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Setting

Mixed-integer convex optimization:

Min f (x , y) : Rn+d → R with

f convex (possibly nonsmooth)

x ∈ Zn, y ∈ Rd

(x , y) ∈ C ⊂ Rn+d ,
C a convex set
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Setting

Mixed-integer convex optimization:

Can’t solve this exactly!

⇒ Only ask for ε-solution:
Feasible point
(x , y) : f (x , y)− OPTf ≤ ε.

But if C is tiny...
there is also a problem
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Setting

Parameterize the instances:

Definition

In,d ,R,ρ,M is the set of all MICO instances such that

(i) C is a subset of the box [−R,R]n+d .

(ii) Fiber containing optimum isn’t degenerate, but a ball of size ρ
in it is feasible.

(iii) f is M-Lipschitz
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Setting

Information Complexity:
How much information is needed to solve a problem?

Classical First-Order:
How many (exact) evaluations of function value and gradient or

separating hyperplanes?

Notice: Gradient length grows with dimension...
Gives more information with dimension!
Can we refine this in a meaningful way?

Goals of this work:

Study information complexity beyond exact first-order model

Tighten and generalize existing bounds
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Oracles Using First-Order Information

What kinds of oracles?

Definition

An oracle using first-order information consists of two parts:
1 For each point z ∈ Rn+d , a map gz that maps instances to

first-order information at z:
Function value and gradient (objective)
Feasibility flag and separating hyperplane (feasibility)
A collection of these for all z: “First order chart” G

2 A set of permissible queries H
h ∈ H functions taking first order information as input.

For query h at z, for instance J, oracle answers h(gz(J))

→ Pair (G,H) defines an oracle!
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Oracles Using First-Order Information

Large class of oracles with answers using only first-order info
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Examples: Oracles Using First-Order Information

What kinds of oracles can we get?

Standard first-order oracle: H has only the identity

Bit Queries: H output some designated bits of the function
value/gradient/sep. hyperplane.
→ How many bits of information does one need?

Directional Queries: Elements of H give the sign of the
inner product of the gradient/sep. hyperplane with a vector
hv = sign⟨v , gz⟩.

General Binary Queries: Let H contain all binary queries
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Lower Bounds

Theorem (Lower-Bound for Standard Oracle)

icomp = Ω

(
2n · d log

(
MR

ρε

))
.

Improvement on existing best bound (by incorporating M, ε).

Presents a 2n “transfer” of continuous case LB to MICO
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Lower Bounds

How to think about these lower-bounds...

Some continuous instance on each integer fiber:

In unit cube, 2n · ℓ means you need to solve all of them.
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Lower Bounds

Theorem (Lower-Bound for Standard Oracle)

icomp = Ω

(
2n · d log

(
MR

ρε

))
.

Improvement on existing best bound by incorporating M, ε.

Presents a 2n “transfer” of continuous case LB to MICO.

Conjecture (Transferring Lower-Bounds from Continuous to Mixed)

Oracle (G,H) using first-order info

A family of instances with a lower bound ℓ(d ,R, ε,M) for the
continuous case with this oracle

Then there exist a family of instances with lower-bound
2n · ℓ(d ,R, ε,M) for the general MICO case.

Conjecture proven for pure optimization case!
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Lower Bounds

Proof idea for optimization case of conjecture:

”Place” one continuous instance on each integer fiber x×Rd ,
x ∈ {0, 1}n.

Want: No query in the full space to give more information
than a query on one of the fiber functions
→ Extend the fiber functions to Rn+d such that any query
not on a fiber can be simulated by a query on a fiber

Construction:
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Lower Bounds

Theorem

If H contains only binary functions, with access to oracle (G,H)

icomp = Ω̃
(
d

8
7

)
.

Uses ideas from recent results on memory-constrained algorithms.
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Upper Bounds (n = 0 case)

Theorem

Instances with function values in [−U,U]

Permissible queries H are the bit or directional sign queries

icomp = O

(
d2 log2

(
dMR

ε

))
· log U

ε

− Roughly LB under exact oracle times d log(dMR
ε )

− ε-approximate gradient contains roughly d log(1ε ) bits

Conjecture (“The above upper-bound is good”)

When permissible queries H are binary functions,

icomp = Ω
(
d2 log

(
MR

ε

)2 )
.
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Upper Bounds

Theorem (Similar result in the general MICO case)

For the general MICO case with binary permissible queries H,

icomp = O

(
2nd (n + d)2 log2

(
dMR

min{ρ, 1}ε

))
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Upper Bounds

Theorem

Finitely many instances I ⊂ In,d ,R,ρ,M

H for the oracle consisting of all binary functions

icomp = O

(
log |I|+ d log

(
MR

ρε

))
Compare to:

Ω̃
(
d

8
7

)
lower-bound

Ω
(
d2 log

(
MR
ε

)2 )
conjectured lower-bound
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Upper Bounds

Proof idea for feasibility case:
Maintain a family U ⊆ I of the instances that are possible,
and a polyhedron P containing C .

Start with U = I and P = [−R,R]d .
We will be able to either reduce |U| or vol(P) by a constant
fraction with each query.

While |U| > 1 do the following:

Set p equal to be the centroid of P. If the separation oracle
at p reports that p ∈ C , then we return p.

Otherwise...
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Upper Bounds

Case 1: For all v, no more than half the instances C ′ ∈ U
give the answer g sep

p (C ′) = v.

⇒ there is a set of answers V ⊆ Rd such that between 1
4 |U|

and 3
4 |U| of the sets give an answer in V .

Query whether the true instance has g sep
p (C ) ∈ V .

⇒ Size of U decreases by at least 1/4.

Case 2: There exists v̄ ∈ Rd such that more than half of the
instances have g sep

p (C ′) = v̄.
Query whether the true instance has g sep

p (C ) = v̄.
⇒ Either size of U decreases by at least half, or we get an
exact separating hyperplane for the true instance to reduce
the volume of P by at least 1/e (Grünbaum’s theorem).

Reducing U can only happen log(|I |) times, and reducing the
volume of P can only happen d log( MR

min{ρ,1}ε) times.
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Thank you for your attention!

Questions?
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