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Bilevel knapsack with interdiction constraints (BKP)

▶ A generalization of 0-1 knapsack where an adversary can block access to
(interdict) some items

▶ We are interested in solving this problem exactly

▶ Objective: win the horse race
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Game theoretic interpretation of BKP

Given: n items, weights wU ,wL ∈ Zn
≥0, profits p ∈ Zn

≥0, capacities C
U ,CL ∈ Z≥0.

▶ Round 1: Leader (adversary) selects X ⊆ [n] s.t.
∑

i∈X wU
i ≤ CU

▶ Round 2: Follower selects Y ⊆ [n] \ X s.t.
∑

i∈Y wL
i ≤ CL and

∑
i∈Y pi is

maximized

▶ Objective: Select X to minimize the maximum profit the Follower can get
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Bilevel programming interpretation of BKP

Given: n items, weights wU ,wL ∈ Zn
≥0, profits p ∈ Zn

≥0, capacities C
U ,CL ∈ Z≥0.

Objective: min
X∈U

max
Y∈L(X )

∑
i∈Y

pi

where

U =

{
X ⊆ {1, . . . , n} :

∑
i∈X

wU
i ≤ CU

}
(upper/leaders knapsack)

L(X ) =

{
Y ⊆ {1, . . . , n}\X :

∑
i∈Y

wL
i ≤ CL

}
(lower/followers knapsack)
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Motivation: bilevel programming

BKP is a bilevel integer programming problem:

min cT x + dT y
s.t. Ax ≤ b

x ∈ Zn

y ∈ argmax
{
f T y : Gx + Hy ≤ g , y ∈ Zp

} (BIP)

y must be optimal for a second optimization problem (depending on x).
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History and motivation: bilevel programming

Why bilevel?

▶ Competing parties (military, business)

▶ Semi-cooperating parties (federal and regional governments)

▶ A natural way to get harder versions of classical problems
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History and motivation: bilevel knapsack

Complexity of BKP (Caprara, Carvalho, Lodi and Woeginger, 2014)

▶ Σp
2-complete

▶ no polysize IP formulation unless the polynomial hierarchy collapses

▶ no pseudopolynomial time algorithm unless P=NP

However. . .

▶ BKP is perhaps one of the “easiest” Σp
2-complete problems

▶ General bilevel solvers are far from the performance of problem-specific
methods. . . and this paper only widens that gap
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History and motivation: bilevel knapsack

▶ DeNegre (2011) introduced the problem. Solved instances with ≤ 15 items

▶ Caprara, Carvalho, Lodi and Woeginger (2016): Solved instances with ≤ 50 items

▶ Tang, Richard and Smith (2016): Solved instances with ≤ 30 items

▶ Fischetti, Ljubic, Monaci, and Sinnl (2019). Solved instances with ≤ 55 items

▶ Lozano, Bergman and Cire (2022). Solved instances with ≤ 50 items

▶ Della Croce and Scatamacchia (2018). Solved instances with ≤ 500 items
(henceforth the DCS algorithm)

. . . and more on approximation, complexity, problem variants, etc
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Lower bounds and upper bounds

min
X∈U

n∑
i∈Y

pi

such that Y ∈ argmax
Y∈L(X )

∑
i∈Y

pi

▶ Feasible solution =⇒ upper bound

▶ Lower bounds are harder: first published 2018 (DCS algorithm)
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Our contributions

All previous exact algorithms use MIP solvers.

We present a combinatorial algorithm which outperforms the previous best method,
the DCS algorithm.

Our key insight: a new way of relaxing bilevel problems.
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Preliminaries

▶ X : upper level/leader’s items

▶ Y : lower level/follower’s items

▶ Items are enumerated by {1, . . . , n} and ordered such that

p1

wL
1

≥ p2

wL
2

≥ · · · ≥ pn
wL
n
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Branch and bound
A node is a pair (X , i) where

▶ i ∈ {1, . . . , n + 1} and

▶ X ∈ U

▶ X ∩ {i , . . . , n} = ∅
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Branch and bound
A node is a pair (X , i) where

▶ i ∈ {1, . . . , n + 1} and

▶ X ∈ U

▶ X ∩ {i , . . . , n} = ∅

A leaf (X , n + 1) is a complete
Leader’s solution, so we can solve
max{

∑
i∈Y pi : Y ∈ L(X )} to get

an upper bound.
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Branch and bound
A node is a pair (X , i) where

▶ i ∈ {1, . . . , n + 1} and

▶ X ∈ U

▶ X ∩ {i , . . . , n} = ∅

At each internal node we perform
a bound test, to check if searching
that branch is worthwhile.
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Branch and bound: bound test

For node (X , i), is it possible that ∃X ′ ⊇ X and ∃Y ′ ∈ L(X ′) with (X ′,Y ′) optimal?

If not, there is no point to explore the children of (X , i).

To test this, we compute a lower bound at each node and test if it exceeds the current
best upper bound.
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Lower bound

Consider a node (X , i). In all descendants (X ′, i ′) of (X , i), we have X ′ ⊇ X and
i ′ > i . We want to lower bound the solution for such (X ′, i ′) which are leaves.

We split this computation into two parts:

1. Lower bound using items {1, . . . , i − 1} (prefix)

2. Lower bound using items {i , . . . , n} (postfix)

Note that:

▶ We know that the Leader uses capacity
∑

i∈X wU
i on the prefix

▶ This leaves CU −
∑

i∈X wU
i for the postfix

▶ We don’t know how much capacity the Follower uses on the prefix or the postfix,
but any guess will give a lower bound.
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Lower bound: items {1, . . . , i − 1} (prefix)

Given: Leader’s items X , and (guessed) lower capacity cL.

▶ X has already been decided on {1, . . . , i − 1}

▶ So it suffices to find the optimal Y on items {1, . . . , i − 1} \ X with capacity cL

▶ This is just a knapsack problem!

Definition

Let K (S , c) denote the optimal objective value of the 0-1 knapsack problem with
profits (pi )i∈S , weights (w

L
i )i∈S and capacity c .

▶ The desired bound is K ({1, . . . , i − 1} \ X , cL).
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Lower bound: items {i , . . . , n} (postfix)

Given: remaining leader’s capacity cU , guessed follower’s capacity cL.

We relax the problem from bilevel to 2n-level. The players alternative turns,
considering one item at a time.

▶ Round 2i− 1: If wU
i +

∑
j∈X wU

j ≤ cU , Leader can add item i to X .

▶ Round 2i: If i /∈ X and wL
i +

∑
j∈Y wL

j ≤ cL, Follower can add item i to Y .
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What’s changed? Intuition

▶ The Leader (minimizer) gets more information

▶ The Follower (maximizer) gets less information

Net result: a lower bound
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Solving the modified game
The modified game admits a pseudopolytime algorithm by dynamic programming:

ω(i , cU , cL) =

∞ if cU < 0,

−∞ if cL < 0,

0 if cU ≥ 0, cL ≥ 0 and i > n,

min


ω(i + 1, cU − wU

i , cL),

max

{
ω(i + 1, cU , cL − wL

i ) + pi ,

ω(i + 1, cU , cL)

} if cU ≥ 0, cL ≥ 0 and i ≤ n.

Theorem

ω(i , cU , cL) is the optimal objective value of the modified game when restricted to
items {i , . . . , n} with Leader’s capacity cU and Follower’s capacity cL.
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Postfix lower bound formalized

Definition

Let OPT (i , cU , cL) be the optimal objective value for BKP when restricted to items
{i , . . . , n} with Leader’s capacity cU and Follower’s capacity cL.

Theorem (Postfix lower bound)

For all i ∈ [n], 0 ≤ cU ≤ CU , and 0 ≤ cL ≤ CL, we have

ω(i , cU , cL) ≤ OPT (i , cU , cL).
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Combining prefix and postfix

Let c ∈ [0,CL] be a guess for how much capacity the Follower uses on the prefix.
Recall:

▶ Prefix lower bound: K ({1, . . . , i − 1} \ X , c)

▶ Postfix lower bound: ω(i ,CU −
∑

j∈X wU
j ,CL − c)

Theorem

K ({1, . . . , i − 1} \ X , c) + ω(i ,CU −
∑
j∈X

wU
j ,CL − c)

is a lower bound for node (X , i), and it can be computed in pseudopolynomial time.
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Extensions & improvements: Solving trivial instances faster

Our lower bound is expensive: it requires pseudopolynomial time and memory.

Can we avoid computing it?

Sometimes! Can get a much weaker lower bound in polytime by solving a linear
program inspired by the DCS algorithm. Using this and a greedy upper bound, we can
detect and solve trivial instances near instantly.
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Extensions & improvements: sparse DP tables

Ok, but the lower bound is still expensive.

Can we compute less of it?

Yes! We can use sparse dynamic programming tables, like the classical DP-with-lists
approach for knapsack.

This makes it practical to solve instances with arbitrarily large capacity.
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Extensions & improvements: generalizations

Can this approach be applied to more problems?

Yes! Easy to generalize to:

▶ Bounded knapsack problem

▶ Multidimensional knapsack problem

▶ Min-max regret knapsack problem

▶ . . . hopefully many more
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Implementation

▶ We implemented the algorithm in C++

▶ We reimplemented the DCS algorithm in C++ with Gurobi; our reimplementation
generally matches or exceeds the performance of the original implementation

▶ DCS is parallelized via Gurobi

▶ In our algorithm, only the dynamic programming is parallelized

▶ We test on all instances from the literature, and generate some more
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Computational results

Selected instances: generated by Fischetti, Monaci and Sinnl (2018), with n up to 500
and capacity up to 25000.

(Running times in seconds)
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Performance profile: all instances from the literature
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Number of times slower than fastest solver
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Lower bound strength in practice vs theory

▶ The relaxed game is optimal for BKP
on 85% of instances

▶ There is a (contrived) family of
instances where it has gap O(n):

item no. p wU wL

1 1 1 1
2 2 2 2
...

...
...

...
n − 1 n − 1 n − 1 n − 1
n

(n
2

) (n
2

) (n
2

)
+ 1

▶ But with branch-and-bound, we solve
this family near instantly

0 500 1000 1500 2000

Instance no.
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Conclusion

▶ Our solver has better performance on 99% of instances

▶ We solved 74% of the unsolved instances in the literature

▶ Key takeaway: relax the bilevel problem to 2n alternating levels: this gives a
strong lower bound

Future work / Open problems

▶ Is there a “fast” algorithm for subset-sum instances?

▶ What other problems would benefit from this type of relaxation?

▶ What can be said, theoretically, about the performance of our algorithm on
particular instance classes?

Thanks for your attention!
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