Information complexity of mixed-integer convex optimization

Phillip Kerger Work with Amitabh Basu, Hongyi Jiang, and Marco Molinaro

June 2023, IPCO

Phillip Kerger Information Complexity of Convex M

1 Introduction

- Setting and Goals
- Oracles Using First-Order Information

2 Selected Results and Proof Ideas

- Lower Bounds
- Upper Bounds

1 Introduction

- Setting and Goals
- Oracles Using First-Order Information

2 Selected Results and Proof Ideas

- Lower Bounds
- Upper Bounds

Mixed-integer convex optimization:

Min $f(x, y) : \mathbb{R}^{n+d} \to \mathbb{R}$ with

- f convex (possibly nonsmooth)
- $x \in \mathbb{Z}^n, y \in \mathbb{R}^d$
- $(x, y) \in C \subset \mathbb{R}^{n+d}$, C a convex set

Mixed-integer convex optimization:

Can't solve this exactly!

⇒ Only ask for ε -solution: Feasible point $(x,y) : f(x,y) - OPT_f \le \varepsilon$.

Mixed-integer convex optimization:

Can't solve this exactly!

⇒ Only ask for ε -solution: Feasible point $(x,y) : f(x,y) - OPT_f \le \varepsilon$.

But if C is tiny... there is also a problem

Parameterize the instances:

Definition

 $\mathcal{I}_{n,d,R,\rho,M}$ is the set of all MICO instances such that

- (i) C is a subset of the box $[-R, R]^{n+d}$.
- (ii) Fiber containing optimum isn't degenerate, but a ball of size ρ in it is feasible.
- (iii) f is M-Lipschitz

How much information is needed to solve a problem?

回 とう ほ とう きょう

臣

How much information is needed to solve a problem?

Classical First-Order:

How many (exact) evaluations of function value and gradient or separating hyperplanes?

How much information is needed to solve a problem?

Classical First-Order:

How many (exact) evaluations of function value and gradient or separating hyperplanes?

Notice: Gradient length grows with dimension...

How much information is needed to solve a problem?

Classical First-Order:

How many (exact) evaluations of function value and gradient or separating hyperplanes?

Notice: Gradient length grows with dimension... Gives more information with dimension! Can we refine this in a meaningful way?

How much information is needed to solve a problem?

Classical First-Order:

How many (exact) evaluations of function value and gradient or separating hyperplanes?

Notice: Gradient length grows with dimension... Gives more information with dimension! Can we refine this in a meaningful way?

Goals of this work:

- Study information complexity beyond exact first-order model
- Tighten and generalize existing bounds

Oracles Using First-Order Information

What kinds of oracles?

▶ < 문 ▶ < 문 ▶</p>

Oracles Using First-Order Information

What kinds of oracles?

Definition

An oracle using first-order information consists of two parts:

Phillip Kerger Information Complexity of Convex MIP

Definition

- For each point $z \in \mathbb{R}^{n+d}$, a map g_z that maps instances to first-order information at z:
 - Function value and gradient (objective)
 - Feasibility flag and separating hyperplane (feasibility)
 - \bullet A collection of these for all z: "First order chart" $\mathcal G$

Definition

- For each point $z \in \mathbb{R}^{n+d}$, a map g_z that maps instances to first-order information at z:
 - Function value and gradient (objective)
 - Feasibility flag and separating hyperplane (feasibility)
 - \bullet A collection of these for all z: "First order chart" $\mathcal G$

Definition

- For each point $z \in \mathbb{R}^{n+d}$, a map g_z that maps instances to first-order information at z:
 - Function value and gradient (objective)
 - Feasibility flag and separating hyperplane (feasibility)
 - A collection of these for all z: "First order chart" ${\cal G}$
- A set of *permissible queries* H
 h ∈ H functions taking first order information as input.

Definition

- For each point $z \in \mathbb{R}^{n+d}$, a map g_z that maps instances to first-order information at z:
 - Function value and gradient (objective)
 - Feasibility flag and separating hyperplane (feasibility)
 - A collection of these for all z: "First order chart" ${\cal G}$
- A set of *permissible queries* H
 h ∈ H functions taking first order information as input.

Definition

An oracle using first-order information consists of two parts:

- For each point $z \in \mathbb{R}^{n+d}$, a map g_z that maps instances to first-order information at z:
 - Function value and gradient (objective)
 - Feasibility flag and separating hyperplane (feasibility)
 - \bullet A collection of these for all z: "First order chart" $\mathcal G$
- **2** A set of *permissible queries* \mathcal{H}

 $h \in \mathcal{H}$ functions taking first order information as input.

For query h at z, for instance J, oracle answers $h(g_z(J))$

 \rightarrow Pair (\mathcal{G}, \mathcal{H}) defines an oracle!

Query point $z \in \mathbb{R}^{n+d}$ with query $h \in \mathcal{H}$

Query
$$(z, h)$$

$$\langle Answer h(g_z(J)) \rangle$$

 g_z determined by first-order chart G

Query point $z \in \mathbb{R}^{n+d}$ with query $h \in \mathcal{H}$

Query
$$(z, h)$$

$$\langle Answer h(g_z(J)) \rangle$$

 g_z determined by first-order chart G

• Large class of oracles with answers using only first-order info

What kinds of oracles can we get?

 \bullet Standard first-order oracle: ${\cal H}$ has only the identity

What kinds of oracles can we get?

- Standard first-order oracle: ${\mathcal H}$ has only the identity
- **Bit Queries**: \mathcal{H} output some designated bits of the function value/gradient/sep. hyperplane.

 \rightarrow How many **bits** of information does one need?

What kinds of oracles can we get?

- Standard first-order oracle: \mathcal{H} has only the identity
- Bit Queries: *H* output some designated bits of the function value/gradient/sep. hyperplane.
 → How many bits of information does one need?
- Directional Queries: Elements of H give the sign of the inner product of the gradient/sep. hyperplane with a vector h_v = sign(v, g_z).

What kinds of oracles can we get?

- Standard first-order oracle: \mathcal{H} has only the identity
- Bit Queries: *H* output some designated bits of the function value/gradient/sep. hyperplane.
 → How many bits of information does one need?
- Directional Queries: Elements of *H* give the sign of the inner product of the gradient/sep. hyperplane with a vector h_v = sign(v, g_z).
- General Binary Queries: Let \mathcal{H} contain all binary queries

Introduction

- Setting and Goals
- Oracles Using First-Order Information

2 Selected Results and Proof Ideas

- Lower Bounds
- Upper Bounds

> < 물 > < 물 >

Theorem (Lower-Bound for Standard Oracle)

$$\operatorname{icomp} = \Omega\left(2^n \cdot d \log\left(\frac{MR}{\rho\varepsilon}\right)\right).$$

Phillip Kerger Information Complexity of Convex MIP

回 とう モン・モン

臣

Theorem (Lower-Bound for Standard Oracle)

$$\mathsf{icomp} = \Omega\left(2^n \cdot d \log\left(rac{MR}{
ho arepsilon}
ight)
ight).$$

• Improvement on existing best bound (by incorporating M, ε).

▶ < ≣ ▶

Theorem (Lower-Bound for Standard Oracle)

$$\mathsf{icomp} = \Omega\left(2^n \cdot d \log\left(rac{MR}{
ho arepsilon}
ight)
ight).$$

- Improvement on existing best bound (by incorporating M, ε).
- Presents a 2^n "transfer" of continuous case LB to MICO

How to think about these lower-bounds...

æ

How to think about these lower-bounds... Some continuous instance on each integer fiber:

How to think about these lower-bounds... Some continuous instance on each integer fiber:

In unit cube, $2^n \cdot \ell$ means you need to solve all of them.

Theorem (Lower-Bound for Standard Oracle)

$$\operatorname{icomp} = \Omega\left(2^n \cdot d \log\left(\frac{MR}{\rho\varepsilon}\right)\right).$$

- Improvement on existing best bound by incorporating M, ε .
- Presents a 2^n "transfer" of continuous case LB to MICO.

Theorem (Lower-Bound for Standard Oracle)

icomp =
$$\Omega\left(2^n \cdot d \log\left(\frac{MR}{\rho\varepsilon}\right)\right)$$
.

- Improvement on existing best bound by incorporating M, ε .
- Presents a 2^n "transfer" of continuous case LB to MICO.

Conjecture (Transferring Lower-Bounds from Continuous to Mixed)

- $\bullet~\mbox{Oracle}~(\mathcal{G},\mathcal{H})$ using first-order info
- A family of instances with a lower bound ℓ(d, R, ε, M) for the continuous case with this oracle

Then there exist a family of instances with lower-bound $2^n \cdot \ell(d, R, \varepsilon, M)$ for the general MICO case.

Conjecture proven for pure optimization case!

Proof idea for optimization case of conjecture:

• "Place" one continuous instance on each integer fiber $\mathbf{x} \times \mathbb{R}^d$, $\mathbf{x} \in \{0,1\}^n$.

Proof idea for optimization case of conjecture:

- "Place" one continuous instance on each integer fiber $\mathbf{x} \times \mathbb{R}^d$, $\mathbf{x} \in \{0,1\}^n$.
- Want: No query in the full space to give more information than a query on one of the fiber functions

Lower Bounds

Proof idea for optimization case of conjecture:

- "Place" one continuous instance on each integer fiber $\mathbf{x} \times \mathbb{R}^d$, $\mathbf{x} \in \{0,1\}^n$.
- Want: No query in the full space to give more information than a query on one of the fiber functions
 → Extend the fiber functions to ℝ^{n+d} such that any query not on a fiber can be simulated by a query on a fiber

Lower Bounds

Proof idea for optimization case of conjecture:

- "Place" one continuous instance on each integer fiber $\mathbf{x} \times \mathbb{R}^d$, $\mathbf{x} \in \{0,1\}^n$.
- Want: No query in the full space to give more information than a query on one of the fiber functions
 → Extend the fiber functions to ℝ^{n+d} such that any query not on a fiber can be simulated by a query on a fiber

Theorem

If H contains only binary functions, with access to oracle $(\mathcal{G}, \mathcal{H})$

$$\operatorname{icomp} = \tilde{\Omega}\left(d^{rac{8}{7}}
ight).$$

Phillip Kerger Information Complexity of Convex MIP

▶ ∢ ≣ ▶

Theorem

If H contains only binary functions, with access to oracle $(\mathcal{G}, \mathcal{H})$

$$\operatorname{icomp} = \tilde{\Omega}\left(d^{\frac{8}{7}}\right).$$

Uses ideas from recent results on memory-constrained algorithms.

Upper Bounds (n = 0 case)

Theorem

- Instances with function values in [-U, U]
- Permissible queries \mathcal{H} are the bit or directional sign queries $\operatorname{icomp} = O\left(d^2 \log^2\left(\frac{dMR}{\varepsilon}\right)\right) \cdot \log \frac{U}{\varepsilon}$

Upper Bounds (n = 0 case)

Theorem

- Instances with function values in [-U, U]
- \bullet Permissible queries ${\cal H}$ are the bit or directional sign queries

$$\mathsf{icomp} = O\left(d^2 \log^2\left(rac{dMR}{arepsilon}
ight)
ight) \cdot \lograc{U}{arepsilon}$$

- Roughly LB under *exact* oracle times $d \log(\frac{dMR}{\epsilon})$
- ε -approximate gradient contains roughly $d \log(\frac{1}{\varepsilon})$ bits

Conjecture ("The above upper-bound is good")

When permissible queries $\mathcal H$ are binary functions,

$$\operatorname{icomp} = \Omega\left(d^2 \log\left(\frac{MR}{\varepsilon}\right)^2\right)$$

Theorem (Similar result in the general MICO case)

For the general MICO case with binary permissible queries \mathcal{H} ,

$$\mathsf{icomp} = O\left(2^n d \,(n+d)^2 \log^2\left(\frac{dMR}{\min\{\rho,1\}\varepsilon}\right)\right)$$

→ < ≣ >

Theorem

- Finitely many instances $\mathcal{I} \subset \mathcal{I}_{n,d,R,\rho,M}$
- $\bullet~\mathcal{H}$ for the oracle consisting of all binary functions

$$icomp = O\left(\log |\mathcal{I}| + d \log\left(\frac{MR}{
ho \varepsilon}\right)\right)$$

Compare to:

$$\tilde{\Omega}\left(d^{\frac{8}{7}}\right)$$
 lower-bound
 $\Omega\left(d^2\log\left(\frac{MR}{\varepsilon}\right)^2\right)$ conjectured lower-bound

() 《문)

Proof idea for feasibility case: Maintain a family $\mathcal{U} \subseteq \mathcal{I}$ of the instances that are possible, and a polyhedron P containing C.

Start with $\mathcal{U} = \mathcal{I}$ and $P = [-R, R]^d$. We will be able to either reduce $|\mathcal{U}|$ or vol(P) by a constant fraction with each query. Proof idea for feasibility case: Maintain a family $\mathcal{U} \subseteq \mathcal{I}$ of the instances that are possible, and a polyhedron P containing C.

Start with $\mathcal{U} = \mathcal{I}$ and $P = [-R, R]^d$. We will be able to either reduce $|\mathcal{U}|$ or vol(P) by a constant fraction with each query.

While $|\mathcal{U}| > 1$ do the following:

 Set p equal to be the centroid of P. If the separation oracle at p reports that p ∈ C, then we return p.

Otherwise...

Case 1: For all v, no more than half the instances C' ∈ U give the answer g_p^{sep}(C') = v.

Case 1: For all v, no more than half the instances C' ∈ U give the answer g_p^{sep}(C') = v.

⇒ there is a set of answers $V \subseteq \mathbb{R}^d$ such that between $\frac{1}{4}|\mathcal{U}|$ and $\frac{3}{4}|\mathcal{U}|$ of the sets give an answer in V.

Case 1: For all v, no more than half the instances C' ∈ U give the answer g_p^{sep}(C') = v.

⇒ there is a set of answers $V \subseteq \mathbb{R}^d$ such that between $\frac{1}{4}|\mathcal{U}|$ and $\frac{3}{4}|\mathcal{U}|$ of the sets give an answer in V. Query whether the true instance has $g_p^{sep}(C) \in V$. ⇒ Size of \mathcal{U} decreases by at least 1/4.

Case 1: For all v, no more than half the instances C' ∈ U give the answer g_p^{sep}(C') = v.

⇒ there is a set of answers $V \subseteq \mathbb{R}^d$ such that between $\frac{1}{4}|\mathcal{U}|$ and $\frac{3}{4}|\mathcal{U}|$ of the sets give an answer in V. Query whether the true instance has $g_p^{sep}(C) \in V$. ⇒ Size of \mathcal{U} decreases by at least 1/4.

Case 2: There exists v
 ∈ ℝ^d such that more than half of the instances have g^{sep}_p(C') = v.

Case 1: For all v, no more than half the instances C' ∈ U give the answer g_p^{sep}(C') = v.

⇒ there is a set of answers $V \subseteq \mathbb{R}^d$ such that between $\frac{1}{4}|\mathcal{U}|$ and $\frac{3}{4}|\mathcal{U}|$ of the sets give an answer in V. Query whether the true instance has $g_p^{\text{sep}}(C) \in V$. ⇒ Size of \mathcal{U} decreases by at least 1/4.

Case 2: There exists v ∈ R^d such that more than half of the instances have g_p^{sep}(C') = v.
Query whether the true instance has g_p^{sep}(C) = v.
⇒ Either size of U decreases by at least half, or we get an exact separating hyperplane for the true instance to reduce the volume of P by at least 1/e (Grünbaum's theorem).

Case 1: For all v, no more than half the instances C' ∈ U give the answer g_p^{sep}(C') = v.

⇒ there is a set of answers $V \subseteq \mathbb{R}^d$ such that between $\frac{1}{4}|\mathcal{U}|$ and $\frac{3}{4}|\mathcal{U}|$ of the sets give an answer in V. Query whether the true instance has $g_p^{\text{sep}}(C) \in V$. ⇒ Size of \mathcal{U} decreases by at least 1/4.

Case 2: There exists v ∈ ℝ^d such that more than half of the instances have g_p^{sep}(C') = v.
 Query whether the true instance has g_p^{sep}(C) = v.
 ⇒ Either size of U decreases by at least half, or we get an exact separating hyperplane for the true instance to reduce the volume of P by at least 1/e (Grünbaum's theorem).

Reducing \mathcal{U} can only happen $\log(|I|)$ times, and reducing the volume of P can only happen $d \log(\frac{MR}{\min\{\rho, 1\}\varepsilon})$ times.

Thank you for your attention!

Questions?

Phillip Kerger Information Complexity of Convex MIP

∢ ≣ ≯