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Overview

® What is Correlation Gap (CG)?

® CG of Weighted Matroid Rank

» State of the art

» Role of CG in approximation algorithms

® Main Results
» CG of weighted matroid rank > CG of matroid rank

» Improved lower bound for CG of matroid rank

o Conclusion and Future Directions



Extensions of a Submodular Function

e Let f: 2F — R be a monotone submodular function.

e An of f is a continuous function h : [0,1]% — R such that for
every x € [0, 1],
h(x) = EA[f(S)]

where X is a probability distribution over 2€ with marginals x.

Multilinear Extension: Sample i € E with probability x; independently

F) =Y fS]]x]]a-x)

SCE i€s  ig¢s

Concave Extension: Distribution which maximizes expectation

F(x) = max D Asf(S): Z)\s =xVi€eE, Y As=1,A>0
SCE S3i SCE



Example

e Let f be the rank function of a rank-1 uniform matroid on 2 elements.

0.5 0.5
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F(x) f(x)
» Monotone. » Monotone.
» Concave along any e;. » Concave.

» Convex along any e — ¢;. » Piecewise affine.



Correlation Gap

Def: [Agrawal et al. '12] The

of f is the ratio

T

CG(f) =

min A(X

xe[0.1F F(x)

e [Calinescu et al. '07] For any monotone submodular function f,

co(Fy>1- .

e

e Tight for the rank function of a rank-1 uniform matroid. Letting
n=|E|,

as n — oQ.



CG of Weighted Matroid Rank

Def: Given a matroid M = (E,T) and weights w € RE, the
function is

rw(S) =max{w(T): TCS,Tel}

e r,, is monotone submodular = CG(r,) >1—e 1.

e [Yan '11, Barman et al. '20] For a rank-¢ uniform matroid, its
(unweighted) rank function r has correlation gap

e byt
0!

CG(r)y=1-




CG is Approximation Guarantee

Problem: [Calinescu et al. '07] Given a sum of weighted matroid rank
functions f = >, f; and a matroid M = (E,Z), solve

12 1)

e NP-hard as it captures the problem:

MaxCover: Given a family of sets E C 2N select k sets to cover as many
elements in N as possible.

Reduction: Let M = (E,Z) be a uniform matroid of rank k. For each
i €N, define f; : 28 = Z, as

0, otherwise.

£(S) = {17 if 3 a set in S containing /,

e Each f; is the weighted rank function of a rank-1 uniform matroid.



CG is Approximation Guarantee

e A generalization of MaxCover is the problem.

Max-/-Cover: Given a family of sets E C 2N select k sets to cover as
many elements in N as possible, where each element is counted up to ¢
times.

Reduction: Let M = (E,Z) be a uniform matroid of rank k. For each
i €N, define f; : 2F — Z, as

f;(S) = min(# of sets in S containing i, ).

e Each f; is the weighted rank function of a rank-£ uniform matroid.

e [Barman et al. '20] gave a tight 1 — # approximation algorithm.

e Applications in list decoding and approval voting.



CG is Approximation Guarantee

Algorithm: [Calinescu et al. '07, Shioura '09]
@ Let x* be an optimal solution to the following LP

max {Z fi(x) : x € independent set polytope of M} :

i=1
® Round x* to x’ € {0,1}F using pipage rounding.

Analysis:

F(X') = F(x')= F(x) =Y Fi(x ch ) > min CG(f)-OPT.

i€[m]

e CG is also the approximation guarantee in
and



Main Results

Theorem 1
For any matroid M = (E,Z) with rank function r,

inf CG(rw) =CG(r).
WERE_

Goal: Identify matroid parameters which govern CG(r).

e Parameterization by rank p or girth v only yields CG(r) =1 —1/e.
» Partition matroid with p rank-1 parts.

» Union of a rank-( — 1) uniform matroid and many rank-1 uniform
matroids.
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Main Results

Theorem 2

For any matroid M with rank function r, rank p, and girth v > 1,

CQ(r)Zl—i—i—e:(f( _1_,)[( )(e—l) ‘;D 21_%.
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Proof ldeas

Theorem 1:
e Let w € RE where CG(r.,) < CG(r) with the fewest distinct values.

e Can increase weights in a value class without increasing CG(ry ). 4

Theorem 2:
e Let r be the rank function of a matroid M with rank p and girth ~.

e 3 a point x in the independent set polytope of M such that

e To bound R(x), decompose r = g + h such that g is the rank
function of a rank-¢ uniform matroid, where £ : =~ — 1.

» Bounding G(x): simple application of [Yan '11, Barman et al. '20]
» Bounding H(x): Poisson clock analysis [Calinescu et al. '07]



Poisson Clock Analysis

e Construct a random set Q(1) as follows:
» Put a of rate x; on each element i (independent).
» From time t = 0 to 1, add / to Q(t) whenever its clock rings.

G & ® © © O 0
e By monotonicity of h, H(x) > H(1 — e ) = E[h(Q(1))].

)
h(x) — E[h(Q(t))] for all t.

e In [Calinescu et al. '07], ZE[h(Q(t))] >
= E[h(Q(1))] = (1 — e !)h(x).
o For us, SE[A(Q(t))] > (x) — £ — E[A(Q(t))] only if |Q(t)| > L.

= E[h(QM) Q) = ¢Vt = T = (1 - e" 1)(F(x) — 0).



Conclusion

Summary of Results:

@ CG of weighted matroid rank is minimized under uniform weights.

@® Improved lower bound on CG(r) parameterized by rank and girth.
» When girth is fixed, CG | as rank 1.
» When rank is fixed, CG 7 as girth 1.

Future Directions:

@ Upper and lower bounds do not match. There exists a rank-p
girth-y matroid with

cG(r)<1-14 2L

@® Find better matroid parameters that govern CG(r).



