A fast combinatorial algorithm for the bilevel knapsack problem with interdiction constraints

Noah Weninger

Joint work with Ricardo Fukasawa

IPCO 2023 @ Madison June 22, 2023

UNIVERSITY OF WATERLOO FACULTY OF MATHEMATICS Department of Combinatorics and Optimization Bilevel knapsack with interdiction constraints (BKP)

 A generalization of 0-1 knapsack where an adversary can block access to (interdict) some items

Bilevel knapsack with interdiction constraints (BKP)

- A generalization of 0-1 knapsack where an adversary can block access to (interdict) some items
- We are interested in solving this problem exactly

Bilevel knapsack with interdiction constraints (BKP)

- A generalization of 0-1 knapsack where an adversary can block access to (interdict) some items
- ▶ We are interested in solving this problem exactly
- ► Objective: win the horse race

Given: *n* items, weights $w^U, w^L \in \mathbb{Z}_{\geq 0}^n$, profits $p \in \mathbb{Z}_{\geq 0}^n$, capacities $C^U, C^L \in \mathbb{Z}_{\geq 0}$.

▶ Round 1: Leader (adversary) selects $X \subseteq [n]$ s.t. $\sum_{i \in X} w_i^U \leq C^U$

$\bullet \quad \bullet \quad \bullet$

Given: *n* items, weights $w^U, w^L \in \mathbb{Z}_{\geq 0}^n$, profits $p \in \mathbb{Z}_{\geq 0}^n$, capacities $C^U, C^L \in \mathbb{Z}_{\geq 0}$.

▶ Round 1: Leader (adversary) selects $X \subseteq [n]$ s.t. $\sum_{i \in X} w_i^U \leq C^U$

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Given: *n* items, weights $w^U, w^L \in \mathbb{Z}_{\geq 0}^n$, profits $p \in \mathbb{Z}_{\geq 0}^n$, capacities $C^U, C^L \in \mathbb{Z}_{\geq 0}$.

▶ Round 1: Leader (adversary) selects $X \subseteq [n]$ s.t. $\sum_{i \in X} w_i^U \leq C^U$

Given: *n* items, weights $w^U, w^L \in \mathbb{Z}_{\geq 0}^n$, profits $p \in \mathbb{Z}_{\geq 0}^n$, capacities $C^U, C^L \in \mathbb{Z}_{\geq 0}$.

▶ Round 1: Leader (adversary) selects $X \subseteq [n]$ s.t. $\sum_{i \in X} w_i^U \leq C^U$

▶ Round 2: Follower selects $Y \subseteq [n] \setminus X$ s.t. $\sum_{i \in Y} w_i^L \leq C^L$ and $\sum_{i \in Y} p_i$ is maximized

Given: *n* items, weights $w^U, w^L \in \mathbb{Z}_{\geq 0}^n$, profits $p \in \mathbb{Z}_{\geq 0}^n$, capacities $C^U, C^L \in \mathbb{Z}_{\geq 0}$.

▶ Round 1: Leader (adversary) selects $X \subseteq [n]$ s.t. $\sum_{i \in X} w_i^U \leq C^U$

▶ Round 2: Follower selects $Y \subseteq [n] \setminus X$ s.t. $\sum_{i \in Y} w_i^L \leq C^L$ and $\sum_{i \in Y} p_i$ is <u>maximized</u>

• **Objective**: Select X to minimize the maximum profit the Follower can get

Bilevel programming interpretation of BKP

Given: *n* items, weights $w^U, w^L \in \mathbb{Z}_{\geq 0}^n$, profits $p \in \mathbb{Z}_{\geq 0}^n$, capacities $C^U, C^L \in \mathbb{Z}_{\geq 0}$.

Objective:
$$\min_{X \in \mathcal{U}} \max_{Y \in \mathcal{L}(X)} \sum_{i \in Y} p_i$$

where

$$\mathcal{U} = \left\{ X \subseteq \{1, \dots, n\} : \sum_{i \in X} w_i^U \le C^U \right\}$$
$$\mathcal{L}(X) = \left\{ Y \subseteq \{1, \dots, n\} \backslash X : \sum_{i \in Y} w_i^L \le C^L \right\}$$

(upper/leaders knapsack)

(lower/followers knapsack)

Motivation: bilevel programming

BKP is a bilevel integer programming problem:

$$\begin{array}{ll} \min & c^T x + d^T y \\ \text{s.t.} & Ax \leq b \\ & x \in \mathbb{Z}^n \\ & y \in \arg \max \left\{ f^T y : Gx + Hy \leq g, y \in \mathbb{Z}^p \right\} \end{array}$$
(BIP)

y must be optimal for a second optimization problem (depending on x).

History and motivation: bilevel programming

Why bilevel?

- Competing parties (military, business)
- Semi-cooperating parties (federal and regional governments)
- A natural way to get harder versions of classical problems

Complexity of BKP (Caprara, Carvalho, Lodi and Woeginger, 2014)

- Σ_2^p -complete
- no polysize IP formulation unless the polynomial hierarchy collapses
- no pseudopolynomial time algorithm unless P=NP

However...

Complexity of BKP (Caprara, Carvalho, Lodi and Woeginger, 2014)

- Σ_2^p -complete
- no polysize IP formulation unless the polynomial hierarchy collapses
- no pseudopolynomial time algorithm unless P=NP

However...

- ► BKP is perhaps one of the "easiest" Σ_2^p -complete problems
- General bilevel solvers are far from the performance of problem-specific methods...

Complexity of BKP (Caprara, Carvalho, Lodi and Woeginger, 2014)

- ► Σ_2^p -complete
- no polysize IP formulation unless the polynomial hierarchy collapses
- no pseudopolynomial time algorithm unless P=NP

However...

- ► BKP is perhaps one of the "easiest" Σ_2^p -complete problems
- General bilevel solvers are far from the performance of problem-specific methods...and this paper only widens that gap

- \blacktriangleright DeNegre (2011) introduced the problem. Solved instances with \leq 15 items
- \blacktriangleright Caprara, Carvalho, Lodi and Woeginger (2016): Solved instances with \leq 50 items
- > Tang, Richard and Smith (2016): Solved instances with \leq 30 items
- Fischetti, Ljubic, Monaci, and Sinnl (2019). Solved instances with \leq 55 items
- ▶ Lozano, Bergman and Cire (2022). Solved instances with \leq 50 items
- ▶ Della Croce and Scatamacchia (2018). Solved instances with ≤ 500 items (henceforth the DCS algorithm)

... and more on approximation, complexity, problem variants, etc

Lower bounds and upper bounds

 \blacktriangleright Feasible solution \implies upper bound

Lower bounds are harder: first published 2018 (DCS algorithm)

All previous exact algorithms use MIP solvers.

We present a combinatorial algorithm which outperforms the previous best method, the DCS algorithm.

Our key insight: a new way of relaxing bilevel problems.

Preliminaries

- ► X: upper level/leader's items
- ► Y: lower level/follower's items
- \blacktriangleright Items are enumerated by $\{1,\ldots,n\}$ and ordered such that

$$\frac{p_1}{w_1^L} \ge \frac{p_2}{w_2^L} \ge \cdots \ge \frac{p_n}{w_n^L}$$

Branch and bound

Branch and bound

Branch and bound

For node (X, i), is it possible that $\exists X' \supseteq X$ and $\exists Y' \in \mathcal{L}(X')$ with (X', Y') optimal? If not, there is no point to explore the children of (X, i). For node (X, i), is it possible that $\exists X' \supseteq X$ and $\exists Y' \in \mathcal{L}(X')$ with (X', Y') optimal? If not, there is no point to explore the children of (X, i).

To test this, we compute a lower bound at each node and test if it exceeds the current best upper bound.

Lower bound

Consider a node (X, i). In all descendants (X', i') of (X, i), we have $X' \supseteq X$ and i' > i. We want to lower bound the solution for such (X', i') which are leaves.

Lower bound

Consider a node (X, i). In all descendants (X', i') of (X, i), we have $X' \supseteq X$ and i' > i. We want to lower bound the solution for such (X', i') which are leaves.

We split this computation into two parts:

- 1. Lower bound using items $\{1, \ldots, i-1\}$ (prefix)
- 2. Lower bound using items $\{i, \ldots, n\}$ (postfix)

Lower bound

Consider a node (X, i). In all descendants (X', i') of (X, i), we have $X' \supseteq X$ and i' > i. We want to lower bound the solution for such (X', i') which are leaves.

We split this computation into two parts:

- 1. Lower bound using items $\{1, \ldots, i-1\}$ (prefix)
- 2. Lower bound using items $\{i, \ldots, n\}$ (postfix)

Note that:

- ▶ We know that the Leader uses capacity $\sum_{i \in X} w_i^U$ on the prefix
- This leaves $C^U \sum_{i \in X} w_i^U$ for the postfix
- We don't know how much capacity the Follower uses on the prefix or the postfix, but any guess will give a lower bound.

Lower bound: items $\{1, \ldots, i-1\}$ (prefix)

Given: Leader's items X, and (guessed) lower capacity c^{L} .

- X has already been decided on $\{1, \ldots, i-1\}$
- So it suffices to find the optimal Y on items $\{1, \ldots, i-1\} \setminus X$ with capacity c^L
- This is just a knapsack problem!

Lower bound: items $\{1, \ldots, i-1\}$ (prefix)

Given: Leader's items X, and (guessed) lower capacity c^{L} .

- X has already been decided on $\{1, \ldots, i-1\}$
- So it suffices to find the optimal Y on items $\{1, \ldots, i-1\} \setminus X$ with capacity c^L
- This is just a knapsack problem!

Definition

Let K(S, c) denote the optimal objective value of the 0-1 knapsack problem with profits $(p_i)_{i \in S}$, weights $(w_i^L)_{i \in S}$ and capacity c.

The desired bound is
$$K(\{1,\ldots,i-1\}\setminus X,c^L)$$
.

Given: remaining leader's capacity c^U , guessed follower's capacity c^L .

We relax the problem from bilevel to 2n-level. The players alternative turns, considering one item at a time.

Given: remaining leader's capacity c^U , guessed follower's capacity c^L .

We relax the problem from bilevel to 2n-level. The players alternative turns, considering one item at a time.

▶ Round 2i: If $i \notin X$ and $w_i^L + \sum_{j \in Y} w_j^L \leq c^L$, Follower can add item *i* to *Y*.

Given: remaining leader's capacity c^U , guessed follower's capacity c^L .

We relax the problem from bilevel to 2n-level. The players alternative turns, considering one item at a time.

▶ Round 2i - 1: If $w_i^U + \sum_{j \in X} w_j^U \leq c^U$, Leader can add item *i* to X.

Given: remaining leader's capacity c^U , guessed follower's capacity c^L .

We relax the problem from bilevel to 2n-level. The players alternative turns, considering one item at a time.

▶ Round 2i - 1: If $w_i^U + \sum_{j \in X} w_j^U \leq c^U$, Leader can add item *i* to X.

Given: remaining leader's capacity c^U , guessed follower's capacity c^L .

We relax the problem from bilevel to 2n-level. The players alternative turns, considering one item at a time.

▶ Round 2i - 1: If $w_i^U + \sum_{j \in X} w_j^U \leq c^U$, Leader can add item *i* to X.

Given: remaining leader's capacity c^U , guessed follower's capacity c^L .

We relax the problem from bilevel to 2n-level. The players alternative turns, considering one item at a time.

▶ Round 2i - 1: If $w_i^U + \sum_{j \in X} w_j^U \leq c^U$, Leader can add item *i* to X.

▶ Round 2i: If $i \notin X$ and $w_i^L + \sum_{j \in Y} w_j^L \leq c^L$, Follower can add item *i* to *Y*.

What's changed? Intuition

- ► The Leader (minimizer) gets more information
- The Follower (maximizer) gets less information

Net result: a lower bound

Solving the modified game

The modified game admits a pseudopolytime algorithm by dynamic programming:

Theorem

 $\omega(i, c^U, c^L)$ is the optimal objective value of the modified game when restricted to items $\{i, \ldots, n\}$ with Leader's capacity c^U and Follower's capacity c^L .

Postfix lower bound formalized

Definition

Let $OPT(i, c^U, c^L)$ be the optimal objective value for BKP when restricted to items $\{i, \ldots, n\}$ with Leader's capacity c^U and Follower's capacity c^L .

Theorem (Postfix lower bound)

For all $i \in [n]$, $0 \le c^U \le C^U$, and $0 \le c^L \le C^L$, we have

 $\omega(i, c^U, c^L) \leq OPT(i, c^U, c^L).$

Combining prefix and postfix

Let $c \in [0, C^{L}]$ be a guess for how much capacity the Follower uses on the prefix. Recall:

- Prefix lower bound: $K(\{1, \ldots, i-1\} \setminus X, c)$
- ▶ Postfix lower bound: $\omega(i, C^U \sum_{j \in X} w_j^U, C^L c)$

Theorem

$$\mathcal{K}(\{1,\ldots,i-1\}\setminus X,c)+\omega(i,C^U-\sum_{j\in X}w_j^U,C^L-c)$$

is a lower bound for node (X, i), and it can be computed in pseudopolynomial time.

Extensions & improvements: Solving trivial instances faster

Our lower bound is expensive: it requires pseudopolynomial time and memory. Can we avoid computing it? Our lower bound is expensive: it requires pseudopolynomial time and memory.

Can we avoid computing it?

<u>Sometimes!</u> Can get a much weaker lower bound in polytime by solving a linear program inspired by the DCS algorithm. Using this and a greedy upper bound, we can detect and solve trivial instances near instantly.

Extensions & improvements: sparse DP tables

Ok, but the lower bound is still expensive.

Can we compute less of it?

Extensions & improvements: sparse DP tables

Ok, but the lower bound is still expensive.

Can we compute less of it?

Yes! We can use sparse dynamic programming tables, like the classical DP-with-lists approach for knapsack.

This makes it practical to solve instances with arbitrarily large capacity.

Extensions & improvements: generalizations

Can this approach be applied to more problems?

Extensions & improvements: generalizations

Can this approach be applied to more problems?

Yes! Easy to generalize to:

- Bounded knapsack problem
- Multidimensional knapsack problem
- Min-max regret knapsack problem
- ... hopefully many more

Implementation

- ▶ We implemented the algorithm in C++
- We reimplemented the DCS algorithm in C++ with Gurobi; our reimplementation generally matches or exceeds the performance of the original implementation
- DCS is parallelized via Gurobi
- ▶ In our algorithm, only the dynamic programming is parallelized
- ▶ We test on all instances from the literature, and generate some more

Computational results

Selected instances: generated by Fischetti, Monaci and Sinnl (2018), with n up to 500 and capacity up to 25000.

	DCS			Comb				
Class	#Opt	#Best	Avg	Max	# Opt	#Best	Avg	Max
uncorrelated	50	0	3.66	13.38	50	50	0.64	7.1
weak correlated	50	0	13.49	72.64	50	50	0.39	4.76
strong correlated [*]	41	0	689.58	$3,\!600$	50	50	0.46	5.02
inverse strong corr.*	38	0	919.91	$3,\!600$	50	50	1.17	31.11
almost strong corr. $*$	40	0	815.4	$3,\!600$	50	50	0.35	4.28
subset-sum*	35	0	1,087.18	$3,\!600$	42	42	588.57	$3,\!600$
$even-odd subset-sum^*$	36	0	1,033.98	$3,\!600$	42	42	582.37	3,600
even-odd strong corr.*	41	0	747.12	$3,\!600$	50	50	0.73	17.06
similar weight uncorr.	50	0	22.89	79.85	50	50	0.12	0.35

(Running times in seconds)

Computational results

Selected instances: generated by Fischetti, Monaci and Sinnl (2018), with n up to 500 and capacity up to 25000.

	DCS			Comb				
Class	#Opt	#Best	Avg	Max	# Opt	#Best	Avg	Max
uncorrelated	50	0	3.66	13.38	50	50	0.64	7.1
weak correlated	50	0	13.49	72.64	50	50	0.39	4.76
strong correlated [*]	41	0	689.58	$3,\!600$	50	50	0.46	5.02
inverse strong corr.*	38	0	919.91	$3,\!600$	50	50	1.17	31.11
almost strong corr.*	40	0	815.4	$3,\!600$	50	50	0.35	4.28
subset-sum*	35	0	$1,\!087.18$	$3,\!600$	42	42	588.57	$3,\!600$
$even-odd subset-sum^*$	36	0	1,033.98	$3,\!600$	42	42	582.37	$3,\!600$
even-odd strong corr.*	41	0	747.12	$3,\!600$	50	50	0.73	17.06
similar weight uncorr.	50	0	22.89	79.85	50	50	0.12	0.35

(Running times in seconds)

Computational results

Selected instances: generated by Fischetti, Monaci and Sinnl (2018), with n up to 500 and capacity up to 25000.

	DCS			Comb				
Class	#Opt	#Best	Avg	Max	# Opt	#Best	Avg	Max
uncorrelated	50	0	3.66	13.38	50	50	0.64	7.1
weak correlated	50	0	13.49	72.64	50	50	0.39	4.76
strong correlated [*]	41	0	689.58	3,600	50	50	0.46	5.02
inverse strong corr.*	38	0	919.91	3,600	50	50	1.17	31.11
almost strong corr. $*$	40	0	815.4	3,600	50	50	0.35	4.28
subset-sum*	35	0	1,087.18	$3,\!600$	42	42	588.57	3,600
$even-odd \ subset-sum^*$	36	0	1,033.98	3,600	42	42	582.37	3,600
even-odd strong corr.*	41	0	747.12	$3,\!600$	50	50	0.73	17.06
similar weight uncorr.	50	0	22.89	79.85	50	50	0.12	0.35

(Running times in seconds)

Performance profile: all instances from the literature

Lower bound strength in practice vs theory

- The relaxed game is optimal for BKP on 85% of instances
- There is a (contrived) family of instances where it has gap O(n):

item no.	р	w ^U	w ^L
1	1	1	1
2	2	2	2
÷	÷	÷	÷
n-1	n-1	n-1	n-1
п	$\binom{n}{2}$	$\binom{n}{2}$	$\binom{n}{2} + 1$

But with branch-and-bound, we solve this family near instantly

Conclusion

- Our solver has better performance on 99% of instances
- ▶ We solved 74% of the unsolved instances in the literature
- Key takeaway: relax the bilevel problem to 2n alternating levels: this gives a strong lower bound

Conclusion

- Our solver has better performance on 99% of instances
- ▶ We solved 74% of the unsolved instances in the literature
- Key takeaway: relax the bilevel problem to 2n alternating levels: this gives a strong lower bound

Future work / Open problems

- Is there a "fast" algorithm for subset-sum instances?
- What other problems would benefit from this type of relaxation?
- What can be said, theoretically, about the performance of our algorithm on particular instance classes?

Thanks for your attention!