## Information complexity of mixed-integer convex optimization

Phillip Kerger

Work with Amitabh Basu, Hongyi Jiang, and Marco Molinaro

June 2023, IPCO

## Outline

(1) Introduction

- Setting and Goals
- Oracles Using First-Order Information
(2) Selected Results and Proof Ideas
- Lower Bounds
- Upper Bounds


## Outline

(1) Introduction

- Setting and Goals
- Oracles Using First-Order Information
(2) Selected Results and Proof Ideas
- Lower Bounds
- Upper Bounds


## Setting

## Mixed-integer convex optimization:

$\operatorname{Min} f(x, y): \mathbb{R}^{n+d} \rightarrow \mathbb{R}$ with

- $f$ convex (possibly nonsmooth)
- $x \in \mathbb{Z}^{n}, y \in \mathbb{R}^{d}$
- $(x, y) \in C \subset \mathbb{R}^{n+d}$,
$C$ a convex set



## Setting

## Mixed-integer convex optimization:

Can't solve this exactly!
$\Rightarrow$ Only ask for $\varepsilon$-solution:
Feasible point $(x, y): f(x, y)-O P T_{f} \leq \varepsilon$.


## Setting

## Mixed-integer convex optimization:

Can't solve this exactly!
$\Rightarrow$ Only ask for $\varepsilon$-solution:
Feasible point $(x, y): f(x, y)-O P T_{f} \leq \varepsilon$.

But if $C$ is tiny... there is also a problem


## Setting

Parameterize the instances:

## Definition

$\mathcal{I}_{n, d, R, \rho, M}$ is the set of all MICO instances such that
(i) $C$ is a subset of the box $[-R, R]^{n+d}$.
(ii) Fiber containing optimum isn't degenerate, but a ball of size $\rho$ in it is feasible.
(iii) $f$ is M-Lipschitz

## Setting

## Information Complexity:

How much information is needed to solve a problem?

## Setting

## Information Complexity:

How much information is needed to solve a problem?

## Classical First-Order:

How many (exact) evaluations of function value and gradient or separating hyperplanes?

## Setting

## Information Complexity:

How much information is needed to solve a problem?

## Classical First-Order:

How many (exact) evaluations of function value and gradient or separating hyperplanes?

Notice: Gradient length grows with dimension...

## Setting

## Information Complexity:

How much information is needed to solve a problem?

## Classical First-Order:

How many (exact) evaluations of function value and gradient or separating hyperplanes?

Notice: Gradient length grows with dimension... Gives more information with dimension!
Can we refine this in a meaningful way?

## Setting

## Information Complexity:

How much information is needed to solve a problem?

## Classical First-Order:

How many (exact) evaluations of function value and gradient or separating hyperplanes?

Notice: Gradient length grows with dimension... Gives more information with dimension!
Can we refine this in a meaningful way?

## Goals of this work:

- Study information complexity beyond exact first-order model
- Tighten and generalize existing bounds


## Oracles Using First-Order Information

## What kinds of oracles?

## Oracles Using First-Order Information

What kinds of oracles?

## Definition

An oracle using first-order information consists of two parts:

## Oracles Using First-Order Information

## What kinds of oracles?

## Definition

An oracle using first-order information consists of two parts:
(1) For each point $\mathbf{z} \in \mathbb{R}^{n+d}$, a map $g_{z}$ that maps instances to first-order information at $\mathbf{z}$ :

- Function value and gradient (objective)
- Feasibility flag and separating hyperplane (feasibility)
- A collection of these for all z: "First order chart" $\mathcal{G}$


## Oracles Using First-Order Information

## What kinds of oracles?

## Definition

An oracle using first-order information consists of two parts:
(1) For each point $\mathbf{z} \in \mathbb{R}^{n+d}$, a map $g_{z}$ that maps instances to first-order information at $\mathbf{z}$ :

- Function value and gradient (objective)
- Feasibility flag and separating hyperplane (feasibility)
- A collection of these for all z: "First order chart" $\mathcal{G}$


## Oracles Using First-Order Information

## What kinds of oracles?

## Definition

An oracle using first-order information consists of two parts:
(1) For each point $\mathbf{z} \in \mathbb{R}^{n+d}$, a map $g_{z}$ that maps instances to first-order information at $\mathbf{z}$ :

- Function value and gradient (objective)
- Feasibility flag and separating hyperplane (feasibility)
- A collection of these for all z: "First order chart" $\mathcal{G}$
(2) A set of permissible queries $\mathcal{H}$ $h \in \mathcal{H}$ functions taking first order information as input.


## Oracles Using First-Order Information

## What kinds of oracles?

## Definition

An oracle using first-order information consists of two parts:
(1) For each point $\mathbf{z} \in \mathbb{R}^{n+d}$, a map $g_{z}$ that maps instances to first-order information at $\mathbf{z}$ :

- Function value and gradient (objective)
- Feasibility flag and separating hyperplane (feasibility)
- A collection of these for all z: "First order chart" $\mathcal{G}$
(2) A set of permissible queries $\mathcal{H}$ $h \in \mathcal{H}$ functions taking first order information as input.


## Oracles Using First-Order Information

## What kinds of oracles?

## Definition

An oracle using first-order information consists of two parts:
(1) For each point $\mathbf{z} \in \mathbb{R}^{n+d}$, a map $g_{z}$ that maps instances to first-order information at $\mathbf{z}$ :

- Function value and gradient (objective)
- Feasibility flag and separating hyperplane (feasibility)
- A collection of these for all z: "First order chart" $\mathcal{G}$
(2) A set of permissible queries $\mathcal{H}$
$h \in \mathcal{H}$ functions taking first order information as input.
For query $h$ at $\mathbf{z}$, for instance $J$, oracle answers $h\left(g_{z}(J)\right)$
$\rightarrow$ Pair $(\mathcal{G}, \mathcal{H})$ defines an oracle!


## Oracles Using First-Order Information

Query point $z \in \mathbb{R}^{n+d}$ with query $h \in \mathcal{H}$


## Oracles Using First-Order Information

Query point $z \in \mathbb{R}^{n+d}$ with query $h \in \mathcal{H}$


- Large class of oracles with answers using only first-order info


## Examples: Oracles Using First-Order Information

What kinds of oracles can we get?

- Standard first-order oracle: $\mathcal{H}$ has only the identity


## Examples: Oracles Using First-Order Information

What kinds of oracles can we get?

- Standard first-order oracle: $\mathcal{H}$ has only the identity
- Bit Queries: $\mathcal{H}$ output some designated bits of the function value/gradient/sep. hyperplane.
$\rightarrow$ How many bits of information does one need?


## Examples: Oracles Using First-Order Information

What kinds of oracles can we get?

- Standard first-order oracle: $\mathcal{H}$ has only the identity
- Bit Queries: $\mathcal{H}$ output some designated bits of the function value/gradient/sep. hyperplane.
$\rightarrow$ How many bits of information does one need?
- Directional Queries: Elements of $\mathcal{H}$ give the sign of the inner product of the gradient/sep. hyperplane with a vector $h_{v}=\operatorname{sign}\left\langle v, g_{\mathbf{z}}\right\rangle$.


## Examples: Oracles Using First-Order Information

What kinds of oracles can we get?

- Standard first-order oracle: $\mathcal{H}$ has only the identity
- Bit Queries: $\mathcal{H}$ output some designated bits of the function value/gradient/sep. hyperplane.
$\rightarrow$ How many bits of information does one need?
- Directional Queries: Elements of $\mathcal{H}$ give the sign of the inner product of the gradient/sep. hyperplane with a vector $h_{v}=\operatorname{sign}\left\langle v, g_{\mathbf{z}}\right\rangle$.
- General Binary Queries: Let $\mathcal{H}$ contain all binary queries


## Outline

(1) Introduction

- Setting and Goals
- Oracles Using First-Order Information
(2) Selected Results and Proof Ideas
- Lower Bounds
- Upper Bounds


## Lower Bounds

## Theorem (Lower-Bound for Standard Oracle)

$$
\text { icomp }=\Omega\left(2^{n} \cdot d \log \left(\frac{M R}{\rho \varepsilon}\right)\right)
$$

## Lower Bounds

## Theorem (Lower-Bound for Standard Oracle)

$$
\text { icomp }=\Omega\left(2^{n} \cdot d \log \left(\frac{M R}{\rho \varepsilon}\right)\right)
$$

- Improvement on existing best bound (by incorporating $M, \varepsilon$ ).


## Lower Bounds

## Theorem (Lower-Bound for Standard Oracle)

$$
\text { icomp }=\Omega\left(2^{n} \cdot d \log \left(\frac{M R}{\rho \varepsilon}\right)\right)
$$

- Improvement on existing best bound (by incorporating $M, \varepsilon$ ).
- Presents a $2^{n}$ "transfer" of continuous case LB to MICO


## Lower Bounds

How to think about these lower-bounds...

## Lower Bounds

How to think about these lower-bounds...
Some continuous instance on each integer fiber:


## Lower Bounds

How to think about these lower-bounds...
Some continuous instance on each integer fiber:


In unit cube, $2^{n} \cdot \ell$ means you need to solve all of them.

## Lower Bounds

## Theorem (Lower-Bound for Standard Oracle)

$$
\text { icomp }=\Omega\left(2^{n} \cdot d \log \left(\frac{M R}{\rho \varepsilon}\right)\right)
$$

- Improvement on existing best bound by incorporating $M, \varepsilon$.
- Presents a $2^{n}$ "transfer" of continuous case LB to MICO.


## Lower Bounds

## Theorem (Lower-Bound for Standard Oracle)

$$
\text { icomp }=\Omega\left(2^{n} \cdot d \log \left(\frac{M R}{\rho \varepsilon}\right)\right)
$$

- Improvement on existing best bound by incorporating $M, \varepsilon$.
- Presents a $2^{n}$ "transfer" of continuous case LB to MICO.

Conjecture (Transferring Lower-Bounds from Continuous to Mixed)

- Oracle $(\mathcal{G}, \mathcal{H})$ using first-order info
- A family of instances with a lower bound $\ell(d, R, \varepsilon, M)$ for the continuous case with this oracle
Then there exist a family of instances with lower-bound $2^{n} \cdot \ell(d, R, \varepsilon, M)$ for the general MICO case.

Conjecture proven for pure optimization case!

## Lower Bounds

Proof idea for optimization case of conjecture:

- "Place" one continuous instance on each integer fiber $\mathbf{x} \times \mathbb{R}^{d}$, $\mathbf{x} \in\{0,1\}^{n}$.


## Lower Bounds

Proof idea for optimization case of conjecture:

- "Place" one continuous instance on each integer fiber $\mathbf{x} \times \mathbb{R}^{d}$, $\mathbf{x} \in\{0,1\}^{n}$.
- Want: No query in the full space to give more information than a query on one of the fiber functions


## Lower Bounds

Proof idea for optimization case of conjecture:

- "Place" one continuous instance on each integer fiber $\mathbf{x} \times \mathbb{R}^{d}$, $\mathbf{x} \in\{0,1\}^{n}$.
- Want: No query in the full space to give more information than a query on one of the fiber functions
$\rightarrow$ Extend the fiber functions to $\mathbb{R}^{n+d}$ such that any query not on a fiber can be simulated by a query on a fiber


## Lower Bounds

Proof idea for optimization case of conjecture:

- "Place" one continuous instance on each integer fiber $\mathbf{x} \times \mathbb{R}^{d}$, $\mathbf{x} \in\{0,1\}^{n}$.
- Want: No query in the full space to give more information than a query on one of the fiber functions
$\rightarrow$ Extend the fiber functions to $\mathbb{R}^{n+d}$ such that any query not on a fiber can be simulated by a query on a fiber

Construction:


## Lower Bounds

## Theorem

If $H$ contains only binary functions, with access to oracle $(\mathcal{G}, \mathcal{H})$

$$
\text { icomp }=\tilde{\Omega}\left(d^{\frac{8}{7}}\right)
$$

## Lower Bounds

## Theorem

If $H$ contains only binary functions, with access to oracle $(\mathcal{G}, \mathcal{H})$

$$
\text { icomp }=\tilde{\Omega}\left(d^{\frac{8}{7}}\right)
$$

Uses ideas from recent results on memory-constrained algorithms.

## Upper Bounds ( $n=0$ case)

Theorem

- Instances with function values in $[-U, U]$
- Permissible queries $\mathcal{H}$ are the bit or directional sign queries

$$
\text { icomp }=O\left(d^{2} \log ^{2}\left(\frac{d M R}{\varepsilon}\right)\right) \cdot \log \frac{U}{\varepsilon}
$$

## Upper Bounds ( $n=0$ case)

## Theorem

- Instances with function values in $[-U, U]$
- Permissible queries $\mathcal{H}$ are the bit or directional sign queries

$$
\text { icomp }=O\left(d^{2} \log ^{2}\left(\frac{d M R}{\varepsilon}\right)\right) \cdot \log \frac{U}{\varepsilon}
$$

- Roughly LB under exact oracle times $d \log \left(\frac{d M R}{\varepsilon}\right)$
- $\varepsilon$-approximate gradient contains roughly $d \log \left(\frac{1}{\varepsilon}\right)$ bits


## Conjecture ("The above upper-bound is good")

When permissible queries $\mathcal{H}$ are binary functions,

$$
\text { icomp }=\Omega\left(d^{2} \log \left(\frac{M R}{\varepsilon}\right)^{2}\right)
$$

## Upper Bounds

## Theorem (Similar result in the general MICO case)

For the general MICO case with binary permissible queries $\mathcal{H}$,

$$
\text { icomp }=O\left(2^{n} d(n+d)^{2} \log ^{2}\left(\frac{d M R}{\min \{\rho, 1\} \varepsilon}\right)\right)
$$

## Upper Bounds

## Theorem

- Finitely many instances $\mathcal{I} \subset \mathcal{I}_{n, d, R, \rho, M}$
- $\mathcal{H}$ for the oracle consisting of all binary functions

$$
i c o m p=O\left(\log |\mathcal{I}|+d \log \left(\frac{M R}{\rho \varepsilon}\right)\right)
$$

Compare to:
$\tilde{\Omega}\left(d^{\frac{8}{7}}\right)$ lower-bound
$\Omega\left(d^{2} \log \left(\frac{M R}{\varepsilon}\right)^{2}\right)$ conjectured lower-bound

## Upper Bounds

Proof idea for feasibility case:
Maintain a family $\mathcal{U} \subseteq \mathcal{I}$ of the instances that are possible, and a polyhedron $P$ containing $C$.

Start with $\mathcal{U}=\mathcal{I}$ and $P=[-R, R]^{d}$.
We will be able to either reduce $|\mathcal{U}|$ or vol $(P)$ by a constant fraction with each query.

## Upper Bounds

Proof idea for feasibility case:
Maintain a family $\mathcal{U} \subseteq \mathcal{I}$ of the instances that are possible, and a polyhedron $P$ containing $C$.

Start with $\mathcal{U}=\mathcal{I}$ and $P=[-R, R]^{d}$.
We will be able to either reduce $|\mathcal{U}|$ or $\operatorname{vol}(P)$ by a constant fraction with each query.

While $|\mathcal{U}|>1$ do the following:

- Set $\mathbf{p}$ equal to be the centroid of $P$. If the separation oracle at $\mathbf{p}$ reports that $\mathbf{p} \in C$, then we return $\mathbf{p}$.

Otherwise...

## Upper Bounds

- Case 1: For all v, no more than half the instances $C^{\prime} \in \mathcal{U}$ give the answer $g_{p}^{\text {sep }}\left(C^{\prime}\right)=\mathbf{v}$.


## Upper Bounds

- Case 1: For all v, no more than half the instances $C^{\prime} \in \mathcal{U}$ give the answer $g_{p}^{\text {sep }}\left(C^{\prime}\right)=\mathbf{v}$.
$\Rightarrow$ there is a set of answers $V \subseteq \mathbb{R}^{d}$ such that between $\frac{1}{4}|\mathcal{U}|$ and $\frac{3}{4}|\mathcal{U}|$ of the sets give an answer in $V$.


## Upper Bounds

- Case 1: For all v, no more than half the instances $C^{\prime} \in \mathcal{U}$ give the answer $g_{p}^{\text {sep }}\left(C^{\prime}\right)=\mathbf{v}$.
$\Rightarrow$ there is a set of answers $V \subseteq \mathbb{R}^{d}$ such that between $\frac{1}{4}|\mathcal{U}|$ and $\frac{3}{4}|\mathcal{U}|$ of the sets give an answer in $V$.
Query whether the true instance has $g_{\mathrm{p}}^{\text {sep }}(C) \in V$.
$\Rightarrow$ Size of $\mathcal{U}$ decreases by at least $1 / 4$.


## Upper Bounds

- Case 1: For all v, no more than half the instances $C^{\prime} \in \mathcal{U}$ give the answer $g_{p}^{\text {sep }}\left(C^{\prime}\right)=\mathbf{v}$.
$\Rightarrow$ there is a set of answers $V \subseteq \mathbb{R}^{d}$ such that between $\frac{1}{4}|\mathcal{U}|$ and $\frac{3}{4}|\mathcal{U}|$ of the sets give an answer in $V$.
Query whether the true instance has $g_{\mathrm{p}}^{\text {sep }}(C) \in V$. $\Rightarrow$ Size of $\mathcal{U}$ decreases by at least $1 / 4$.
- Case 2: There exists $\overline{\mathbf{v}} \in \mathbb{R}^{d}$ such that more than half of the instances have $g_{\mathrm{p}}^{\text {sep }}\left(C^{\prime}\right)=\overline{\mathbf{v}}$.


## Upper Bounds

- Case 1: For all $\mathbf{v}$, no more than half the instances $C^{\prime} \in \mathcal{U}$ give the answer $g_{p}^{\text {sep }}\left(C^{\prime}\right)=\mathbf{v}$.
$\Rightarrow$ there is a set of answers $V \subseteq \mathbb{R}^{d}$ such that between $\frac{1}{4}|\mathcal{U}|$ and $\frac{3}{4}|\mathcal{U}|$ of the sets give an answer in $V$.
Query whether the true instance has $g_{\mathrm{p}}^{\text {sep }}(C) \in V$. $\Rightarrow$ Size of $\mathcal{U}$ decreases by at least $1 / 4$.
- Case 2: There exists $\overline{\mathbf{v}} \in \mathbb{R}^{d}$ such that more than half of the instances have $g_{\mathrm{p}}^{\text {sep }}\left(C^{\prime}\right)=\overline{\mathbf{v}}$. Query whether the true instance has $g_{\mathbf{p}}^{\text {sep }}(C)=\overline{\mathbf{v}}$. $\Rightarrow$ Either size of $\mathcal{U}$ decreases by at least half, or we get an exact separating hyperplane for the true instance to reduce the volume of $P$ by at least $1 / e$ (Grünbaum's theorem).


## Upper Bounds

- Case 1: For all v, no more than half the instances $C^{\prime} \in \mathcal{U}$ give the answer $g_{p}^{\text {sep }}\left(C^{\prime}\right)=\mathbf{v}$.
$\Rightarrow$ there is a set of answers $V \subseteq \mathbb{R}^{d}$ such that between $\frac{1}{4}|\mathcal{U}|$ and $\frac{3}{4}|\mathcal{U}|$ of the sets give an answer in $V$.
Query whether the true instance has $g_{\mathbf{p}}^{\text {sep }}(C) \in V$.
$\Rightarrow$ Size of $\mathcal{U}$ decreases by at least $1 / 4$.
- Case 2: There exists $\overline{\mathbf{v}} \in \mathbb{R}^{d}$ such that more than half of the instances have $g_{\mathrm{p}}^{\text {sep }}\left(C^{\prime}\right)=\overline{\mathbf{v}}$.
Query whether the true instance has $g_{\mathbf{p}}^{\text {sep }}(C)=\overline{\mathbf{v}}$.
$\Rightarrow$ Either size of $\mathcal{U}$ decreases by at least half, or we get an exact separating hyperplane for the true instance to reduce the volume of $P$ by at least $1 / e$ (Grünbaum's theorem).
Reducing $\mathcal{U}$ can only happen $\log (|I|)$ times, and reducing the volume of $P$ can only happen $d \log \left(\frac{M R}{\min \{\rho, 1\} \varepsilon}\right)$ times.

Thank you for your attention!

## Questions?

