# Decomposition of Probability Marginals for Security Games in Abstract Networks (and Ideal Clutters)

Jannik Matuschke

KU Leuven

## From Marginals to Distributions

#### Input:

- $\boldsymbol{\cdot}$  ground set E
- $\boldsymbol{\cdot}$  set system  $\mathcal{P}\subseteq 2^E$
- + requirements  $\pi \in [0,1]^{\mathcal{P}}$
- + marginals  $\rho \in [0,1]^E$



1

## From Marginals to Distributions

#### Input:

- $\boldsymbol{\cdot}$  ground set E
- set system  $\mathcal{P}\subseteq 2^E$
- + requirements  $\pi \in [0,1]^{\mathcal{P}}$
- + marginals  $\rho \in [0,1]^E$

**Goal:** Find distribution for random set  $S \subseteq E$  such that

$$\Pr\left[e \in S\right] = \rho_e \qquad \forall \, e \in E,$$
$$\Pr\left[P \cap S \neq \emptyset\right] \geq \pi_P \qquad \forall \, P \in \mathcal{P}.$$



All feasible marginals  $\rho$  must fulfil:

$$\sum_{e \in P} \rho_e \geq \pi_P \quad \forall \, P \in \mathcal{P} \quad (\star)$$



All feasible marginals  $\rho$  must fulfil:

$$\sum_{e \in P} \rho_e \geq \pi_P \quad \forall P \in \mathcal{P} \quad (\star)$$

For which systems  $(\mathcal{P}, \pi)$  is  $(\star)$  also sufficent?



### Motivation: A Security Game



 $c_e$ : inspection cost  $\pi_P$ : risk threshold



$$\begin{array}{ll} \min \ \sum_{S \subseteq E} \sum_{e \in S} c_e \, x_S \\ \text{s.t.} \ \sum_{S: P \cap S \neq \emptyset} x_S \ \geq \ \pi_P \quad \forall \, P \in \mathcal{P} \\ \sum_{S \subseteq E} x_S \ = \ 1 \\ x \ \geq \ 0 \end{array}$$

#### Motivation: A Security Game



 $c_e$ : inspection cost  $\pi_P$ : risk threshold



If  $(\star)$  is sufficient:

$$\begin{split} \min \sum_{S \subseteq E} \sum_{e \in S} c_e \, x_S \\ \text{s.t.} \ \sum_{S: P \cap S \neq \emptyset} x_S \geq \pi_P \quad \forall \, P \in \mathcal{P} \\ \sum_{S \subseteq E} x_S = 1 \\ x \geq 0 \end{split}$$

 $\begin{array}{lll} \min & \displaystyle \sum_{e \in E} c_e \, \rho_e \\ \text{s.t.} & \displaystyle \sum_{e \in P} \rho_e \ \geq \ \pi_P & \forall \, P \in \mathcal{P} \\ & \rho \ \in \ [0,1]^E \end{array}$ 

### **Previous Results**

- $\mathcal{P} = \{s\text{-}t\text{-}\mathsf{paths in a DAG}\}$ , two settings for  $\pi$ :
- (A) Affine requirements:  $\pi_P = 1 \sum_{e \in P} \mu_e$  for some  $\mu \in [0, 1]^E$
- (C) Conservation law:  $\pi_P + \pi_Q = \pi_{P \times_v Q} + \pi_{Q \times_v P}$  for  $P, Q \in \mathcal{P}, v \in P \cap Q$



## **Previous Results**

 $\mathcal{P} = \{s\text{-}t\text{-}\mathsf{paths in a DAG}\}$ , two settings for  $\pi$ :

(A) Affine requirements:  $\pi_P = 1 - \sum_{e \in P} \mu_e$  for some  $\mu \in [0, 1]^E$ 

(C) Conservation law:  $\pi_P + \pi_Q = \pi_{P \times_v Q} + \pi_{Q \times_v P}$  for  $P, Q \in \mathcal{P}, v \in P \cap Q$ 

Note: (A)  $\Rightarrow$  (C).



## **Previous Results**

 $\mathcal{P} = \{s\text{-}t\text{-}\mathsf{paths in a DAG}\}, \text{two settings for } \pi:$ 

(A) Affine requirements:  $\pi_P = 1 - \sum_{e \in P} \mu_e$  for some  $\mu \in [0, 1]^E$ 

(C) Conservation law:  $\pi_P + \pi_Q = \pi_{P \times_v Q} + \pi_{Q \times_v P}$  for  $P, Q \in \mathcal{P}, v \in P \cap Q$ 



#### Their results:

- For (C): ( $\star$ ) is sufficient.
- For (A): Decomposition can be computed efficiently.
- Consequence: Computation of Nash equilibria for security game on DAG.

# DAGS (Dahan et al.)

# Affine efficient algorithm

Conservation



New Results

DAGs (Dahan et al.) Abstract Networks (incl. digraphs w. cycles) Affine efficient algorithm (explicit description)

Conservation

(\*) sufficient (exp.-time algorithm)

 $\bigoplus$  combinatorial shortest-path algorithm for abstract networks

New Results



 $\bigoplus$  combinatorial shortest-path algorithm for abstract networks



 $\bigoplus$  combinatorial shortest-path algorithm for abstract networks Also: NP-hard to decide feasibility of given  $\rho$  in general systems New Results



 $\bigoplus$  combinatorial shortest-path algorithm for abstract networks Also: NP-hard to decide feasibility of given  $\rho$  in general systems New Results



 $\bigoplus$  combinatorial shortest-path algorithm for abstract networks Also: NP-hard to decide feasibility of given  $\rho$  in general systems

#### Abstract Networks

#### Abstract network:

- set system  $(E, \mathcal{P})$
- · order  $\preceq_P$  for every  $P \in \mathcal{P}$
- · for every  $P, Q \in \mathcal{P}$  and  $e \in P \cap Q$ :

 $P\times_e Q\in \mathcal{P} \quad \text{contained in} \quad \{p\in P \ : \ p \preceq_P e\} \cup \{q\in Q \ : \ e \preceq_Q q\}.$ 



(when 
$$\pi_P = 1 - \sum_{e \in P} \mu_e$$
)

$$\sum_{e \in P} \rho_e \geq \pi_P \quad \forall \, P \in \mathcal{P} \quad (\star)$$

 $\begin{array}{l} \text{Construct random } S \subseteq E \text{ with} \\ \Pr\Big[ e \in S \Big] \; = \; \rho_e \qquad \forall \; e \in E, \\ \Pr\Big[ P \cap S \neq \emptyset \Big] \; \geq \; \pi_P \qquad \forall \; P \in \mathcal{P}. \end{array}$ 

(when 
$$\pi_P = 1 - \sum_{e \in P} \mu_e$$
)

$$\sum_{e \in P} \rho_e \geq \pi_P \quad \forall \, P \in \mathcal{P} \quad (\star)$$

Construct random 
$$S \subseteq E$$
 with  
 $\Pr[e \in S] = \rho_e \quad \forall e \in E,$   
 $\Pr[P \cap S \neq \emptyset] \geq \pi_P \quad \forall P \in \mathcal{P}.$ 

$$\alpha_e := \min_{P \in \mathcal{P}} \sum_{f \in [P,e]} \rho_f + \mu_f$$

$$\begin{array}{c} 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \end{array}$$

$$[P, e]$$

$$S_{\tau} := \left\{ e \in E \, : \, \alpha_e - \rho_e \leq \tau \leq \alpha_e \right\}$$

$$\text{ with } \alpha_e := \min_{P \in \mathcal{P}} \sum_{f \in [P,e]} \rho_f + \mu_f \quad \text{ and } \quad \tau \sim U[0,1]$$

$$\begin{array}{c} 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \end{array}$$

$$[P, e]$$

$$\sum_{e \in P} \rho_e \geq \pi_P \quad \forall \, P \in \mathcal{P} \quad (\star)$$

 $\begin{array}{l} \text{Construct random } S \subseteq E \text{ with} \\ \Pr\Big[ e \in S \Big] \; = \; \rho_e \qquad \forall \; e \in E, \\ \Pr\Big[ P \cap S \neq \emptyset \Big] \; \geq \; \pi_P \qquad \forall \; P \in \mathcal{P}. \end{array}$ 

**Theorem.**  $S_{\tau}$  is a feasible decomposition of  $\rho$ .

(when 
$$\pi_P = 1 - \sum_{e \in P} \mu_e$$
)

$$S_{\tau} := \left\{ e \in E \, : \, \alpha_e - \rho_e \leq \tau \leq \alpha_e \right\}$$

$$\text{ with } \alpha_e := \min_{P \in \mathcal{P}} \sum_{f \in [P,e]} \rho_f + \mu_f \quad \text{ and } \quad \tau \sim U[0,1]$$

$$\sum_{e\in P} \rho_e \geq \pi_P \quad \forall \, P \in \mathcal{P} \quad (\star)$$

 $\begin{array}{l} \text{Construct random } S \subseteq E \text{ with} \\ \Pr\Big[ e \in S \Big] \; = \; \rho_e \qquad \forall \, e \in E, \\ \Pr\Big[ P \cap S \neq \emptyset \Big] \; \geq \; \pi_P \qquad \forall \, P \in \mathcal{P}. \end{array}$ 

(when  $\pi_P = 1 - \overline{\sum_{e \in P} \mu_e}$ )

$$\begin{array}{c} 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \end{array}$$

$$[P, e]$$

**Theorem.**  $S_{\tau}$  is a feasible decomposition of  $\rho$ .

**Proof sketch.** Want to show:  $\Pr[S_{\tau} \cap P \neq \emptyset] \geq 1 - \sum_{e \in P} \mu_e$ 

$$S_{\tau} := \left\{ e \in E \, : \, \alpha_e - \rho_e \leq \tau \leq \alpha_e \right\}$$

$$\text{ with } \alpha_e := \min_{P \in \mathcal{P}} \sum_{f \in [P,e]} \rho_f + \mu_f \quad \text{ and } \quad \tau \sim U[0,1]$$

$$\sum_{e \in P} \rho_e \geq \pi_P \quad \forall \, P \in \mathcal{P} \quad (\star)$$

 $\begin{array}{l} \text{Construct random } S \subseteq E \text{ with} \\ \Pr\Big[ e \in S \Big] \; = \; \rho_e \qquad \forall \; e \in E, \\ \Pr\Big[ P \cap S \neq \emptyset \Big] \; \geq \; \pi_P \qquad \forall \; P \in \mathcal{P}. \end{array}$ 

(when  $\pi_P = 1 - \sum_{e \in P} \overline{\mu_e}$ )

$$\begin{array}{c} 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \end{array}$$

$$[P, e]$$

**Theorem.**  $S_{\tau}$  is a feasible decomposition of  $\rho$ .

**Proof sketch.** Want to show:  $\Pr[S_{\tau} \cap P \neq \emptyset] \ge 1 - \sum_{e \in P} \mu_e$ By induction:  $\Pr[S_{\tau} \cap [P, e] \neq \emptyset \land \tau \le \alpha_e] \ge \alpha_e - \sum_{f \in [P, e]} \mu_f$ 

$$S_{\tau} := \left\{ e \in E \, : \, \alpha_e - \rho_e \leq \tau \leq \alpha_e \right\}$$

$$\text{ with } \alpha_e := \min_{P \in \mathcal{P}} \sum_{f \in [P,e]} \rho_f + \mu_f \quad \text{ and } \quad \tau \sim U[0,1]$$

$$\sum_{e\in P} \rho_e \geq \pi_P \quad \forall \, P \in \mathcal{P} \quad (\star)$$

 $\begin{array}{l} \text{Construct random } S \subseteq E \text{ with} \\ \Pr\Big[ e \in S \Big] \; = \; \rho_e \qquad \forall \; e \in E, \\ \Pr\Big[ P \cap S \neq \emptyset \Big] \; \geq \; \pi_P \qquad \forall \; P \in \mathcal{P}. \end{array}$ 

(when  $\pi_P = 1 - \sum_{e \in P} \overline{\mu_e}$ )

$$\begin{array}{c} \bigcirc - & \neg & \bigcirc & \neg & \bigcirc \\ \hline P, e \end{bmatrix}$$

**Theorem.**  $S_{\tau}$  is a feasible decomposition of  $\rho$ .

**Proof sketch.** Want to show:  $\Pr[S_{\tau} \cap P \neq \emptyset] \ge 1 - \sum_{e \in P} \mu_e$ By induction:  $\Pr[S_{\tau} \cap [P, e] \neq \emptyset \land \tau \le \alpha_e] \ge \alpha_e - \sum_{f \in [P, e]} \mu_f$ By ( $\star$ ):  $\alpha_t > 1$  for last element t of P

# $\text{Hypothesis:}\qquad \Pr\left[S_{\tau}\cap[P,e]\neq \emptyset \,\wedge\, \tau\leq \alpha_{e}\right] \,\geq\, \alpha_{e}-\sum_{f\in[P,e]}\mu_{f}$

$$\text{Hypothesis:}\qquad \Pr\left[S_{\tau}\cap[P,e]\neq\emptyset\,\wedge\,\tau\leq\alpha_{e}\right]\,\geq\,\alpha_{e}-\sum_{f\in[P,e]}\mu_{f}$$

Claim: There is  $e' \succ_P e$  with  $\alpha_{e'} \leq \alpha_e + \rho_{e'} + \mu_{e'}$ .



$$\text{Hypothesis:}\qquad \Pr\left[S_{\tau}\cap[P,e]\neq\emptyset\,\wedge\,\tau\leq\alpha_{e}\right]\,\geq\,\alpha_{e}-\sum_{f\in[P,e]}\mu_{f}$$

Claim: There is  $e' \succ_P e$  with  $\alpha_{e'} \leq \alpha_e + \rho_{e'} + \mu_{e'}$ .

 $e':= {\rm first} \; {\rm edge} \; {\rm on} \; Q \times_e P \; {\rm not} \; {\rm in} \; [Q,e]$ 



$$\text{Hypothesis:}\qquad \Pr\left[S_{\tau}\cap[P,e]\neq\emptyset\,\wedge\,\tau\leq\alpha_{e}\right]\,\geq\,\alpha_{e}-\sum_{f\in[P,e]}\mu_{f}$$

Claim: There is  $e' \succ_P e$  with  $\alpha_{e'} \leq \alpha_e + \rho_{e'} + \mu_{e'}$ .





Induction step: Replace e by e'. RHS increases by at most  $\rho_{e'}$ .

$$\text{Hypothesis:}\qquad \Pr\left[S_{\tau}\cap[P,e]\neq\emptyset\,\wedge\,\tau\leq\alpha_{e}\right]\,\geq\,\alpha_{e}-\sum_{f\in[P,e]}\mu_{f}$$

Claim: There is  $e' \succ_P e$  with  $\alpha_{e'} \leq \alpha_e + \rho_{e'} + \mu_{e'}$ .

 $e':=\mathsf{first}\;\mathsf{edge}\;\mathsf{on}\;Q\times_eP$  not in [Q,e]





**Membership oracle** for an abstract network: Given  $F \subseteq E$ , either

- return  $P \in \mathcal{P}$  (and  $\leq_P$ ) with  $P \subseteq F$ ,
- $\cdot$  or assert that no such P exists.



**Membership oracle** for an abstract network: Given  $F \subseteq E$ , either

- return  $P \in \mathcal{P}$  (and  $\leq_P$ ) with  $P \subseteq F$ ,
- $\cdot$  or assert that no such P exists.



## McCormick (SODA 1996):

- Combinatorial algorithm for MAX FLOW in abstract networks using membership oracle (weakly poly-time).
- Strongly poly-time possible using stronger oracle? E.g., shortest-path oracle?

Given: abstract network  $(E, \mathcal{P})$ , costs  $c \in \mathbb{R}^E_+$ Task: find  $P \in \mathcal{P}$  minmizing  $c(P) := \sum_{e \in P} c_e$ 

Given: abstract network  $(E, \mathcal{P})$ , costs  $c \in \mathbb{R}^E_+$ Task: find  $P \in \mathcal{P}$  minmizing  $c(P) := \sum_{e \in P} c_e$ 



Given: abstract network  $(E, \mathcal{P})$ , costs  $c \in \mathbb{R}^E_+$ Task: find  $P \in \mathcal{P}$  minmizing  $c(P) := \sum_{e \in P} c_e$ 

#### Dijkstra's Algorithm





 $\begin{array}{l} \text{labels } \phi_e \\ \text{paths } Q_e \\ \phi_e = \sum_{f \in [Q_e,e]} c_f \end{array}$ 

How to find all relevant ways to continue  $[Q_e, e]$ ?



How to find all relevant ways to continue  $[Q_e, e]$ ?

• 
$$F := T \setminus [Q_e, e]$$



How to find all relevant ways to continue  $[Q_e,e]?$ 

- $\cdot \ F := T \backslash [Q_e, e]$
- while  $\exists P \in \mathcal{P}$  with  $P \subseteq E \setminus F$ :

$$\begin{split} f &:= \min_{\preceq_P} P \backslash [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q \end{split}$$



How to find all relevant ways to continue  $[Q_e,e]?$ 

- $\cdot \ F := T \backslash [Q_e, e]$
- while  $\exists P \in \mathcal{P}$  with  $P \subseteq E \setminus F$ :

$$\begin{split} f &:= \min_{\preceq_P} P \backslash [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q \end{split}$$



How to find all relevant ways to continue  $[Q_e,e]?$ 

- $\cdot \ F := T \backslash [Q_e, e]$
- while  $\exists P \in \mathcal{P}$  with  $P \subseteq E \setminus F$ :

$$\begin{split} f &:= \min_{\preceq_P} P \backslash [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q \end{split}$$



How to find all relevant ways to continue  $[Q_e,e]?$ 

- $\cdot \ F := T \backslash [Q_e, e]$
- while  $\exists P \in \mathcal{P}$  with  $P \subseteq E \setminus F$ :

$$\begin{split} f &:= \min_{\preceq_P} P \backslash [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q \end{split}$$



How to find all relevant ways to continue  $[Q_e,e]?$ 

- $\cdot \ F := T \backslash [Q_e, e]$
- while  $\exists P \in \mathcal{P}$  with  $P \subseteq E \setminus F$ :

$$\begin{split} f &:= \min_{\preceq_P} P \backslash [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q \end{split}$$



How to find all relevant ways to continue  $[Q_e,e]?$ 

- $\cdot \ F := T \backslash [Q_e, e]$
- while  $\exists P \in \mathcal{P}$  with  $P \subseteq E \setminus F$ :
  - $$\begin{split} f &:= \min_{\preceq_P} P \backslash [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q_f \end{split}$$
- $\cdot \ T := T \cup \{e\}$



How to find all relevant ways to continue  $[Q_e,e]?$ 

process(e)

- $\cdot \ F := T \backslash [Q_e, e]$
- while  $\exists P \in \mathcal{P}$  with  $P \subseteq E \setminus F$ :  $f := \min_{\leq P} P \setminus [Q_e, e]$  $F := F \cup \{f\}$

if 
$$c([P,f]) < \phi_f$$
 then update  $\phi_f$  and

 $\boldsymbol{\cdot} \ T := T \cup \{e\}$ 

**Lemma.** After process(e), for every  $P \in \mathcal{P}$  with  $e \in P$ :

Q .

• there is  $f \in P \setminus T$  with  $\phi_f \leq \phi_e + c_f$ .



How to find all relevant ways to continue  $[Q_e,e]?$ 

process(e)

- $\cdot \ F := T \backslash [Q_e, e]$
- while  $\exists P \in \mathcal{P}$  with  $P \subseteq E \setminus F$ :  $f := \min_{\preceq_P} P \setminus [Q_e, e]$

$$F := F \cup \{f\}$$

if 
$$c([P,f]) < \phi_f$$
 then update  $\phi_f$  and  $Q_j$ 

 $\cdot \ T := T \cup \{e\}$ 

**Lemma.** After process(e), for every  $P \in \mathcal{P}$  with  $e \in P$ :

• there is  $f \in P \setminus T$  with  $\phi_f \leq \phi_e + c_f$ .



How to find all relevant ways to continue  $[Q_e,e]?$ 

process(e)

- $\cdot \ F := T \backslash [Q_e, e]$
- while  $\exists P \in \mathcal{P}$  with  $P \subseteq E \setminus F$ :  $f := \min_{\prec_n} P \setminus [Q_e, e]$

$$F := F \cup \{$$

if 
$$c([P,f]) < \phi_f$$
 then update  $\phi_f$  and  $Q_j$ 

 $\cdot \ T := T \cup \{e\}$ 

**Lemma.** After process(e), for every  $P \in \mathcal{P}$  with  $e \in P$ :

• there is  $f \in P \setminus T$  with  $\phi_f \leq \phi_e + c_f$ .



Conclusion



• (\*)-sufficiency allows formulating problems via their marginals:

$$\sum_{e \in P} \rho_e \geq \pi_P \quad \forall \, P \in \mathcal{P} \quad (\star)$$

- many systems are (\*)-sufficient, including abstract networks
- feasible decompositions can be computed via a shortest-path algorithm

# **Overview & Open Questions**



⊕ combinatorial shortest-path algorithm for abstract networks Strongly poly-time algorithm for Abstract Max Flow?

Also: NP-hard to decide feasibility of given  $\rho$  in general systems Poly-time algorithms for some non-(\*)-sufficient systems?

 $(\star)$ -sufficiency under additional constraints on decomposition?

## Copyright Note



"Portrait of Edsger W. Dijkstra, one of the greatest mathematicans in history of modern mathematics." ©2002 Hamilton Richards

obtained from en.wikipedia.org under CC BY-SA 3.0