On the Correlation Gap of Matroids

Zhuan Khye (Cedric) Koh

Joint work with Edin Husić, Georg Loho, László A. Végh

Overview

1 What is Correlation Gap (CG)?

$\ensuremath{ 2 \ensuremath{ \mathcal{CG}}}$ of Weighted Matroid Rank

- State of the art
- Role of CG in approximation algorithms

8 Main Results

- $\blacktriangleright~\mathcal{CG}$ of weighted matroid rank $\geq \mathcal{CG}$ of matroid rank
- Improved lower bound for \mathcal{CG} of matroid rank
- Onclusion and Future Directions

Extensions of a Submodular Function

• Let $f: 2^E \to \mathbb{R}$ be a monotone submodular function.

• An extension of f is a continuous function $h: [0,1]^E \to \mathbb{R}$ such that for every $x \in [0,1]^E$,

$$h(x) = \mathbb{E}_{\lambda}[f(S)]$$

where λ is a probability distribution over 2^{E} with marginals x.

Multilinear Extension: Sample $i \in E$ with probability x_i independently

$$F(x) = \sum_{S \subseteq E} f(S) \prod_{i \in S} x_i \prod_{i \notin S} (1 - x_i).$$

Concave Extension: Distribution which maximizes expectation

$$\hat{f}(x) = \max_{\lambda} \left\{ \sum_{S \subseteq E} \lambda_S f(S) : \sum_{S \ni i} \lambda_S = x_i \ \forall i \in E, \sum_{S \subseteq E} \lambda_S = 1, \lambda \ge 0 \right\}.$$

Example

• Let f be the rank function of a rank-1 uniform matroid on 2 elements.

F(x)

 $\hat{f}(x)$

- Monotone.
- ► Concave along any *e_i*.
- Convex along any $e_i e_j$.

- Monotone.
- Concave.
- Piecewise affine.

Correlation Gap

Def: [Agrawal et al. '12] The correlation gap of f is the ratio

$$\mathcal{CG}(f) = \min_{x \in [0,1]^E} \frac{F(x)}{\hat{f}(x)}.$$

• [Calinescu et al. '07] For any monotone submodular function f,

$$\mathcal{CG}(f) \geq 1 - \frac{1}{e}.$$

• Tight for the rank function of a rank-1 uniform matroid. Letting n = |E|,

$$\frac{F\left(\frac{1}{n}\mathbb{I}\right)}{\widehat{f}\left(\frac{1}{n}\mathbb{I}\right)} = \frac{1 - \left(1 - \frac{1}{n}\right)^n}{n \cdot \frac{1}{n}} \to 1 - \frac{1}{e} \qquad \text{as } n \to \infty.$$

CG of Weighted Matroid Rank

Def: Given a matroid $\mathcal{M} = (E, \mathcal{I})$ and weights $w \in \mathbb{R}^{E}_{+}$, the weighted matroid rank function is

$$r_w(S) := \max\{w(T) : T \subseteq S, T \in \mathcal{I}\}.$$

- r_w is monotone submodular $\implies CG(r_w) \ge 1 e^{-1}$.
- [Yan '11, Barman et al. '20] For a rank- ℓ uniform matroid, its (unweighted) rank function r has correlation gap

$$\mathcal{CG}(r) = 1 - \frac{e^{-\ell}\ell^{\ell}}{\ell!}.$$

$\mathcal{C}\mathcal{G}$ is Approximation Guarantee

Problem: [Calinescu et al. '07] Given a sum of weighted matroid rank functions $f = \sum_{i=1}^{m} f_i$ and a matroid $\mathcal{M} = (E, \mathcal{I})$, solve

$$\max_{S \in \mathcal{I}} f(S).$$

• NP-hard as it captures the maximum coverage problem:

MaxCover: Given a family of sets $E \subseteq 2^N$, select k sets to cover as many elements in N as possible.

Reduction: Let $\mathcal{M} = (E, \mathcal{I})$ be a uniform matroid of rank k. For each $i \in N$, define $f_i : 2^E \to \mathbb{Z}_+$ as

$$f_i(S) = egin{cases} 1, & ext{if } \exists ext{ a set in } S ext{ containing } i, \ 0, & ext{otherwise.} \end{cases}$$

• Each f_i is the weighted rank function of a rank-1 uniform matroid.

$\mathcal{C}\mathcal{G}$ is Approximation Guarantee

• A generalization of **MaxCover** is the maximum multicoverage problem.

Max- ℓ -**Cover:** Given a family of sets $E \subseteq 2^N$, select k sets to cover as many elements in N as possible, where each element is counted up to ℓ times.

Reduction: Let $\mathcal{M} = (E, \mathcal{I})$ be a uniform matroid of rank k. For each $i \in N$, define $f_i : 2^E \to \mathbb{Z}_+$ as

 $f_i(S) = \min(\# \text{ of sets in } S \text{ containing } i, \ell).$

- Each f_i is the weighted rank function of a rank- ℓ uniform matroid.
- [Barman et al. '20] gave a tight $1 \frac{e^{-\ell}\ell^{\ell}}{\ell!}$ approximation algorithm.
- Applications in list decoding and approval voting.

$\mathcal{C}\mathcal{G}$ is Approximation Guarantee

Algorithm: [Calinescu et al. '07, Shioura '09]

1 Let x^* be an optimal solution to the following LP

$$\max\left\{\sum_{i=1}^m \hat{f}_i(x): x \in \mathsf{independent \ set \ polytope \ of \ } \mathcal{M}\right\}.$$

2 Round x^* to $x' \in \{0,1\}^E$ using pipage rounding.

Analysis:

$$f(x') = F(x') \ge F(x^*) = \sum_{i=1}^m F_i(x^*) \ge \sum_{i=1}^m \mathcal{CG}(f_i) \, \hat{f}_i(x^*) \ge \min_{i \in [m]} \mathcal{CG}(f_i) \cdot \mathsf{OPT}.$$

• CG is also the **approximation guarantee** in sequential posted price mechanism and contention resolution schemes.

Main Results

Theorem 1

For any matroid $\mathcal{M} = (E, \mathcal{I})$ with rank function r,

$$\inf_{v\in\mathbb{R}^E_+}\mathcal{CG}(r_w)=\mathcal{CG}(r).$$

Goal: Identify matroid parameters which govern CG(r).

- Parameterization by rank ρ or girth γ only yields CG(r) = 1 1/e.
 - Partition matroid with ρ rank-1 parts.
 - ► Union of a rank-(γ − 1) uniform matroid and many rank-1 uniform matroids.

Main Results

Theorem 2

For any matroid \mathcal{M} with rank function r, rank ρ , and girth $\gamma > 1$,

$$\mathcal{CG}(r) \geq 1 - \frac{1}{e} + \frac{e^{-\rho}}{\rho} \left(\sum_{i=0}^{\gamma-2} (\gamma - 1 - i) \left[\binom{\rho}{i} (e-1)^i - \frac{\rho^i}{i!} \right] \right) \geq 1 - \frac{1}{e}.$$

Proof Ideas

Theorem 1:

- Let $w \in \mathbb{R}^{E}_{+}$ where $\mathcal{CG}(r_{w}) < \mathcal{CG}(r)$ with the fewest distinct values.
- Can increase weights in a value class without increasing $\mathcal{CG}(r_w)$. 4

Theorem 2:

- Let r be the rank function of a matroid \mathcal{M} with rank ρ and girth γ .
- \exists a point x in the independent set polytope of $\mathcal M$ such that

$$\mathcal{CG}(r) = \frac{R(x)}{\hat{r}(x)} = \frac{R(x)}{\mathbb{1}^{\top}x}$$

• To bound R(x), decompose r = g + h such that g is the rank function of a rank- ℓ uniform matroid, where $\ell := \gamma - 1$.

Bounding G(x): simple application of [Yan '11, Barman et al. '20]
Bounding H(x): Poisson clock analysis [Calinescu et al. '07]

Poisson Clock Analysis

- Construct a random set Q(1) as follows:
 - ▶ Put a Poisson clock of rate x_i on each element i (independent).
 - From time t = 0 to 1, add *i* to Q(t) whenever its clock rings.

- By monotonicity of h, $H(x) \ge H(1 e^{-x}) = \mathbb{E}[h(Q(1))]$.
- In [Calinescu et al. '07], $\frac{d}{dt}\mathbb{E}[h(Q(t))] \ge \hat{h}(x) \mathbb{E}[h(Q(t))]$ for all t.

$$\Rightarrow \mathbb{E}[h(Q(1))] \ge (1-e^{-1})\hat{h}(x).$$

• For us, $\frac{d}{dt}\mathbb{E}[h(Q(t))] \geq \hat{r}(x) - \ell - \mathbb{E}[h(Q(t))]$ only if $|Q(t)| \geq \ell$.

 $\Rightarrow \mathbb{E}[h(Q(1))| |Q(t)| \geq \ell \ \forall t \geq T'] \geq (1 - e^{T'-1})(\hat{r}(x) - \ell).$

Conclusion

Summary of Results:

1 CG of weighted matroid rank is minimized under uniform weights.

- **2** Improved lower bound on CG(r) parameterized by rank and girth.
 - When girth is fixed, $CG \downarrow$ as rank \uparrow .
 - When rank is fixed, $CG \uparrow$ as girth \uparrow .

Future Directions:

1 Upper and lower bounds do not match. There exists a rank- ρ girth- γ matroid with

$$\mathcal{CG}(r) \leq 1 - \frac{1}{e} + \frac{\gamma - 1}{e\rho}.$$

2 Find better matroid parameters that govern CG(r).