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Multicommodity Flow Problem

Topology: supply-demand graph pair (G ,H)

E (H) = {s1t1, . . . , sktk} (H is always drawn red)

Weights: capacities u ∈ ZE(G)
≥0 , demand weights d ∈ ZE(H)
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Feasible multiflow: family of si ti -flows f s1t1 , . . . f sk tk that

satisfies demands: f si ti has size d(si ti )

sum respects capacities:
∑

i f
si ti (e) ≤ u(e)
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Multicommodity Flow Example
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Satisfy demands? 3

Sum respects capacities? 3
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The Cut Condition

Definition (Cut Condition)

The cut condition holds if, for all S ⊆ V (G ):

(undirected) u (δG (S)) ≥ d (δG (S))

(directed) u
(
δ+
G (S)

)
≥ d

(
δ+
G (S)

)
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The cut condition is necessary for feasibility.

Theorem (Max-Flow Min-Cut, 1956)

If |E (H)| = 1 or H has a single source/single sink, the cut
condition is also sufficient.
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The Cut Condition is Not Enough

The cut condition is not always sufficient.
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Need to blow up the capacities by a factor of 1.5 to be feasible.

Definition

The congestion factor, denoted by α∗(G ,H, u, d), is the minimum
number α such that (G ,H, αu, d) has a feasible multiflow.

Here α∗ > 1, despite the cut condition being satisfied.
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Bad Weights

Definition

For a given topology (G ,H), we say weights (u, d) are bad when:

cut condition is satisfied, but

@ feasible multiflow (α∗ > 1).

Can be multiple bad weights for (G ,H).
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Bad weights, α∗ = 2
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Flow-Cut Gap

How badly can Max-Flow Min-Cut be violated for (G ,H)?

Definition (Flow-Cut Gap)

Fix a topology (G ,H).

Let CC = set of all weights (u, d) satisfying the cut condition.

The flow-cut gap of (G ,H) is:

gap(G ,H) = max
(u,d)∈CC

α∗(G ,H, u, d)

s t

From before: gap(G ,H) ≥ 2 for this topology.
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Cut-Sufficiency

Definition (Cut-Sufficient)

A topology (G ,H) is cut-sufficient if, for all weights (u, d),

(u, d) ∈ CC =⇒ ∃ a feasible routing for (G ,H, u, d)

Theorem

(G ,H) is cut-sufficient if:

|E (H)| = 1, single-source, single-sink,

(undirected) |E (H)| = 2 (Hu, 1963),

(undirected) G is planar and
V (H) ⊆ f for some face f (Okamura
and Seymour, 1981).
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Gap Questions

Flow-Cut Gap

Cut-Sufficiency

New Question:
Recognition

Forbidden
Minors

Cut-Sufficient
Families

General Bounds Gaps for
Families (e.g.

Series-Parallel)

Our focus: directed topologies (less well understood)
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Recognition

Can we recognize if (G ,H) is cut-sufficient?

Algorithm for undirected,
|E (H)| = 2:

function decide(G ,H)
return YES

end function

We prove a contrasting result.

Theorem

It is NP-hard to recognize if directed
(G ,H) is cut-sufficient, even if H is
fixed as a 2-cycle (roundtrip demands).

s

t

Later...
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Undirected Minors I

CS = {(G ,H) : gap(G ,H) = 1} is minor-closed for undirected
graphs.

“Minor”:

delete supply or demand edges,

contract supply edges

delete contract
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Undirected Minors II

Theorem (Chakrabarti, Fleischer, and Weibel, 2012)

If G is series-parallel, (G ,H) is cut-sufficient ⇐⇒ no odd spindle
as a minor.

Conjecture (Chakrabarti, Fleischer, and Weibel, 2012)

If G is planar, (G ,H) is cut-sufficient ⇐⇒ no odd spindle or
bad-K4-pair as a minor.

The 3-spindle.
The bad-K4-pair.
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Directed Minors I

CS is not minor-closed for directed graphs.

We:

develop a restricted type of minor called relevant minors, and

characterize cut-sufficiency for two fixed demand graphs.

Theorem

If H is a 2-cycle (roundtrip demands), (G ,H) is cut-sufficient
⇐⇒ it does not have the bad dual triangles as a relevant minor.

s t

The bad dual triangles.
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Directed Minors II

Theorem

If H is a path of length two (2-path demands), (G ,H) is
cut-sufficient ⇐⇒ it does not have the bad dual triangles or the
bad triangle as a relevant minor.

s t

The bad dual triangles.

r

t

s

The bad triangle.
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Undirected Minors and Extensions

Why minor-closed?

Bad weights certify non-cut-sufficiency.

Can extend bad weights (u, d) of a minor to bad weights
(uext, dext) for the original.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 +∞ +∞
+∞

1

1

1

1

uext(e) = 0 for a deleted supply edge.

dext(e) = 0 for a deleted demand edge.

uext(e) = +∞ for a contracted supply edge.
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Why minor-closed?
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Directed Relevant Minors

Fails for directed topologies.

r

t

s

1 1

1

11

r s

t

1 1

+∞1

11

The problem: the extension may not satisfy the cut condition.

Definition (Relevant Minor)

Let (G ′,H ′) be a minor of (G ,H). We say (G ′,H ′) is relevant if,
for all weights (u, d) for (G ′,H ′),

(u, d) ∈ CC(G ′,H ′) =⇒ (uext, dext) ∈ CC(G ,H)

CS is relevant-minor-closed.
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Useful Operations

Proposition

The following operations produce relevant minors:

deleting a supply or demand edge (easy),

contracting a strongly connected edge set (e.g. cycles),

contracting e = (a, b) where deg+
G (a) = 1 and deg−H(a) = 0,

contracting e = (a, b) where deg−G (b) = 1 and deg+
H(b) = 0.

a

b

e

a

b

e

Importantly: cycles and subdivisions.
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Entry-Exit Connected Sets

Special cases of general property: no “new si tj -connectivity”.

s1

s2

x1

x2 w

y1

y2

t1

t2

entry

entry

exit

exit

Definition

Let F ⊆ E (G ) be weakly connected. Node x ∈ V (F ) is an:

entry point if some si can reach x without using F ,

exit point if some tj is reachable from x without using F .

F is entry-exit connected (EEC) if F contains an xy -path for every
entry point x and exit point y .

Contractions of EEC sets produce relevant minors.
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Proof Overview

Theorem

If H is a 2-cycle (roundtrip demands), (G ,H) is cut-sufficient
⇐⇒ it does not have the bad dual triangles as a relevant minor.

s t

( =⇒ ) follows from closure. For (⇐= ), we give an algorithm.

Input: (G ,H) roundtrip, (u, d) satisfying the cut condition

Output: either

feasible multiflow, OR
show that (G ,H) has the bad dual triangles as a relevant
minor.
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Proof Setup

Proof Sketch.

Demand edges (s, t), (t, s).
Cut condition =⇒ can route commodities independently.

∃ st-flow f st of sufficient size

∃ ts-flow f ts of sufficient size

Case 1: Every path in f st is arc-disjoint from every path in f ts .

=⇒ feasible multiflow.

Case 2: In the flows, st-path P that shares an edge with ts-path Q.

s t

Joseph Poremba and Bruce Shepherd Cut-Suff. Directed 2-Commodity Multiflows 20 / 27



Proof Setup

Proof Sketch.

Demand edges (s, t), (t, s).

Cut condition =⇒ can route commodities independently.

∃ st-flow f st of sufficient size

∃ ts-flow f ts of sufficient size

Case 1: Every path in f st is arc-disjoint from every path in f ts .

=⇒ feasible multiflow.

Case 2: In the flows, st-path P that shares an edge with ts-path Q.

s t

Joseph Poremba and Bruce Shepherd Cut-Suff. Directed 2-Commodity Multiflows 20 / 27



Proof Setup

Proof Sketch.

Demand edges (s, t), (t, s).
Cut condition =⇒ can route commodities independently.

∃ st-flow f st of sufficient size

∃ ts-flow f ts of sufficient size

Case 1: Every path in f st is arc-disjoint from every path in f ts .

=⇒ feasible multiflow.

Case 2: In the flows, st-path P that shares an edge with ts-path Q.

s t

Joseph Poremba and Bruce Shepherd Cut-Suff. Directed 2-Commodity Multiflows 20 / 27



Proof Setup

Proof Sketch.

Demand edges (s, t), (t, s).
Cut condition =⇒ can route commodities independently.

∃ st-flow f st of sufficient size

∃ ts-flow f ts of sufficient size

Case 1: Every path in f st is arc-disjoint from every path in f ts .

=⇒ feasible multiflow.

Case 2: In the flows, st-path P that shares an edge with ts-path Q.

s t

Joseph Poremba and Bruce Shepherd Cut-Suff. Directed 2-Commodity Multiflows 20 / 27



Proof Setup

Proof Sketch.

Demand edges (s, t), (t, s).
Cut condition =⇒ can route commodities independently.

∃ st-flow f st of sufficient size

∃ ts-flow f ts of sufficient size

Case 1: Every path in f st is arc-disjoint from every path in f ts .

=⇒ feasible multiflow.

Case 2: In the flows, st-path P that shares an edge with ts-path Q.

s t

Joseph Poremba and Bruce Shepherd Cut-Suff. Directed 2-Commodity Multiflows 20 / 27



Proof Setup

Proof Sketch.

Demand edges (s, t), (t, s).
Cut condition =⇒ can route commodities independently.

∃ st-flow f st of sufficient size

∃ ts-flow f ts of sufficient size

Case 1: Every path in f st is arc-disjoint from every path in f ts .

=⇒ feasible multiflow.

Case 2: In the flows, st-path P that shares an edge with ts-path Q.

s t

Joseph Poremba and Bruce Shepherd Cut-Suff. Directed 2-Commodity Multiflows 20 / 27



Proof Setup

Proof Sketch.

Demand edges (s, t), (t, s).
Cut condition =⇒ can route commodities independently.

∃ st-flow f st of sufficient size

∃ ts-flow f ts of sufficient size

Case 1: Every path in f st is arc-disjoint from every path in f ts .

=⇒ feasible multiflow.

Case 2: In the flows, st-path P that shares an edge with ts-path Q.

s t

Joseph Poremba and Bruce Shepherd Cut-Suff. Directed 2-Commodity Multiflows 20 / 27



Proof Setup

Proof Sketch.

Demand edges (s, t), (t, s).
Cut condition =⇒ can route commodities independently.

∃ st-flow f st of sufficient size

∃ ts-flow f ts of sufficient size

Case 1: Every path in f st is arc-disjoint from every path in f ts .

=⇒ feasible multiflow.

Case 2: In the flows, st-path P that shares an edge with ts-path Q.

s t

Joseph Poremba and Bruce Shepherd Cut-Suff. Directed 2-Commodity Multiflows 20 / 27



Simplifying Path Interactions

Proof Sketch Cont’d.

Find a ts-path Q ′ within P ∪ Q that both:

still shares an edge with P, and

is opposing with P

whenever Q ′ leaves P, it hops to earlier on P

s t
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Contraction

Proof Sketch Cont’d.

Delete all supply edges except P ∪ Q ′, and start contracting!

Repeatedly contract cycles at the start or end of P

Be careful, want to preserve a shared edge

s t

Cs
Ct
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Subdivision

Proof Sketch Cont’d.

Eventually left with one common segment.

s t

A subdivision of the bad dual triangles! Contract!

s t

Similar pf. for 2-path demands (more cases, things to contract).
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Toward NP-hardness

Alternative structural characterization:

Theorem

Suppose (G ,H) has roundtrip demands. TFAE:

(G ,H) is cut-sufficient.

In G , every st-path is arc-disjoint from every ts-path.

Roundtrip (non-)cut-sufficiency ∼ 2-commodity UsefulEdge

Definition

UsefulEdge decision problem:

Input: Directed G = (V ,E ), (s, t) ∈ V × V , e ∈ E

Output: Whether ∃ a (simple) st-path that uses e?

NP-hard
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UsefulEdge decision problem:

Input: Directed G = (V ,E ), (s, t) ∈ V × V , e ∈ E

Output: Whether ∃ a (simple) st-path that uses e?
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NP-hardness Reduction

Theorem

It is NP-hard to recognize if directed (G ,H) is cut-sufficient, even
if H is fixed as a 2-cycle (roundtrip demands).

Given instance of UsefulEdge G , (s, t), e = (u, v)

Make a topology (G ′,H ′) with demands (s ′, t ′), (t ′, s ′).

s ′ s u u′ v ′ v t t ′

∃ unique t ′s ′-path Q,
Q uses e′ = (u′, v ′),
e′ is the only edge of Q that could be shared with an s ′t ′-path,
∃st-path in G using e ⇐⇒ ∃s ′t ′-path in G ′ using e′
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Towards a Complete 2-Commodity Characterization

The only remaining case (aside from single-source/sink) is
2-matching demands.

s1

s2 t1

t2

Conjecture

If (G ,H) has 2-matching demands, then it is cut-sufficient if and
only if it does not contain the bad triangle or bad dual triangles as
a relevant minor.

s t

r

t

s
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Partial Result

Approach from earlier...

Algorithm

Input: (G ,H), (u, d) satisfying the cut condition

Output: either

feasible multiflow, OR
show that (G ,H) has one of the desired relevant minors.

For 2-matching demands, we have an algorithm for d = ~1.

Proposition

If (G ,H) has 2-matching demands and bad weights (u, d) where
d(si ti ) = 1 for i = 1, 2, then it contains the bad triangle or bad
dual triangles as a relevant minor.

Joseph Poremba and Bruce Shepherd Cut-Suff. Directed 2-Commodity Multiflows 27 / 27



Partial Result

Approach from earlier...

Algorithm

Input: (G ,H), (u, d) satisfying the cut condition

Output: either

feasible multiflow, OR
show that (G ,H) has one of the desired relevant minors.

For 2-matching demands, we have an algorithm for d = ~1.

Proposition

If (G ,H) has 2-matching demands and bad weights (u, d) where
d(si ti ) = 1 for i = 1, 2, then it contains the bad triangle or bad
dual triangles as a relevant minor.

Joseph Poremba and Bruce Shepherd Cut-Suff. Directed 2-Commodity Multiflows 27 / 27



Partial Result

Approach from earlier...

Algorithm

Input: (G ,H), (u, d) satisfying the cut condition

Output: either

feasible multiflow, OR
show that (G ,H) has one of the desired relevant minors.

For 2-matching demands, we have an algorithm for d = ~1.

Proposition

If (G ,H) has 2-matching demands and bad weights (u, d) where
d(si ti ) = 1 for i = 1, 2, then it contains the bad triangle or bad
dual triangles as a relevant minor.

Joseph Poremba and Bruce Shepherd Cut-Suff. Directed 2-Commodity Multiflows 27 / 27


