdict) some items

P> We are interested in solving this problem exactly

2/28

Bilevel knapsack with interdiction constraints (BKP)

» A generalization of 0-1 knapsack where an adversary can block access to
(interdict) some items

P> We are interested in solving this problem exactly

» Objective: win the horse race

2/28

Game theoretic interpretation of BKP

Given: n items, weights wY, wl € 72 2o, profits p € Z%,, capacities cY,cte ZL>g.
> Round 1: Leader (adversary) selects X C [n] s.t. ;5 w/ < CY

3/28

Game theoretic interpretation of BKP

Given: n items, weights wY, wl € 72 2o, profits p € Z%,, capacities cY,cte ZL>g.
> Round 1: Leader (adversary) selects X C [n] s.t. ;5 wV < CY

3/28

Game theoretic interpretation of BKP

U

Given: n items, weights wY, wt € Z%, profits p € ZZ, capacities cY,cte ZL>g.

> Round 1: Leader (adversary) selects X C [n] s.t. ;5 wV < CY

Unselected items proceed to round 2

T cxleblnl

3/28

Game theoretic interpretation of BKP

U

Given: n items, weights wY, wt € Z%, profits p € ZZ, capacities cY,cte ZL>g.

> Round 1: Leader (adversary) selects X C [n] s.t. ;5 wV < CY

Unselected items proceed to round 2

T cxleblnl

> Round 2: Follower selects Y C [n]\ X s.t. > ;cy wh < Cland Y0y piis
maximized

3/28

Game theoretic interpretation of BKP

Given: n items, weights wY, wl € 72 2o, profits p € Z%,, capacities cY,cte ZL>g.

> Round 1: Leader (adversary) selects X C [n] s.t. ;5 wV < CY

Unselected items proceed to round 2

I

> Round 2: Follower selects Y C [n]\ X s.t. > ;cy wh < Cland Y0y piis
maximized

» Objective: Select X to minimize the maximum profit the Follower can get

3/28

Bilevel programming interpretation of BKP

Given: n items, weights wY, wt € ZL, profits p € ZZ, capacities cY cte Z>0.

Objective: Min max E pi

XeUu YeL(X
where
U= {X c{1,...,n}: Z wV < CU} (upper/leaders knapsack)
ieX
L(X) = {Y CH{1,...,n}\X: Z wh < CL} (lower /followers knapsack)
ieY

4/28

Motivation: bilevel programming

BKP is a bilevel integer programming problem:

min c'x+dTy

st. Ax<b
o (BIP)
y € argmax{ny :Gx+Hy <g,ye ZP}

y must be optimal for a second optimization problem (depending on x).

5/28

History and motivation: bilevel programming

Why bilevel?
» Competing parties (military, business)
» Semi-cooperating parties (federal and regional governments)

> A natural way to get harder versions of classical problems

6/28

History and motivation: bilevel knapsack

Complexity of BKP (Caprara, Carvalho, Lodi and Woeginger, 2014)
> YP-complete
» no polysize IP formulation unless the polynomial hierarchy collapses
» no pseudopolynomial time algorithm unless P=NP

However. . .

7/28

History and motivation: bilevel knapsack

Complexity of BKP (Caprara, Carvalho, Lodi and Woeginger, 2014)
> Y5-complete
» no polysize IP formulation unless the polynomial hierarchy collapses
» no pseudopolynomial time algorithm unless P=NP
However. . .
» BKP is perhaps one of the “easiest” ¥5-complete problems

» General bilevel solvers are far from the performance of problem-specific
methods. . .

7/28

History and motivation: bilevel knapsack

Complexity of BKP (Caprara, Carvalho, Lodi and Woeginger, 2014)
> Y5-complete
» no polysize IP formulation unless the polynomial hierarchy collapses
» no pseudopolynomial time algorithm unless P=NP
However. . .
» BKP is perhaps one of the “easiest” ¥5-complete problems

» General bilevel solvers are far from the performance of problem-specific
methods. . . and this paper only widens that gap

7/28

History and motivation: bilevel knapsack

DeNegre (2011) introduced the problem. Solved instances with < 15 items
Caprara, Carvalho, Lodi and Woeginger (2016): Solved instances with < 50 items
Tang, Richard and Smith (2016): Solved instances with < 30 items

Fischetti, Ljubic, Monaci, and Sinnl (2019). Solved instances with < 55 items

Lozano, Bergman and Cire (2022). Solved instances with < 50 items

vV V. vV v Vv Y

Della Croce and Scatamacchia (2018). Solved instances with < 500 items

(henceforth the DCS algorithm)

...and more on approximation, complexity, problem variants, etc

8/28

Lower bounds and upper bounds

n
min g ;
ey 2P

ieY

such that Y € argmapr,-
YeL(X) icy

» Feasible solution = upper bound

» Lower bounds are harder: first published 2018 (DCS algorithm)

9/28

Our contributions

All previous exact algorithms use MIP solvers.

We present a combinatorial algorithm which outperforms the previous best method,
the DCS algorithm.

Our key insight: a new way of relaxing bilevel problems.

10/28

Preliminaries

> X: upper level/leader’s items
» Y lower level /follower’s items

» Items are enumerated by {1,...,n} and ordered such that

PLL P2 P
Wy Wy

11/28

Branch and bound
A node is a pair (X, i) where

» ie{l,...,n+1} and
> XeclUu
> XNn{i,...,n} =10

Root

Take item 1

Cannot take item 2

Leaf (X,n+1)

12/28

Branch and bound

A node is a pair (X, i) where
Root (®,1)
» ie{l,...,n+1} and
> XeclUu

> XN{i,...,n} =10

Take item 1

Cannot take item 2

A leaf (X,n + 1) is a complete
Leader's solution, so we can solve

max{>_;cy pi : Y € L(X)} to get Leaf

(X;n+1)
an upper bound.

12/28

Branch and bound
A node is a pair (X, i) where

» ie{l,...,n+1} and
> XeclUu
> XNn{i,...,n} =10

Root

Take item 1

Cannot take item 2

At each internal node we perform
a bound test, to check if searching

that branch is worthwhile.

Leaf (X,n+1)

12/28

Branch and bound: bound test

For node (X, i), is it possible that 3X’ D X and 3 Y’ € L(X’) with (X', Y’) optimal?

If not, there is no point to explore the children of (X, /).

13/28

Branch and bound: bound test

For node (X, i), is it possible that 3X’ D X and 3 Y’ € L(X’) with (X', Y’) optimal?

If not, there is no point to explore the children of (X, /).

To test this, we compute a lower bound at each node and test if it exceeds the current
best upper bound.

13/28

Lower bound

Consider a node (X, /). In all descendants (X', /") of (X, i), we have X’ O X and
i’ > i. We want to lower bound the solution for such (X’, ") which are leaves.

14/28

Lower bound

Consider a node (X, /). In all descendants (X', /") of (X, i), we have X’ O X and
i’ > i. We want to lower bound the solution for such (X’, ") which are leaves.

We split this computation into two parts:
1. Lower bound using items {1,...,i— 1} (prefix)

2. Lower bound using items {/,..., n} (postfix)

14/28

Lower bound

Consider a node (X, /). In all descendants (X', /") of (X, i), we have X’ O X and
i’ > i. We want to lower bound the solution for such (X’, ") which are leaves.

We split this computation into two parts:
1. Lower bound using items {1,...,i— 1} (prefix)
2. Lower bound using items {/,..., n} (postfix)
Note that:
> We know that the Leader uses capacity Y;.x w;” on the prefix
> This leaves CY — 3. wV for the postfix

» We don't know how much capacity the Follower uses on the prefix or the postfix,
but any guess will give a lower bound.

14/28

Lower bound: items {1,...,/ — 1} (prefix)

Given: Leader's items X, and (guessed) lower capacity ct.
» X has already been decided on {1,...,i — 1}
> So it suffices to find the optimal Y on items {1,...,i — 1} \ X with capacity ct

» This is just a knapsack problem!

15/28

Lower bound: items {1,...,/ — 1} (prefix)

Given: Leader's items X, and (guessed) lower capacity ct.
» X has already been decided on {1,...,i — 1}
> So it suffices to find the optimal Y on items {1,...,i — 1} \ X with capacity ct

» This is just a knapsack problem!

Let K(S, c) denote the optimal objective value of the 0-1 knapsack problem with
profits (p;)ics, weights (w');cs and capacity c.

]

» The desired bound is K({1,...,i — 1} \ X, ch).

15/28

Lower bound: items {i/, ..., n} (postfix)

Given: remaining leader's capacity cY, guessed follower's capacity ct.

We relax the problem from bilevel to 2n-level. The players alternative turns,
considering one item at a time.

16 /28

Lower bound: items {i/, ..., n} (postfix)

Given: remaining leader's capacity cY, guessed follower's capacity ct.

We relax the problem from bilevel to 2n-level. The players alternative turns,

considering one item at a time.

» Round 2i —1: If W,-U + ZjeX WJ-U < cY, Leader can add item i to X.

11

o~

e 6 6 o o o
2 4 6 8 10 12

» Round 2i: If i ¢ X and w! + djey WJ-L < ct, Follower can add item i to Y.

13

3 5 7T 9
® 6 6 6 o o o

14

15

®
16

17
®

o
18

19
®

®
20

16/28

Lower bound: items {i/, ..., n} (postfix)

Given: remaining leader's capacity cY, guessed follower's capacity ct.

We relax the problem from bilevel to 2n-level. The players alternative turns,

considering one item at a time.

» Round 2i —1: If W,-U + ZjeX WJ-U < cY, Leader can add item i to X.

1 5 7 11

o 6 o o o
2 4 6 8 10 12

» Round 2i: If i ¢ X and w! + djey WJ-L < ct, Follower can add item i to Y.

13

3 9
® 6 6 6 o o o

14

15

®
16

17
®

o
18

19
®

®
20

16/28

Lower bound: items {i/, ..., n} (postfix)

Given: remaining leader's capacity cY, guessed follower's capacity ct.

We relax the problem from bilevel to 2n-level. The players alternative turns,

considering one item at a time.

» Round 2i —1: If W,-U + ZjeX WJ-U < cY, Leader can add item i to X.

1 3 5 7 9 11

13

15

e 6 o o
2 4 6 8 10 12

» Round 2i: If i ¢ X and w! + djey WJ-L < ct, Follower can add item i to Y.

14

®
16

17
®

o
18

19
®

®
20

16/28

Lower bound: items {i/, ..., n} (postfix)

Given: remaining leader's capacity cY, guessed follower's capacity ct.

We relax the problem from bilevel to 2n-level. The players alternative turns,

considering one item at a time.

> Round 2i — 1: If w” + 37,y w < cY, Leader can add item i to X.

1 3 5 7 9 11

13

15

X @& @& ©
2 4 6 8 10 12

» Round 2i: If i ¢ X and w! + djey WJ-L < ct, Follower can add item i to Y.

14

®
16

17
®

o
18

19
®

®
20

16/28

Lower bound: items {i/, ..., n} (postfix)

Given: remaining leader's capacity cY, guessed follower's capacity ct.

We relax the problem from bilevel to 2n-level. The players alternative turns,
considering one item at a time.

> Round 2i — 1: If w” + 37,y w < cY, Leader can add item i to X.

1 3 5 7 9 11 13 15 17 19
e © ® ®

X X X X

2 4 6 8 10 12 14 16 18 20

» Round 2i: If i ¢ X and w! + djey WJ-L < ct, Follower can add item i to Y.

16/28

What's changed? Intuition

» The Leader (minimizer) gets more information
» The Follower (maximizer) gets less information

Net result: a lower bound

17/28

Solving the modified game
The modified game admits a pseudopolytime algorithm by dynamic programming:

w(/,cU,cL) =
(00 if cV <0,
—00 if ¢t <0,
0 if cVY>0,ct>0andi>n,

min {w(i +1,¢Y, ¢t - W,-L) + p,-,} ifcV>0,ct>0andi<n.
max

w(i,cY, cl) is the optimal objective value of the modified game when restricted to
items {i,...,n} with Leader's capacity cV and Follower’s capacity c*.

18/28

Postfix lower bound formalized

Let OPT(i,cY,cl) be the optimal objective value for BKP when restricted to items
{i,...,n} with Leader's capacity cV and Follower's capacity ct.

Theorem (Postfix lower bound)

Forallic[n],0<cV <CY and0 < clt < CL, we have

w(i,cY, ety < oPT(i,cY, ch.

19/28

Combining prefix and postfix

Let ¢ € [0, CL] be a guess for how much capacity the Follower uses on the prefix.
Recall:

» Prefix lower bound: K({1,...,i —1}\ X, ¢)

» Postfix lower bound: w(i, CY — 2 jex W wY, Ct —¢)

K{1,...,i— 13\ X,0) +w(i,CY => w/,ct = ¢)
jeX

is a lower bound for node (X, i), and it can be computed in pseudopolynomial time.

20/28

Extensions & improvements: Solving trivial instances faster

Our lower bound is expensive: it requires pseudopolynomial time and memory.

Can we avoid computing it?

21/28

Extensions & improvements: Solving trivial instances faster

Our lower bound is expensive: it requires pseudopolynomial time and memory.
Can we avoid computing it?

Sometimes! Can get a much weaker lower bound in polytime by solving a linear
program inspired by the DCS algorithm. Using this and a greedy upper bound, we can
detect and solve trivial instances near instantly.

21/28

Extensions & improvements: sparse DP tables

Ok, but the lower bound is still expensive.

Can we compute less of it?

22/28

Extensions & improvements: sparse DP tables

Ok, but the lower bound is still expensive.
Can we compute less of it?

Yes! We can use sparse dynamic programming tables, like the classical DP-with-lists
approach for knapsack.

This makes it practical to solve instances with arbitrarily large capacity.

22/28

Extensions & improvements: generalizations

Can this approach be applied to more problems?

23/28

Extensions & improvements: generalizations

Can this approach be applied to more problems?
Yes! Easy to generalize to:

» Bounded knapsack problem

» Multidimensional knapsack problem

> Min-max regret knapsack problem

» ... hopefully many more

23/28

Implementation

» We implemented the algorithm in C++

> We reimplemented the DCS algorithm in C4++ with Gurobi; our reimplementation
generally matches or exceeds the performance of the original implementation

» DCS is parallelized via Gurobi
» In our algorithm, only the dynamic programming is parallelized

> We test on all instances from the literature, and generate some more

24/28

Computational results

Selected instances: generated by Fischetti, Monaci and Sinnl (2018), with n up to 500
and capacity up to 25000.

DCS Comb

Class #Opt #Best Avg Max #Opt #Best Avg Max
uncorrelated 50 0 3.66 13.38 50 50 0.64 7.1
weak correlated 50 0 13.49 72.64 50 50 0.39 4.76
strong correlated™ 41 0 689.58 3,600 50 50 0.46 5.02
inverse strong corr.* 38 0 919.91 3,600 50 50 1.17 31.11
almost strong corr.* 40 0 815.4 3,600 50 50 0.35 4.28
subset-sum* 35 0 1,087.18 3,600 42 42 588.57 3,600
even-odd subset-sum* 36 0 1,033.98 3,600 42 42 582.37 3,600
even-odd strong corr.* 41 0 747.12 3,600 50 50 0.73 17.06
similar weight uncorr. 50 0 22.89 79.85 50 50 0.12 0.35

(Running times in seconds)

25 /28

Computational results

Selected instances: generated by Fischetti, Monaci and Sinnl (2018), with n up to 500

and capacity up to 25000.

DCS Comb

Class #Opt #Best Avg Max #Opt #Best Avg Max
uncorrelated 50 0 3.66 13.38 50 0.64 7.1
weak correlated 50 0 13.49 72.64 50 0.39 4.76
strong correlated* 41 0 689.58 3,600 50 0.46 5.02
inverse strong corr.* 38 0 919.91 3,600 50 1.17 31.11
almost strong corr.* 40 0 815.4 3,600 50 0.35 4.28
subset-sum* 35 0 1,087.18 3,600 42 588.57 3,600
even-odd subset-sum* 36 0 1,033.98 3,600 42 582.37 3,600
even-odd strong corr.* 41 0 747.12 3,600 50 0.73 17.06
similar weight uncorr. 50 0 22.89 79.85 50 0.12 0.35

(Running times in seconds)

25 /28

Computational results

Selected instances: generated by Fischetti, Monaci and Sinnl (2018), with n up to 500

and capacity up to 25000.

DCS Comb
Class #Opt #Best Avg #Opt #Best Avg
uncorrelated 50 0 3.66 50 50 0.64
weak correlated 50 0 13.49 50 50 0.39
strong correlated™ 41 0 689.58 50 50 0.46
inverse strong corr.* 38 0 919.91 50 50 1.17
almost strong corr.* 40 0 815.4 50 50 0.35
subset-sum* 35 0 1,087.18 42 42 588.57
even-odd subset-sum* 36 0 1,033.98 42 42 582.37
even-odd strong corr.* 41 0 T47.12 50 50 0.73
similar weight uncorr. 50 0 22.89 50 50 0.12

(Running times in seconds)

25 /28

Performance profile: all instances from the literature

100 PR
80 |
w0
3
=) t
z
% 60|
=
3
g 40k
= Comb (1 thread)
~ l === Comb (4 threads)
20 — = Comb (16 threads)
----- DCS (16 threads)
0
10° 10" 102 10° 10*

Number of times slower than fastest solver

26 /28

Lower bound strength in practice vs theory

» The relaxed game is optimal for BKP
on 85% of instances

» There is a (contrived) family of
instances where it has gap O(n):

item no. ‘ p wY wt
1 1 1 1
2 2 2 2
n — 1 n — 1 n — 1 n — 1
n 2 @ @+

» But with branch-and-bound, we solve
this family near instantly

1.0

e e I
~ % =

Approximation ratio

e
o

500

1000 1500
Instance no.

2000

27/28

Conclusion

» Our solver has better performance on 99% of instances
» We solved 74% of the unsolved instances in the literature

P> Key takeaway: relax the bilevel problem to 2n alternating levels: this gives a
strong lower bound

28/28

Conclusion

» Our solver has better performance on 99% of instances
» We solved 74% of the unsolved instances in the literature

P> Key takeaway: relax the bilevel problem to 2n alternating levels: this gives a
strong lower bound

Future work / Open problems
» Is there a “fast” algorithm for subset-sum instances?
> What other problems would benefit from this type of relaxation?

» What can be said, theoretically, about the performance of our algorithm on
particular instance classes?

Thanks for your attention!

28/28

	Introduction
	Method

