
Decomposition of Probability Marginals for Security Games in
Abstract Networks (and Ideal Clutters)

Jannik Matuschke
KU Leuven



From Marginals to Distributions

Input:
• ground set 𝐸
• set system 𝒫 ⊆ 2𝐸

• requirements 𝜋 ∈ [0, 1]𝒫

• marginals 𝜌 ∈ [0, 1]𝐸

Goal: Find distribution for random set 𝑆 ⊆ 𝐸
such that

Pr[𝑒 ∈ 𝑆] = 𝜌𝑒 ∀ 𝑒 ∈ 𝐸,

Pr[𝑃 ∩ 𝑆 ≠ ∅] ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫.

1



From Marginals to Distributions

Input:
• ground set 𝐸
• set system 𝒫 ⊆ 2𝐸

• requirements 𝜋 ∈ [0, 1]𝒫

• marginals 𝜌 ∈ [0, 1]𝐸

Goal: Find distribution for random set 𝑆 ⊆ 𝐸
such that

Pr[𝑒 ∈ 𝑆] = 𝜌𝑒 ∀ 𝑒 ∈ 𝐸,

Pr[𝑃 ∩ 𝑆 ≠ ∅] ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫.
1



A Necessary Condition

All feasible marginals 𝜌 must fulfil:

∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

For which systems (𝒫, 𝜋) is (⋆) also sufficent?

2



A Necessary Condition

All feasible marginals 𝜌 must fulfil:

∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

For which systems (𝒫, 𝜋) is (⋆) also sufficent?

2



Motivation: A Security Game

𝑐𝑒 : inspection cost

𝜋𝑃 : risk threshold

Inspect random set 𝑆 ⊆ 𝐸:

min ∑
𝑆⊆𝐸

∑
𝑒∈𝑆

𝑐𝑒 𝑥𝑆

s.t. ∑
𝑆∶𝑃∩𝑆≠∅

𝑥𝑆 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫

∑
𝑆⊆𝐸

𝑥𝑆 = 1

𝑥 ≥ 0

If (⋆) is sufficient:

min ∑
𝑒∈𝐸

𝑐𝑒 𝜌𝑒

s.t. ∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫

𝜌 ∈ [0, 1]𝐸

3



Motivation: A Security Game

𝑐𝑒 : inspection cost

𝜋𝑃 : risk threshold

Inspect random set 𝑆 ⊆ 𝐸:

min ∑
𝑆⊆𝐸

∑
𝑒∈𝑆

𝑐𝑒 𝑥𝑆

s.t. ∑
𝑆∶𝑃∩𝑆≠∅

𝑥𝑆 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫

∑
𝑆⊆𝐸

𝑥𝑆 = 1

𝑥 ≥ 0

If (⋆) is sufficient:

min ∑
𝑒∈𝐸

𝑐𝑒 𝜌𝑒

s.t. ∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫

𝜌 ∈ [0, 1]𝐸

3



Previous Results [Dahan, Amin, Jaillet, MOR 2022]

𝒫 = {𝑠-𝑡-paths in a DAG}, two settings for 𝜋:
(A) Affine requirements: 𝜋𝑃 = 1 − ∑𝑒∈𝑃 𝜇𝑒 for some 𝜇 ∈ [0, 1]𝐸

(C) Conservation law: 𝜋𝑃 + 𝜋𝑄 = 𝜋𝑃×𝑣𝑄 + 𝜋𝑄×𝑣𝑃 for 𝑃 , 𝑄 ∈ 𝒫, 𝑣 ∈ 𝑃 ∩ 𝑄

Note: (A) ⇒ (C).

Their results:
• For (C): (⋆) is sufficient.
• For (A): Decomposition can be computed efficiently.
• Consequence: Computation of Nash equilibria for security game on DAG.

4



Previous Results [Dahan, Amin, Jaillet, MOR 2022]

𝒫 = {𝑠-𝑡-paths in a DAG}, two settings for 𝜋:
(A) Affine requirements: 𝜋𝑃 = 1 − ∑𝑒∈𝑃 𝜇𝑒 for some 𝜇 ∈ [0, 1]𝐸

(C) Conservation law: 𝜋𝑃 + 𝜋𝑄 = 𝜋𝑃×𝑣𝑄 + 𝜋𝑄×𝑣𝑃 for 𝑃 , 𝑄 ∈ 𝒫, 𝑣 ∈ 𝑃 ∩ 𝑄

Note: (A) ⇒ (C).

Their results:
• For (C): (⋆) is sufficient.
• For (A): Decomposition can be computed efficiently.
• Consequence: Computation of Nash equilibria for security game on DAG.

4



Previous Results [Dahan, Amin, Jaillet, MOR 2022]

𝒫 = {𝑠-𝑡-paths in a DAG}, two settings for 𝜋:
(A) Affine requirements: 𝜋𝑃 = 1 − ∑𝑒∈𝑃 𝜇𝑒 for some 𝜇 ∈ [0, 1]𝐸

(C) Conservation law: 𝜋𝑃 + 𝜋𝑄 = 𝜋𝑃×𝑣𝑄 + 𝜋𝑄×𝑣𝑃 for 𝑃 , 𝑄 ∈ 𝒫, 𝑣 ∈ 𝑃 ∩ 𝑄

Note: (A) ⇒ (C).

Their results:
• For (C): (⋆) is sufficient.
• For (A): Decomposition can be computed efficiently.
• Consequence: Computation of Nash equilibria for security game on DAG.

4



New Results

DAGs

Abstract Networks Max-Flow/Min-Cut

(Dahan et al.)

(incl. digraphs w. cycles) (aka. ideal clutters)

Affine efficient algorithm

efficient algorithm characterize
↑ (explicit description) ⨁ (⋆)-sufficiency

Conservation (⋆) sufficient

(⋆) sufficient (oracle-poly)

(exp.-time algorithm)

(oracle-poly)

⨁ combinatorial shortest-path algorithm for abstract networks

Also: NP-hard to decide feasibility of given 𝜌 in general systems

5



New Results

DAGs Abstract Networks

Max-Flow/Min-Cut

(Dahan et al.) (incl. digraphs w. cycles)

(aka. ideal clutters)

Affine efficient algorithm efficient algorithm

characterize
↑

(explicit description) ⨁

(⋆)-sufficiency

Conservation (⋆) sufficient

(⋆) sufficient (oracle-poly)

(exp.-time algorithm)

(oracle-poly)

⨁ combinatorial shortest-path algorithm for abstract networks

Also: NP-hard to decide feasibility of given 𝜌 in general systems

5



New Results

DAGs Abstract Networks

Max-Flow/Min-Cut

(Dahan et al.) (incl. digraphs w. cycles)

(aka. ideal clutters)

Affine efficient algorithm efficient algorithm

characterize

↑ (explicit description) ⨁

(⋆)-sufficiency

Conservation (⋆) sufficient

(⋆) sufficient (oracle-poly)

(exp.-time algorithm)

(oracle-poly)

⨁ combinatorial shortest-path algorithm for abstract networks

Also: NP-hard to decide feasibility of given 𝜌 in general systems

5



New Results

DAGs Abstract Networks

Max-Flow/Min-Cut

(Dahan et al.) (incl. digraphs w. cycles)

(aka. ideal clutters)

Affine efficient algorithm efficient algorithm

characterize

↑ (explicit description) ⨁

(⋆)-sufficiency

Conservation (⋆) sufficient

(⋆) sufficient (oracle-poly)

(exp.-time algorithm)

(oracle-poly)

⨁ combinatorial shortest-path algorithm for abstract networks

Also: NP-hard to decide feasibility of given 𝜌 in general systems

5



New Results

DAGs Abstract Networks Max-Flow/Min-Cut
(Dahan et al.) (incl. digraphs w. cycles) (aka. ideal clutters)

Affine efficient algorithm efficient algorithm characterize
↑ (explicit description) ⨁ (⋆)-sufficiency

Conservation (⋆) sufficient

(⋆) sufficient

(oracle-poly)

(exp.-time algorithm)

(oracle-poly)

⨁ combinatorial shortest-path algorithm for abstract networks

Also: NP-hard to decide feasibility of given 𝜌 in general systems

5



New Results

DAGs Abstract Networks Max-Flow/Min-Cut
(Dahan et al.) (incl. digraphs w. cycles) (aka. ideal clutters)

Affine efficient algorithm efficient algorithm characterize
↑ (explicit description) ⨁ (⋆)-sufficiency

Conservation (⋆) sufficient (⋆) sufficient (oracle-poly)

(exp.-time algorithm) (oracle-poly)

⨁ combinatorial shortest-path algorithm for abstract networks

Also: NP-hard to decide feasibility of given 𝜌 in general systems

5



Feasible Decompositions in Abstract Networks



Abstract Networks [Hoffman, Math. Prog. 1974]

Abstract network:
• set system (𝐸, 𝒫)
• order ⪯𝑃 for every 𝑃 ∈ 𝒫
• for every 𝑃 , 𝑄 ∈ 𝒫 and 𝑒 ∈ 𝑃 ∩ 𝑄:

𝑃 ×𝑒 𝑄 ∈ 𝒫 contained in {𝑝 ∈ 𝑃 ∶ 𝑝 ⪯𝑃 𝑒} ∪ {𝑞 ∈ 𝑄 ∶ 𝑒 ⪯𝑄 𝑞}.

6



Feasible Decompositions in Abstract Networks (when 𝜋𝑃 = 1 − ∑𝑒∈𝑃 𝜇𝑒)

𝑆𝜏 ∶= {𝑒 ∈ 𝐸 ∶ 𝛼𝑒 − 𝜌𝑒 ≤ 𝜏 ≤ 𝛼𝑒}

with 𝛼𝑒 ∶= min
𝑃∈𝒫

∑
𝑓∈[𝑃,𝑒]

𝜌𝑓 + 𝜇𝑓 and 𝜏 ∼ 𝑈[0, 1]

∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

Construct random 𝑆 ⊆ 𝐸 with
Pr[𝑒 ∈ 𝑆] = 𝜌𝑒 ∀ 𝑒 ∈ 𝐸,

Pr[𝑃 ∩ 𝑆 ≠ ∅] ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫.

Theorem. 𝑆𝜏 is a feasible decomposition of 𝜌.
Proof sketch. Want to show: Pr [𝑆𝜏 ∩ 𝑃 ≠ ∅] ≥ 1 − ∑𝑒∈𝑃 𝜇𝑒

By induction: Pr [𝑆𝜏 ∩ [𝑃 , 𝑒] ≠ ∅ ∧ 𝜏 ≤ 𝛼𝑒] ≥ 𝛼𝑒 − ∑
𝑓∈[𝑃,𝑒]

𝜇𝑓

By (⋆): 𝛼𝑡 ≥ 1 for last element 𝑡 of 𝑃

7



Feasible Decompositions in Abstract Networks (when 𝜋𝑃 = 1 − ∑𝑒∈𝑃 𝜇𝑒)

𝑆𝜏 ∶= {𝑒 ∈ 𝐸 ∶ 𝛼𝑒 − 𝜌𝑒 ≤ 𝜏 ≤ 𝛼𝑒}

with

𝛼𝑒 ∶= min
𝑃∈𝒫

∑
𝑓∈[𝑃,𝑒]

𝜌𝑓 + 𝜇𝑓

and 𝜏 ∼ 𝑈[0, 1]

∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

Construct random 𝑆 ⊆ 𝐸 with
Pr[𝑒 ∈ 𝑆] = 𝜌𝑒 ∀ 𝑒 ∈ 𝐸,

Pr[𝑃 ∩ 𝑆 ≠ ∅] ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫.

Theorem. 𝑆𝜏 is a feasible decomposition of 𝜌.
Proof sketch. Want to show: Pr [𝑆𝜏 ∩ 𝑃 ≠ ∅] ≥ 1 − ∑𝑒∈𝑃 𝜇𝑒

By induction: Pr [𝑆𝜏 ∩ [𝑃 , 𝑒] ≠ ∅ ∧ 𝜏 ≤ 𝛼𝑒] ≥ 𝛼𝑒 − ∑
𝑓∈[𝑃,𝑒]

𝜇𝑓

By (⋆): 𝛼𝑡 ≥ 1 for last element 𝑡 of 𝑃

7



Feasible Decompositions in Abstract Networks (when 𝜋𝑃 = 1 − ∑𝑒∈𝑃 𝜇𝑒)

𝑆𝜏 ∶= {𝑒 ∈ 𝐸 ∶ 𝛼𝑒 − 𝜌𝑒 ≤ 𝜏 ≤ 𝛼𝑒}

with 𝛼𝑒 ∶= min
𝑃∈𝒫

∑
𝑓∈[𝑃,𝑒]

𝜌𝑓 + 𝜇𝑓 and 𝜏 ∼ 𝑈[0, 1]

∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

Construct random 𝑆 ⊆ 𝐸 with
Pr[𝑒 ∈ 𝑆] = 𝜌𝑒 ∀ 𝑒 ∈ 𝐸,

Pr[𝑃 ∩ 𝑆 ≠ ∅] ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫.

Theorem. 𝑆𝜏 is a feasible decomposition of 𝜌.

Proof sketch. Want to show: Pr [𝑆𝜏 ∩ 𝑃 ≠ ∅] ≥ 1 − ∑𝑒∈𝑃 𝜇𝑒
By induction: Pr [𝑆𝜏 ∩ [𝑃 , 𝑒] ≠ ∅ ∧ 𝜏 ≤ 𝛼𝑒] ≥ 𝛼𝑒 − ∑

𝑓∈[𝑃,𝑒]
𝜇𝑓

By (⋆): 𝛼𝑡 ≥ 1 for last element 𝑡 of 𝑃

7



Feasible Decompositions in Abstract Networks (when 𝜋𝑃 = 1 − ∑𝑒∈𝑃 𝜇𝑒)

𝑆𝜏 ∶= {𝑒 ∈ 𝐸 ∶ 𝛼𝑒 − 𝜌𝑒 ≤ 𝜏 ≤ 𝛼𝑒}

with 𝛼𝑒 ∶= min
𝑃∈𝒫

∑
𝑓∈[𝑃,𝑒]

𝜌𝑓 + 𝜇𝑓 and 𝜏 ∼ 𝑈[0, 1]

∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

Construct random 𝑆 ⊆ 𝐸 with
Pr[𝑒 ∈ 𝑆] = 𝜌𝑒 ∀ 𝑒 ∈ 𝐸,

Pr[𝑃 ∩ 𝑆 ≠ ∅] ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫.

Theorem. 𝑆𝜏 is a feasible decomposition of 𝜌.
Proof sketch. Want to show: Pr [𝑆𝜏 ∩ 𝑃 ≠ ∅] ≥ 1 − ∑𝑒∈𝑃 𝜇𝑒

By induction: Pr [𝑆𝜏 ∩ [𝑃 , 𝑒] ≠ ∅ ∧ 𝜏 ≤ 𝛼𝑒] ≥ 𝛼𝑒 − ∑
𝑓∈[𝑃,𝑒]

𝜇𝑓

By (⋆): 𝛼𝑡 ≥ 1 for last element 𝑡 of 𝑃

7



Feasible Decompositions in Abstract Networks (when 𝜋𝑃 = 1 − ∑𝑒∈𝑃 𝜇𝑒)

𝑆𝜏 ∶= {𝑒 ∈ 𝐸 ∶ 𝛼𝑒 − 𝜌𝑒 ≤ 𝜏 ≤ 𝛼𝑒}

with 𝛼𝑒 ∶= min
𝑃∈𝒫

∑
𝑓∈[𝑃,𝑒]

𝜌𝑓 + 𝜇𝑓 and 𝜏 ∼ 𝑈[0, 1]

∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

Construct random 𝑆 ⊆ 𝐸 with
Pr[𝑒 ∈ 𝑆] = 𝜌𝑒 ∀ 𝑒 ∈ 𝐸,

Pr[𝑃 ∩ 𝑆 ≠ ∅] ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫.

Theorem. 𝑆𝜏 is a feasible decomposition of 𝜌.
Proof sketch. Want to show: Pr [𝑆𝜏 ∩ 𝑃 ≠ ∅] ≥ 1 − ∑𝑒∈𝑃 𝜇𝑒

By induction: Pr [𝑆𝜏 ∩ [𝑃 , 𝑒] ≠ ∅ ∧ 𝜏 ≤ 𝛼𝑒] ≥ 𝛼𝑒 − ∑
𝑓∈[𝑃,𝑒]

𝜇𝑓

By (⋆): 𝛼𝑡 ≥ 1 for last element 𝑡 of 𝑃

7



Feasible Decompositions in Abstract Networks (when 𝜋𝑃 = 1 − ∑𝑒∈𝑃 𝜇𝑒)

𝑆𝜏 ∶= {𝑒 ∈ 𝐸 ∶ 𝛼𝑒 − 𝜌𝑒 ≤ 𝜏 ≤ 𝛼𝑒}

with 𝛼𝑒 ∶= min
𝑃∈𝒫

∑
𝑓∈[𝑃,𝑒]

𝜌𝑓 + 𝜇𝑓 and 𝜏 ∼ 𝑈[0, 1]

∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

Construct random 𝑆 ⊆ 𝐸 with
Pr[𝑒 ∈ 𝑆] = 𝜌𝑒 ∀ 𝑒 ∈ 𝐸,

Pr[𝑃 ∩ 𝑆 ≠ ∅] ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫.

Theorem. 𝑆𝜏 is a feasible decomposition of 𝜌.
Proof sketch. Want to show: Pr [𝑆𝜏 ∩ 𝑃 ≠ ∅] ≥ 1 − ∑𝑒∈𝑃 𝜇𝑒

By induction: Pr [𝑆𝜏 ∩ [𝑃 , 𝑒] ≠ ∅ ∧ 𝜏 ≤ 𝛼𝑒] ≥ 𝛼𝑒 − ∑
𝑓∈[𝑃,𝑒]

𝜇𝑓

By (⋆): 𝛼𝑡 ≥ 1 for last element 𝑡 of 𝑃 7



Induction Step

Hypothesis: Pr [𝑆𝜏 ∩ [𝑃 , 𝑒] ≠ ∅ ∧ 𝜏 ≤ 𝛼𝑒] ≥ 𝛼𝑒 − ∑𝑓∈[𝑃,𝑒] 𝜇𝑓

Claim: There is 𝑒′ ≻𝑃 𝑒 with 𝛼𝑒′ ≤ 𝛼𝑒 + 𝜌𝑒′ + 𝜇𝑒′ .

𝑒′ ∶= first edge on 𝑄 ×𝑒 𝑃 not in [𝑄, 𝑒]

Induction step: Replace 𝑒 by 𝑒′.
RHS increases by at most 𝜌𝑒′ .

8



Induction Step

Hypothesis: Pr [𝑆𝜏 ∩ [𝑃 , 𝑒] ≠ ∅ ∧ 𝜏 ≤ 𝛼𝑒] ≥ 𝛼𝑒 − ∑𝑓∈[𝑃,𝑒] 𝜇𝑓

Claim: There is 𝑒′ ≻𝑃 𝑒 with 𝛼𝑒′ ≤ 𝛼𝑒 + 𝜌𝑒′ + 𝜇𝑒′ .

𝑒′ ∶= first edge on 𝑄 ×𝑒 𝑃 not in [𝑄, 𝑒]

Induction step: Replace 𝑒 by 𝑒′.
RHS increases by at most 𝜌𝑒′ .

8



Induction Step

Hypothesis: Pr [𝑆𝜏 ∩ [𝑃 , 𝑒] ≠ ∅ ∧ 𝜏 ≤ 𝛼𝑒] ≥ 𝛼𝑒 − ∑𝑓∈[𝑃,𝑒] 𝜇𝑓

Claim: There is 𝑒′ ≻𝑃 𝑒 with 𝛼𝑒′ ≤ 𝛼𝑒 + 𝜌𝑒′ + 𝜇𝑒′ .

𝑒′ ∶= first edge on 𝑄 ×𝑒 𝑃 not in [𝑄, 𝑒]

Induction step: Replace 𝑒 by 𝑒′.
RHS increases by at most 𝜌𝑒′ .

8



Induction Step

Hypothesis: Pr [𝑆𝜏 ∩ [𝑃 , 𝑒] ≠ ∅ ∧ 𝜏 ≤ 𝛼𝑒] ≥ 𝛼𝑒 − ∑𝑓∈[𝑃,𝑒] 𝜇𝑓

Claim: There is 𝑒′ ≻𝑃 𝑒 with 𝛼𝑒′ ≤ 𝛼𝑒 + 𝜌𝑒′ + 𝜇𝑒′ .

𝑒′ ∶= first edge on 𝑄 ×𝑒 𝑃 not in [𝑄, 𝑒]

Induction step: Replace 𝑒 by 𝑒′.
RHS increases by at most 𝜌𝑒′ .

8



Induction Step

Hypothesis: Pr [𝑆𝜏 ∩ [𝑃 , 𝑒] ≠ ∅ ∧ 𝜏 ≤ 𝛼𝑒] ≥ 𝛼𝑒 − ∑𝑓∈[𝑃,𝑒] 𝜇𝑓

Claim: There is 𝑒′ ≻𝑃 𝑒 with 𝛼𝑒′ ≤ 𝛼𝑒 + 𝜌𝑒′ + 𝜇𝑒′ .

𝑒′ ∶= first edge on 𝑄 ×𝑒 𝑃 not in [𝑄, 𝑒]

Induction step: Replace 𝑒 by 𝑒′.
RHS increases by at most 𝜌𝑒′ .

8



Shortest Paths in Abstract Networks



How Do We Access Abstract Networks?

Membership oracle for an abstract network:
Given 𝐹 ⊆ 𝐸, either

• return 𝑃 ∈ 𝒫 (and ⪯𝑃 ) with 𝑃 ⊆ 𝐹 ,
• or assert that no such 𝑃 exists.

McCormick (SODA 1996):
• Combinatorial algorithm for MAX FLOW in abstract networks using
membership oracle (weakly poly-time).

• Strongly poly-time possible using stronger oracle?
E.g., shortest-path oracle?

9



How Do We Access Abstract Networks?

Membership oracle for an abstract network:
Given 𝐹 ⊆ 𝐸, either

• return 𝑃 ∈ 𝒫 (and ⪯𝑃 ) with 𝑃 ⊆ 𝐹 ,
• or assert that no such 𝑃 exists.

McCormick (SODA 1996):
• Combinatorial algorithm for MAX FLOW in abstract networks using
membership oracle (weakly poly-time).

• Strongly poly-time possible using stronger oracle?
E.g., shortest-path oracle?

9



Shortest Paths in Abstract Networks

Given: abstract network (𝐸, 𝒫), costs 𝑐 ∈ ℝ𝐸
+

Task: find 𝑃 ∈ 𝒫 minmizing 𝑐(𝑃 ) ∶= ∑𝑒∈𝑃 𝑐𝑒

WWDD?

Dijkstra’s Algorithm

labels 𝜙𝑒
paths 𝑄𝑒

𝜙𝑒 = ∑𝑓∈[𝑄𝑒,𝑒] 𝑐𝑓

10



Shortest Paths in Abstract Networks

Given: abstract network (𝐸, 𝒫), costs 𝑐 ∈ ℝ𝐸
+

Task: find 𝑃 ∈ 𝒫 minmizing 𝑐(𝑃 ) ∶= ∑𝑒∈𝑃 𝑐𝑒

WWDD?

Dijkstra’s Algorithm

labels 𝜙𝑒
paths 𝑄𝑒

𝜙𝑒 = ∑𝑓∈[𝑄𝑒,𝑒] 𝑐𝑓

10



Shortest Paths in Abstract Networks

Given: abstract network (𝐸, 𝒫), costs 𝑐 ∈ ℝ𝐸
+

Task: find 𝑃 ∈ 𝒫 minmizing 𝑐(𝑃 ) ∶= ∑𝑒∈𝑃 𝑐𝑒

WWDD?

Dijkstra’s Algorithm

labels 𝜙𝑒
paths 𝑄𝑒

𝜙𝑒 = ∑𝑓∈[𝑄𝑒,𝑒] 𝑐𝑓

10



Processing Elements

How to find all relevant ways to continue [𝑄𝑒, 𝑒]?

process(𝑒)
• 𝐹 ∶= 𝑇 \[𝑄𝑒, 𝑒]

• while ∃𝑃 ∈ 𝒫 with 𝑃 ⊆ 𝐸\𝐹 :
𝑓 ∶= min⪯𝑃

𝑃\[𝑄𝑒, 𝑒]
𝐹 ∶= 𝐹 ∪ {𝑓}
if 𝑐([𝑃 , 𝑓]) < 𝜙𝑓 then update 𝜙𝑓 and 𝑄𝑓

• 𝑇 ∶= 𝑇 ∪ {𝑒}

Lemma. After process(𝑒), for every 𝑃 ∈ 𝒫 with 𝑒 ∈ 𝑃 :
• there is 𝑓 ∈ 𝑃\𝑇 with 𝜙𝑓 ≤ 𝜙𝑒 + 𝑐𝑓 .

11



Processing Elements

How to find all relevant ways to continue [𝑄𝑒, 𝑒]?
process(𝑒)

• 𝐹 ∶= 𝑇 \[𝑄𝑒, 𝑒]

• while ∃𝑃 ∈ 𝒫 with 𝑃 ⊆ 𝐸\𝐹 :
𝑓 ∶= min⪯𝑃

𝑃\[𝑄𝑒, 𝑒]
𝐹 ∶= 𝐹 ∪ {𝑓}
if 𝑐([𝑃 , 𝑓]) < 𝜙𝑓 then update 𝜙𝑓 and 𝑄𝑓

• 𝑇 ∶= 𝑇 ∪ {𝑒}

Lemma. After process(𝑒), for every 𝑃 ∈ 𝒫 with 𝑒 ∈ 𝑃 :
• there is 𝑓 ∈ 𝑃\𝑇 with 𝜙𝑓 ≤ 𝜙𝑒 + 𝑐𝑓 .

11



Processing Elements

How to find all relevant ways to continue [𝑄𝑒, 𝑒]?
process(𝑒)

• 𝐹 ∶= 𝑇 \[𝑄𝑒, 𝑒]
• while ∃𝑃 ∈ 𝒫 with 𝑃 ⊆ 𝐸\𝐹 :

𝑓 ∶= min⪯𝑃
𝑃\[𝑄𝑒, 𝑒]

𝐹 ∶= 𝐹 ∪ {𝑓}
if 𝑐([𝑃 , 𝑓]) < 𝜙𝑓 then update 𝜙𝑓 and 𝑄𝑓

• 𝑇 ∶= 𝑇 ∪ {𝑒}

Lemma. After process(𝑒), for every 𝑃 ∈ 𝒫 with 𝑒 ∈ 𝑃 :
• there is 𝑓 ∈ 𝑃\𝑇 with 𝜙𝑓 ≤ 𝜙𝑒 + 𝑐𝑓 .

11



Processing Elements

How to find all relevant ways to continue [𝑄𝑒, 𝑒]?
process(𝑒)

• 𝐹 ∶= 𝑇 \[𝑄𝑒, 𝑒]
• while ∃𝑃 ∈ 𝒫 with 𝑃 ⊆ 𝐸\𝐹 :

𝑓 ∶= min⪯𝑃
𝑃\[𝑄𝑒, 𝑒]

𝐹 ∶= 𝐹 ∪ {𝑓}
if 𝑐([𝑃 , 𝑓]) < 𝜙𝑓 then update 𝜙𝑓 and 𝑄𝑓

• 𝑇 ∶= 𝑇 ∪ {𝑒}

Lemma. After process(𝑒), for every 𝑃 ∈ 𝒫 with 𝑒 ∈ 𝑃 :
• there is 𝑓 ∈ 𝑃\𝑇 with 𝜙𝑓 ≤ 𝜙𝑒 + 𝑐𝑓 .

11



Processing Elements

How to find all relevant ways to continue [𝑄𝑒, 𝑒]?
process(𝑒)

• 𝐹 ∶= 𝑇 \[𝑄𝑒, 𝑒]
• while ∃𝑃 ∈ 𝒫 with 𝑃 ⊆ 𝐸\𝐹 :

𝑓 ∶= min⪯𝑃
𝑃\[𝑄𝑒, 𝑒]

𝐹 ∶= 𝐹 ∪ {𝑓}
if 𝑐([𝑃 , 𝑓]) < 𝜙𝑓 then update 𝜙𝑓 and 𝑄𝑓

• 𝑇 ∶= 𝑇 ∪ {𝑒}

Lemma. After process(𝑒), for every 𝑃 ∈ 𝒫 with 𝑒 ∈ 𝑃 :
• there is 𝑓 ∈ 𝑃\𝑇 with 𝜙𝑓 ≤ 𝜙𝑒 + 𝑐𝑓 .

11



Processing Elements

How to find all relevant ways to continue [𝑄𝑒, 𝑒]?
process(𝑒)

• 𝐹 ∶= 𝑇 \[𝑄𝑒, 𝑒]
• while ∃𝑃 ∈ 𝒫 with 𝑃 ⊆ 𝐸\𝐹 :

𝑓 ∶= min⪯𝑃
𝑃\[𝑄𝑒, 𝑒]

𝐹 ∶= 𝐹 ∪ {𝑓}
if 𝑐([𝑃 , 𝑓]) < 𝜙𝑓 then update 𝜙𝑓 and 𝑄𝑓

• 𝑇 ∶= 𝑇 ∪ {𝑒}

Lemma. After process(𝑒), for every 𝑃 ∈ 𝒫 with 𝑒 ∈ 𝑃 :
• there is 𝑓 ∈ 𝑃\𝑇 with 𝜙𝑓 ≤ 𝜙𝑒 + 𝑐𝑓 .

11



Processing Elements

How to find all relevant ways to continue [𝑄𝑒, 𝑒]?
process(𝑒)

• 𝐹 ∶= 𝑇 \[𝑄𝑒, 𝑒]
• while ∃𝑃 ∈ 𝒫 with 𝑃 ⊆ 𝐸\𝐹 :

𝑓 ∶= min⪯𝑃
𝑃\[𝑄𝑒, 𝑒]

𝐹 ∶= 𝐹 ∪ {𝑓}
if 𝑐([𝑃 , 𝑓]) < 𝜙𝑓 then update 𝜙𝑓 and 𝑄𝑓

• 𝑇 ∶= 𝑇 ∪ {𝑒}

Lemma. After process(𝑒), for every 𝑃 ∈ 𝒫 with 𝑒 ∈ 𝑃 :
• there is 𝑓 ∈ 𝑃\𝑇 with 𝜙𝑓 ≤ 𝜙𝑒 + 𝑐𝑓 .

11



Processing Elements

How to find all relevant ways to continue [𝑄𝑒, 𝑒]?
process(𝑒)

• 𝐹 ∶= 𝑇 \[𝑄𝑒, 𝑒]
• while ∃𝑃 ∈ 𝒫 with 𝑃 ⊆ 𝐸\𝐹 :

𝑓 ∶= min⪯𝑃
𝑃\[𝑄𝑒, 𝑒]

𝐹 ∶= 𝐹 ∪ {𝑓}
if 𝑐([𝑃 , 𝑓]) < 𝜙𝑓 then update 𝜙𝑓 and 𝑄𝑓

• 𝑇 ∶= 𝑇 ∪ {𝑒}

Lemma. After process(𝑒), for every 𝑃 ∈ 𝒫 with 𝑒 ∈ 𝑃 :
• there is 𝑓 ∈ 𝑃\𝑇 with 𝜙𝑓 ≤ 𝜙𝑒 + 𝑐𝑓 .

11



Processing Elements

How to find all relevant ways to continue [𝑄𝑒, 𝑒]?
process(𝑒)

• 𝐹 ∶= 𝑇 \[𝑄𝑒, 𝑒]
• while ∃𝑃 ∈ 𝒫 with 𝑃 ⊆ 𝐸\𝐹 :

𝑓 ∶= min⪯𝑃
𝑃\[𝑄𝑒, 𝑒]

𝐹 ∶= 𝐹 ∪ {𝑓}
if 𝑐([𝑃 , 𝑓]) < 𝜙𝑓 then update 𝜙𝑓 and 𝑄𝑓

• 𝑇 ∶= 𝑇 ∪ {𝑒}

Lemma. After process(𝑒), for every 𝑃 ∈ 𝒫 with 𝑒 ∈ 𝑃 :
• there is 𝑓 ∈ 𝑃\𝑇 with 𝜙𝑓 ≤ 𝜙𝑒 + 𝑐𝑓 .

11



Processing Elements

How to find all relevant ways to continue [𝑄𝑒, 𝑒]?
process(𝑒)

• 𝐹 ∶= 𝑇 \[𝑄𝑒, 𝑒]
• while ∃𝑃 ∈ 𝒫 with 𝑃 ⊆ 𝐸\𝐹 :

𝑓 ∶= min⪯𝑃
𝑃\[𝑄𝑒, 𝑒]

𝐹 ∶= 𝐹 ∪ {𝑓}
if 𝑐([𝑃 , 𝑓]) < 𝜙𝑓 then update 𝜙𝑓 and 𝑄𝑓

• 𝑇 ∶= 𝑇 ∪ {𝑒}

Lemma. After process(𝑒), for every 𝑃 ∈ 𝒫 with 𝑒 ∈ 𝑃 :
• there is 𝑓 ∈ 𝑃\𝑇 with 𝜙𝑓 ≤ 𝜙𝑒 + 𝑐𝑓 .

11



Processing Elements

How to find all relevant ways to continue [𝑄𝑒, 𝑒]?
process(𝑒)

• 𝐹 ∶= 𝑇 \[𝑄𝑒, 𝑒]
• while ∃𝑃 ∈ 𝒫 with 𝑃 ⊆ 𝐸\𝐹 :

𝑓 ∶= min⪯𝑃
𝑃\[𝑄𝑒, 𝑒]

𝐹 ∶= 𝐹 ∪ {𝑓}
if 𝑐([𝑃 , 𝑓]) < 𝜙𝑓 then update 𝜙𝑓 and 𝑄𝑓

• 𝑇 ∶= 𝑇 ∪ {𝑒}

Lemma. After process(𝑒), for every 𝑃 ∈ 𝒫 with 𝑒 ∈ 𝑃 :
• there is 𝑓 ∈ 𝑃\𝑇 with 𝜙𝑓 ≤ 𝜙𝑒 + 𝑐𝑓 .

11



Conclusion

• (⋆)-sufficiency allows formulating problems via their marginals:

∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

• many systems are (⋆)-sufficient, including abstract networks
• feasible decompositions can be computed via a shortest-path algorithm

12



Overview & Open Questions

DAGs Abstract Networks Max-Flow/Min-Cut
(Dahan et al.) (incl. digraphs w. cycles)

Affine efficient algorithm efficient algorithm characterize
⇕ (explicit description) ⨁ (⋆)-sufficiency

Conservation (⋆)-sufficient (⋆)-sufficient TDI systems?
(exp.-time algorithm) (oracle-poly)

⨁ combinatorial shortest-path algorithm for abstract networks
Strongly poly-time algorithm for Abstract Max Flow?

Also: NP-hard to decide feasibility of given 𝜌 in general systems
Poly-time algorithms for some non-(⋆)-sufficient systems?

(⋆)-sufficiency under additional constraints on decomposition?

13



Copyright Note

“Portrait of Edsger W. Dijkstra, one of the greatest mathematicans in history of
modern mathematics.” ©2002 Hamilton Richards

obtained from en.wikipedia.org under CC BY-SA 3.0

14


	Feasible Decompositions in Abstract Networks
	Shortest Paths in Abstract Networks

