Cut-Sufficient Directed 2-Commodity Multiflow Topologies

Joseph Poremba and Bruce Shepherd

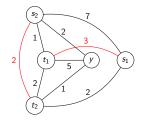
The University of British Columbia

IPCO 2023

June 21, 2023

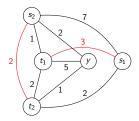
Multicommodity Flow Problem

Topology: supply-demand graph pair (G, H)• $E(H) = \{s_1 t_1, \dots, s_k t_k\}$ (*H* is always drawn red) Weights: capacities $u \in \mathbb{Z}_{\geq 0}^{E(G)}$, demand weights $d \in \mathbb{Z}_{\geq 0}^{E(H)}$



Multicommodity Flow Problem

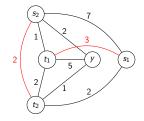
Topology: supply-demand graph pair (G, H)• $E(H) = \{s_1 t_1, \dots, s_k t_k\}$ (*H* is always drawn red) Weights: capacities $u \in \mathbb{Z}_{\geq 0}^{E(G)}$, demand weights $d \in \mathbb{Z}_{\geq 0}^{E(H)}$

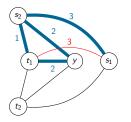


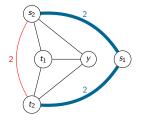
Feasible multiflow: family of $s_i t_i$ -flows $f^{s_1 t_1}, \ldots, f^{s_k t_k}$ that

- satisfies demands: $f^{s_i t_i}$ has size $d(s_i t_i)$
- sum respects capacities: $\sum_i f^{s_i t_i}(e) \le u(e)$

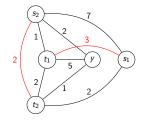
Multicommodity Flow Example

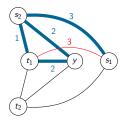


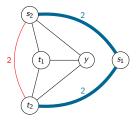




Multicommodity Flow Example







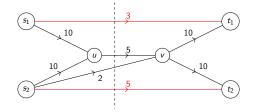
- \bullet Satisfy demands? \checkmark
- Sum respects capacities? ✓

The Cut Condition

Definition (Cut Condition)

The *cut condition* holds if, for all $S \subseteq V(G)$:

- (undirected) $u(\delta_G(S)) \ge d(\delta_G(S))$
- (directed) $u\left(\delta_{G}^{+}\left(S\right)\right) \geq d\left(\delta_{G}^{+}\left(S\right)\right)$

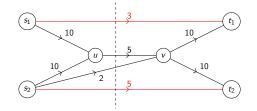


The Cut Condition

Definition (Cut Condition)

The *cut condition* holds if, for all $S \subseteq V(G)$:

- (undirected) $u(\delta_G(S)) \ge d(\delta_G(S))$
- (directed) $u\left(\delta_{G}^{+}\left(S\right)\right) \geq d\left(\delta_{G}^{+}\left(S\right)\right)$



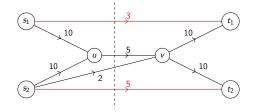
The cut condition is necessary for feasibility.

The Cut Condition

Definition (Cut Condition)

The *cut condition* holds if, for all $S \subseteq V(G)$:

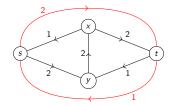
- (undirected) $u(\delta_G(S)) \ge d(\delta_G(S))$
- (directed) $u\left(\delta_{G}^{+}\left(S\right)\right) \geq d\left(\delta_{G}^{+}\left(S\right)\right)$



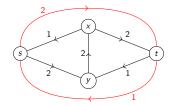
The cut condition is necessary for feasibility.

Theorem (Max-Flow Min-Cut, 1956) If |E(H)| = 1 or H has a single source/single sink, the cut condition is also sufficient.

The cut condition is not always sufficient.

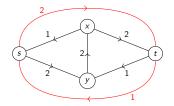


The cut condition is not always sufficient.



Need to blow up the capacities by a factor of 1.5 to be feasible.

The cut condition is not always sufficient.

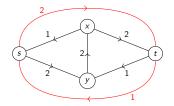


Need to blow up the capacities by a factor of 1.5 to be feasible.

Definition

The congestion factor, denoted by $\alpha^*(G, H, u, d)$, is the minimum number α such that $(G, H, \alpha u, d)$ has a feasible multiflow.

The cut condition is not always sufficient.



Need to blow up the capacities by a factor of 1.5 to be feasible.

Definition

The congestion factor, denoted by $\alpha^*(G, H, u, d)$, is the minimum number α such that $(G, H, \alpha u, d)$ has a feasible multiflow.

Here $\alpha^* > 1$, despite the cut condition being satisfied.

For a given topology (G, H), we say weights (u, d) are bad when:

- cut condition is satisfied, but
- \nexists feasible multiflow ($\alpha^* > 1$).

For a given topology (G, H), we say weights (u, d) are bad when:

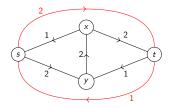
- cut condition is satisfied, but
- \nexists feasible multiflow ($\alpha^* > 1$).

Can be multiple bad weights for (G, H).

For a given topology (G, H), we say weights (u, d) are bad when:

- cut condition is satisfied, but
- \nexists feasible multiflow ($\alpha^* > 1$).

Can be multiple bad weights for (G, H).

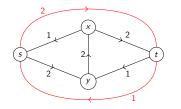


Bad weights, $\alpha^* = 1.5$

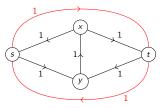
For a given topology (G, H), we say weights (u, d) are bad when:

- cut condition is satisfied, but
- \nexists feasible multiflow ($\alpha^* > 1$).

Can be multiple bad weights for (G, H).



Bad weights, $\alpha^* = 1.5$



Bad weights, $\alpha^*=\mathbf{2}$

How badly can Max-Flow Min-Cut be violated for (G, H)?

How badly can Max-Flow Min-Cut be violated for (G, H)?

Definition (Flow-Cut Gap)

Fix a topology (G, H).

How badly can Max-Flow Min-Cut be violated for (G, H)?

Definition (Flow-Cut Gap)

- Fix a topology (G, H).
 - Let CC = set of all weights (u, d) satisfying the cut condition.

How badly can Max-Flow Min-Cut be violated for (G, H)?

Definition (Flow-Cut Gap)

Fix a topology (G, H).

- Let CC = set of all weights (u, d) satisfying the cut condition.
- The *flow-cut gap* of (G, H) is:

$$gap(G, H) = \max_{(u,d) \in CC} \alpha^*(G, H, u, d)$$

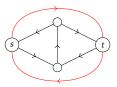
How badly can Max-Flow Min-Cut be violated for (G, H)?

Definition (Flow-Cut Gap)

Fix a topology (G, H).

- Let CC = set of all weights (u, d) satisfying the cut condition.
- The *flow-cut gap* of (*G*, *H*) is:

$$gap(G, H) = \max_{(u,d) \in \mathcal{CC}} \alpha^*(G, H, u, d)$$



From before: $gap(G, H) \ge 2$ for this topology.

A topology (G, H) is *cut-sufficient* if, for all weights (u, d),

 $(u,d) \in \mathcal{CC} \implies \exists$ a feasible routing for (G,H,u,d)

A topology (G, H) is *cut-sufficient* if, for all weights (u, d),

 $(u,d) \in \mathcal{CC} \implies \exists$ a feasible routing for (G,H,u,d)

Theorem

(G, H) is cut-sufficient if:

A topology (G, H) is *cut-sufficient* if, for all weights (u, d),

 $(u,d) \in \mathcal{CC} \implies \exists$ a feasible routing for (G,H,u,d)

Theorem

(G, H) is cut-sufficient if:

• |E(H)| = 1, single-source, single-sink,

A topology (G, H) is *cut-sufficient* if, for all weights (u, d),

 $(u,d) \in \mathcal{CC} \implies \exists$ a feasible routing for (G,H,u,d)

Theorem

(G, H) is cut-sufficient if:

- |E(H)| = 1, single-source, single-sink,
- (undirected) |E(H)| = 2 (Hu, 1963),

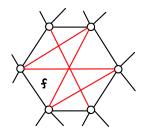
A topology (G, H) is *cut-sufficient* if, for all weights (u, d),

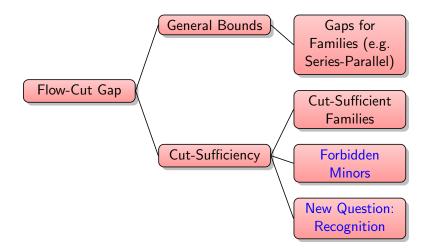
 $(u,d) \in \mathcal{CC} \implies \exists$ a feasible routing for (G,H,u,d)

Theorem

(G, H) is cut-sufficient if:

- |E(H)| = 1, single-source, single-sink,
- (undirected) |E(H)| = 2 (Hu, 1963),
- (undirected) G is planar and V(H) ⊆ f for some face f (Okamura and Seymour, 1981).





Our focus: directed topologies (less well understood)

Can we recognize if (G, H) is cut-sufficient?

Can we recognize if (G, H) is cut-sufficient?

Algorithm for undirected, |E(H)| = 2:

Can we recognize if (G, H) is cut-sufficient?

```
Algorithm for undirected, |E(H)| = 2:
```

```
function DECIDE(G, H)
return YES
end function
```

Can we recognize if (G, H) is cut-sufficient?

Algorithm for undirected, We prove a contrasting result. |E(H)| = 2:

```
function DECIDE(G, H)
return YES
end function
```

Can we recognize if (G, H) is cut-sufficient?

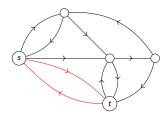
Algorithm for undirected, |E(H)| = 2:

function DECIDE(G, H)
return YES
end function

We prove a contrasting result.

Theorem

It is NP-hard to recognize if directed (G, H) is cut-sufficient, even if H is fixed as a 2-cycle (roundtrip demands).



Can we recognize if (G, H) is cut-sufficient?

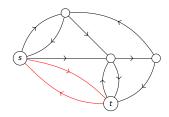
Algorithm for undirected, |E(H)| = 2:

function DECIDE(G, H)
return YES
end function

We prove a contrasting result.

Theorem

It is NP-hard to recognize if directed (G, H) is cut-sufficient, even if H is fixed as a 2-cycle (roundtrip demands).



Later...

Undirected Minors I

 $CS = \{(G, H) : gap(G, H) = 1\}$ is minor-closed for undirected graphs.

Undirected Minors I

 $CS = \{(G, H) : gap(G, H) = 1\}$ is minor-closed for undirected graphs. "Minor":

Undirected Minors I

 $CS = \{(G, H) : gap(G, H) = 1\}$ is minor-closed for undirected graphs. "Minor":

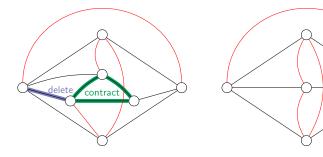
• delete supply or demand edges,

 $CS = \{(G, H) : gap(G, H) = 1\}$ is minor-closed for undirected graphs. "Minor":

- delete supply or demand edges,
- contract supply edges

 $CS = \{(G, H) : gap(G, H) = 1\}$ is minor-closed for undirected graphs. "Minor":

- delete supply or demand edges,
- contract supply edges



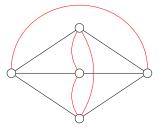
Theorem (Chakrabarti, Fleischer, and Weibel, 2012)

If G is series-parallel, (G, H) is cut-sufficient \iff no odd spindle

as a minor.

Theorem (Chakrabarti, Fleischer, and Weibel, 2012)

If G is series-parallel, (G, H) is cut-sufficient \iff no odd spindle as a minor.



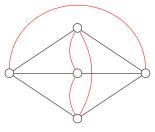
The 3-spindle.

Theorem (Chakrabarti, Fleischer, and Weibel, 2012)

If G is series-parallel, (G, H) is cut-sufficient \iff no odd spindle as a minor.

Conjecture (Chakrabarti, Fleischer, and Weibel, 2012)

If G is planar, (G, H) is cut-sufficient \iff no odd spindle or bad- K_4 -pair as a minor.



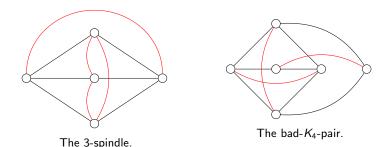
The 3-spindle.

Theorem (Chakrabarti, Fleischer, and Weibel, 2012)

If G is series-parallel, (G, H) is cut-sufficient \iff no odd spindle as a minor.

Conjecture (Chakrabarti, Fleischer, and Weibel, 2012)

If G is planar, (G, H) is cut-sufficient \iff no odd spindle or bad- K_4 -pair as a minor.



Joseph Poremba and Bruce Shepherd Cut-Suff. Directed 2-Commodity Multiflows 12/27

Directed Minors I

 \mathcal{CS} is not minor-closed for directed graphs.

Directed Minors I

 \mathcal{CS} is not minor-closed for directed graphs. We:

- develop a restricted type of minor called relevant minors, and
- characterize cut-sufficiency for two fixed demand graphs.

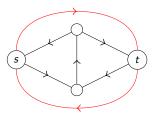
Directed Minors I

 \mathcal{CS} is not minor-closed for directed graphs. We:

- develop a restricted type of minor called relevant minors, and
- characterize cut-sufficiency for two fixed demand graphs.

Theorem

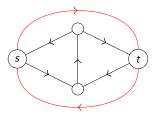
If H is a 2-cycle (roundtrip demands), (G, H) is cut-sufficient \iff it does not have the bad dual triangles as a relevant minor.



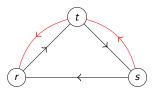
The bad dual triangles.

Theorem

If H is a path of length two (2-path demands), (G, H) is cut-sufficient \iff it does not have the bad dual triangles or the bad triangle as a relevant minor.



The bad dual triangles.



The bad triangle.

Why minor-closed?

Why minor-closed?

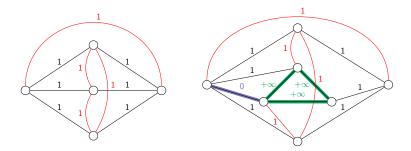
• Bad weights *certify* non-cut-sufficiency.

Why minor-closed?

- Bad weights *certify* non-cut-sufficiency.
- Can *extend* bad weights (*u*, *d*) of a minor to bad weights (*u*_{ext}, *d*_{ext}) for the original.

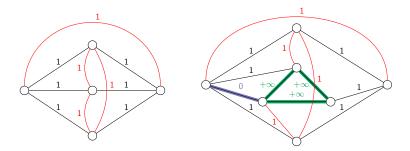
Why minor-closed?

- Bad weights *certify* non-cut-sufficiency.
- Can *extend* bad weights (*u*, *d*) of a minor to bad weights (*u*_{ext}, *d*_{ext}) for the original.



Why minor-closed?

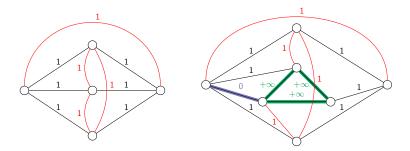
- Bad weights *certify* non-cut-sufficiency.
- Can *extend* bad weights (*u*, *d*) of a minor to bad weights (*u*_{ext}, *d*_{ext}) for the original.



• $u_{\text{ext}}(e) = 0$ for a deleted supply edge.

Why minor-closed?

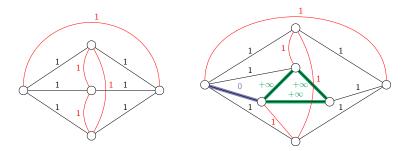
- Bad weights *certify* non-cut-sufficiency.
- Can *extend* bad weights (*u*, *d*) of a minor to bad weights (*u*_{ext}, *d*_{ext}) for the original.



- $u_{\text{ext}}(e) = 0$ for a deleted supply edge.
- $d_{\text{ext}}(e) = 0$ for a deleted demand edge.

Why minor-closed?

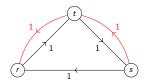
- Bad weights *certify* non-cut-sufficiency.
- Can *extend* bad weights (*u*, *d*) of a minor to bad weights (*u*_{ext}, *d*_{ext}) for the original.

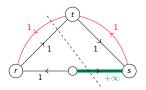


- $u_{\text{ext}}(e) = 0$ for a deleted supply edge.
- $d_{\text{ext}}(e) = 0$ for a deleted demand edge.
- $u_{\text{ext}}(e) = +\infty$ for a contracted supply edge.

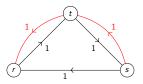
Fails for directed topologies.

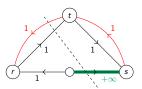
Fails for directed topologies.





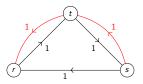
Fails for directed topologies.

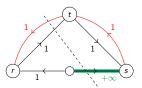




The problem: the extension may not satisfy the cut condition.

Fails for directed topologies.

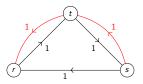


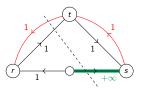


The problem: the extension may not satisfy the cut condition.

Definition (Relevant Minor) Let (G', H') be a minor of (G, H).

Fails for directed topologies.



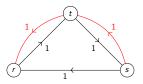


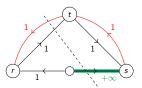
The problem: the extension may not satisfy the cut condition.

Definition (Relevant Minor)

Let (G', H') be a minor of (G, H). We say (G', H') is *relevant* if, for all weights (u, d) for (G', H'),

Fails for directed topologies.





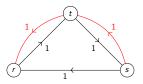
The problem: the extension may not satisfy the cut condition.

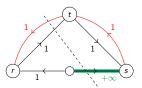
Definition (Relevant Minor)

Let (G', H') be a minor of (G, H). We say (G', H') is *relevant* if, for all weights (u, d) for (G', H'),

$$(u,d) \in \mathcal{CC}(G',H') \implies (u_{\mathsf{ext}},d_{\mathsf{ext}}) \in \mathcal{CC}(G,H)$$

Fails for directed topologies.





The problem: the extension may not satisfy the cut condition.

Definition (Relevant Minor)

Let (G', H') be a minor of (G, H). We say (G', H') is *relevant* if, for all weights (u, d) for (G', H'),

$$(u,d) \in \mathcal{CC}(G',H') \implies (u_{\text{ext}},d_{\text{ext}}) \in \mathcal{CC}(G,H)$$

 \mathcal{CS} is relevant-minor-closed.

Proposition

Proposition

The following operations produce relevant minors:

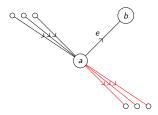
• deleting a supply or demand edge (easy),

Proposition

- deleting a supply or demand edge (easy),
- contracting a strongly connected edge set (e.g. cycles),

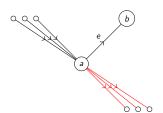
Proposition

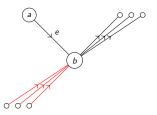
- deleting a supply or demand edge (easy),
- contracting a strongly connected edge set (e.g. cycles),
- contracting e = (a, b) where $\deg_{G}^{+}(a) = 1$ and $\deg_{H}^{-}(a) = 0$,



Proposition

- deleting a supply or demand edge (easy),
- contracting a strongly connected edge set (e.g. cycles),
- contracting e = (a, b) where deg⁺_G(a) = 1 and deg⁻_H(a) = 0,
- contracting e = (a, b) where $\deg_{G}^{-}(b) = 1$ and $\deg_{H}^{+}(b) = 0$.

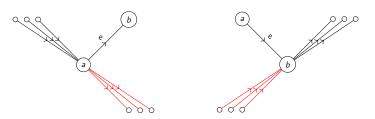




Proposition

The following operations produce relevant minors:

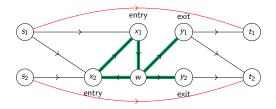
- deleting a supply or demand edge (easy),
- contracting a strongly connected edge set (e.g. cycles),
- contracting e = (a, b) where deg⁺_G(a) = 1 and deg⁻_H(a) = 0,
- contracting e = (a, b) where $\deg_{G}^{-}(b) = 1$ and $\deg_{H}^{+}(b) = 0$.



Importantly: cycles and subdivisions.

Special cases of general property: no "new $s_i t_j$ -connectivity".

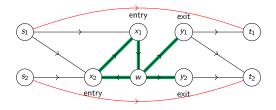
Special cases of general property: no "new $s_i t_j$ -connectivity".



Definition

Let $F \subseteq E(G)$ be weakly connected. Node $x \in V(F)$ is an:

Special cases of general property: no "new $s_i t_j$ -connectivity".

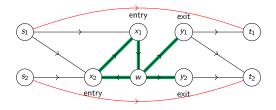


Definition

Let $F \subseteq E(G)$ be weakly connected. Node $x \in V(F)$ is an:

- entry point if some s_i can reach x without using F,
- exit point if some t_j is reachable from x without using F.

Special cases of general property: no "new $s_i t_j$ -connectivity".



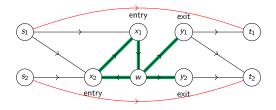
Definition

Let $F \subseteq E(G)$ be weakly connected. Node $x \in V(F)$ is an:

- entry point if some s_i can reach x without using F,
- exit point if some t_i is reachable from x without using F.

F is entry-exit connected (EEC) if F contains an xy-path for every entry point x and exit point y.

Special cases of general property: no "new $s_i t_j$ -connectivity".



Definition

Let $F \subseteq E(G)$ be weakly connected. Node $x \in V(F)$ is an:

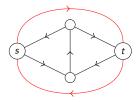
- entry point if some s_i can reach x without using F,
- exit point if some t_j is reachable from x without using F.

F is entry-exit connected (EEC) if F contains an xy-path for every entry point x and exit point y.

Contractions of EEC sets produce relevant minors.

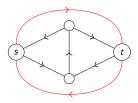
Theorem

If H is a 2-cycle (roundtrip demands), (G, H) is cut-sufficient \iff it does not have the bad dual triangles as a relevant minor.



Theorem

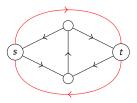
If H is a 2-cycle (roundtrip demands), (G, H) is cut-sufficient \iff it does not have the bad dual triangles as a relevant minor.



 (\Longrightarrow) follows from closure.

Theorem

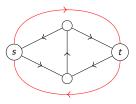
If H is a 2-cycle (roundtrip demands), (G, H) is cut-sufficient \iff it does not have the bad dual triangles as a relevant minor.



(\Longrightarrow) follows from closure. For (\Longleftarrow), we give an algorithm.

Theorem

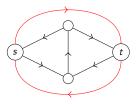
If H is a 2-cycle (roundtrip demands), (G, H) is cut-sufficient \iff it does not have the bad dual triangles as a relevant minor.



(⇒) follows from closure. For (⇐), we give an algorithm.
Input: (G, H) roundtrip, (u, d) satisfying the cut condition

Theorem

If H is a 2-cycle (roundtrip demands), (G, H) is cut-sufficient \iff it does not have the bad dual triangles as a relevant minor.



- (\Longrightarrow) follows from closure. For (\Longleftarrow), we give an algorithm.
 - Input: (G, H) roundtrip, (u, d) satisfying the cut condition
 - Output: either
 - feasible multiflow, OR
 - show that (G, H) has the bad dual triangles as a relevant minor.

Proof Sketch.

Proof Sketch.

Demand edges (s, t), (t, s).

Proof Sketch.

Demand edges (s, t), (t, s).

Cut condition \implies can route commodities independently.

- \exists st-flow f^{st} of sufficient size
- \exists *ts*-flow *f*^{*ts*} of sufficient size

Proof Sketch.

Demand edges (s, t), (t, s).

Cut condition \implies can route commodities independently.

- \exists st-flow f^{st} of sufficient size
- \exists *ts*-flow *f*^{*ts*} of sufficient size

Case 1: Every path in f^{st} is arc-disjoint from every path in f^{ts} .

• \implies feasible multiflow.

Proof Sketch.

Demand edges (s, t), (t, s).

Cut condition \implies can route commodities independently.

- \exists st-flow f^{st} of sufficient size
- \exists *ts*-flow *f*^{*ts*} of sufficient size

Case 1: Every path in f^{st} is arc-disjoint from every path in f^{ts} .

• \implies feasible multiflow.

Proof Sketch.

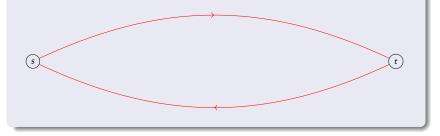
Demand edges (s, t), (t, s).

Cut condition \implies can route commodities independently.

- \exists st-flow f^{st} of sufficient size
- \exists *ts*-flow *f*^{*ts*} of sufficient size

Case 1: Every path in f^{st} is arc-disjoint from every path in f^{ts} .

• \implies feasible multiflow.



Proof Sketch.

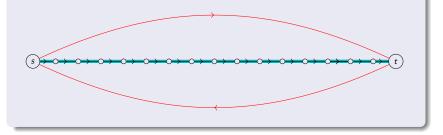
Demand edges (s, t), (t, s).

Cut condition \implies can route commodities independently.

- \exists st-flow f^{st} of sufficient size
- \exists *ts*-flow *f*^{*ts*} of sufficient size

Case 1: Every path in f^{st} is arc-disjoint from every path in f^{ts} .

• \implies feasible multiflow.



Proof Sketch.

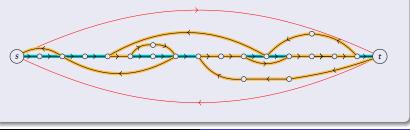
Demand edges (s, t), (t, s).

Cut condition \implies can route commodities independently.

- \exists st-flow f^{st} of sufficient size
- \exists *ts*-flow *f*^{*ts*} of sufficient size

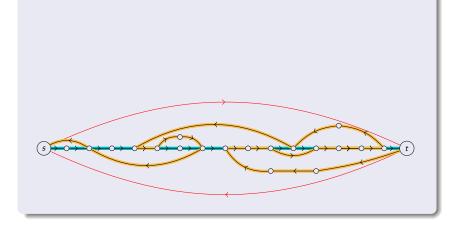
Case 1: Every path in f^{st} is arc-disjoint from every path in f^{ts} .

• \implies feasible multiflow.



Simplifying Path Interactions

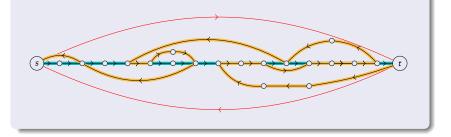
Proof Sketch Cont'd.



Simplifying Path Interactions

Proof Sketch Cont'd.

Find a *ts*-path Q' within $P \cup Q$ that both:

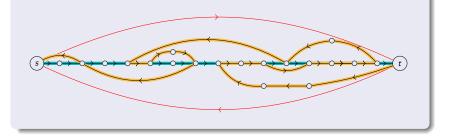


Simplifying Path Interactions

Proof Sketch Cont'd.

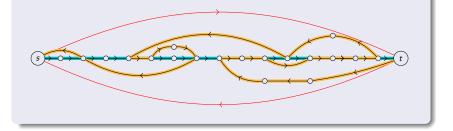
Find a *ts*-path Q' within $P \cup Q$ that both:

• still shares an edge with P, and



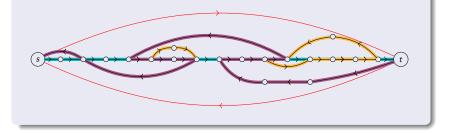
Find a *ts*-path Q' within $P \cup Q$ that both:

- still shares an edge with P, and
- is opposing with P
 - whenever Q' leaves P, it hops to earlier on P

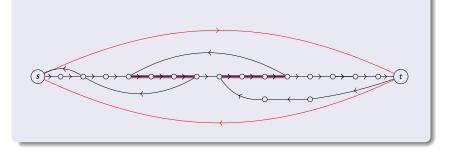


Find a *ts*-path Q' within $P \cup Q$ that both:

- still shares an edge with P, and
- is opposing with P
 - whenever Q' leaves P, it hops to earlier on P

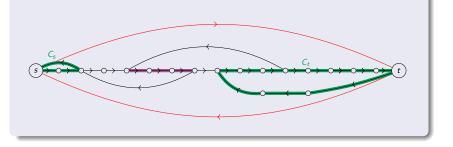


Delete all supply edges except $P \cup Q'$, and start contracting!



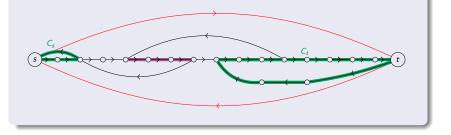
Delete all supply edges except $P \cup Q'$, and start contracting!

• Repeatedly contract cycles at the start or end of P



Delete all supply edges except $P \cup Q'$, and start contracting!

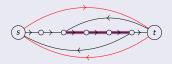
- Repeatedly contract cycles at the start or end of P
- Be careful, want to preserve a shared edge



Subdivision

Proof Sketch Cont'd.

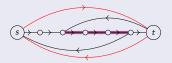
Eventually left with one common segment.



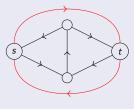
Subdivision

Proof Sketch Cont'd.

Eventually left with one common segment.



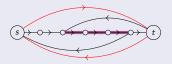
A subdivision of the bad dual triangles! Contract!



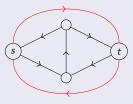
Subdivision

Proof Sketch Cont'd.

Eventually left with one common segment.



A subdivision of the bad dual triangles! Contract!



Similar pf. for 2-path demands (more cases, things to contract).

Toward NP-hardness

Toward NP-hardness

Alternative structural characterization:

Theorem

Suppose (G, H) has roundtrip demands. TFAE:

- (G, H) is cut-sufficient.
- In G, every st-path is arc-disjoint from every ts-path.

Alternative structural characterization:

Theorem

Suppose (G, H) has roundtrip demands. TFAE:

- (G, H) is cut-sufficient.
- In G, every st-path is arc-disjoint from every ts-path.

Roundtrip (non-)cut-sufficiency \sim 2-commodity USEFULEDGE

Alternative structural characterization:

Theorem

Suppose (G, H) has roundtrip demands. TFAE:

- (G, H) is cut-sufficient.
- In G, every st-path is arc-disjoint from every ts-path.

Roundtrip (non-)cut-sufficiency \sim 2-commodity $U_{\rm SEFULEDGE}$

Definition

USEFULEDGE decision problem:

- Input: Directed G = (V, E), $(s, t) \in V \times V, e \in E$
- Output: Whether ∃ a (simple) *st*-path that uses *e*?

Alternative structural characterization:

Theorem

Suppose (G, H) has roundtrip demands. TFAE:

- (G, H) is cut-sufficient.
- In G, every st-path is arc-disjoint from every ts-path.

Roundtrip (non-)cut-sufficiency \sim 2-commodity $\mathrm{UsefulEdge}$

Definition

USEFULEDGE decision problem:

- Input: Directed G = (V, E), $(s, t) \in V \times V, e \in E$
- Output: Whether ∃ a (simple) *st*-path that uses *e*?
- NP-hard

Theorem

Theorem

It is NP-hard to recognize if directed (G, H) is cut-sufficient, even if H is fixed as a 2-cycle (roundtrip demands).

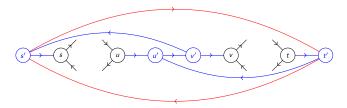
• Given instance of USEFULEDGE G, (s, t), e = (u, v)

Theorem

- Given instance of USEFULEDGE G, (s, t), e = (u, v)
- Make a topology (G', H') with demands (s', t'), (t', s').

Theorem

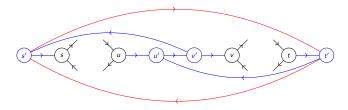
- Given instance of USEFULEDGE G, (s, t), e = (u, v)
- Make a topology (G', H') with demands (s', t'), (t', s').



Theorem

It is NP-hard to recognize if directed (G, H) is cut-sufficient, even if H is fixed as a 2-cycle (roundtrip demands).

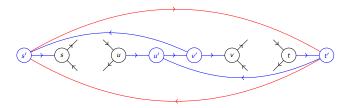
- Given instance of USEFULEDGE G, (s, t), e = (u, v)
- Make a topology (G', H') with demands (s', t'), (t', s').



• \exists unique t's'-path Q,

Theorem

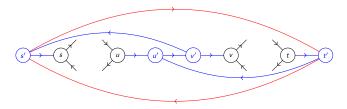
- Given instance of USEFULEDGE G, (s, t), e = (u, v)
- Make a topology (G', H') with demands (s', t'), (t', s').



- \exists unique t's'-path Q,
- Q uses e' = (u', v'),

Theorem

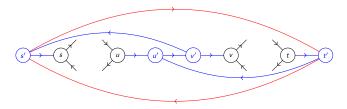
- Given instance of USEFULEDGE G, (s, t), e = (u, v)
- Make a topology (G', H') with demands (s', t'), (t', s').



- \exists unique t's'-path Q,
- Q uses e' = (u', v'),
- e' is the only edge of Q that could be shared with an s't'-path,

Theorem

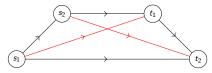
- Given instance of USEFULEDGE G, (s, t), e = (u, v)
- Make a topology (G', H') with demands (s', t'), (t', s').



- \exists unique t's'-path Q,
- Q uses e' = (u', v'),
- e' is the only edge of Q that could be shared with an s't'-path,
- $\exists st$ -path in G using $e \iff \exists s't'$ -path in G' using e'

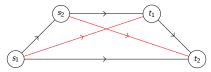
Towards a Complete 2-Commodity Characterization

The only remaining case (aside from single-source/sink) is *2-matching* demands.



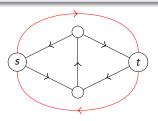
Towards a Complete 2-Commodity Characterization

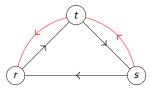
The only remaining case (aside from single-source/sink) is *2-matching* demands.



Conjecture

If (G, H) has 2-matching demands, then it is cut-sufficient if and only if it does not contain the bad triangle or bad dual triangles as a relevant minor.





Approach from earlier...

Algorithm

- Input: (G, H), (u, d) satisfying the cut condition
- Output: either
 - feasible multiflow, OR
 - show that (G, H) has one of the desired relevant minors.

Approach from earlier...

Algorithm

- Input: (G, H), (u, d) satisfying the cut condition
- Output: either
 - feasible multiflow, OR
 - show that (G, H) has one of the desired relevant minors.

For 2-matching demands, we have an algorithm for $d = \vec{1}$.

Approach from earlier...

Algorithm

- Input: (G, H), (u, d) satisfying the cut condition
- Output: either
 - feasible multiflow, OR
 - show that (G, H) has one of the desired relevant minors.

For 2-matching demands, we have an algorithm for $d = \vec{1}$.

Proposition

If (G, H) has 2-matching demands and bad weights (u, d) where $d(s_it_i) = 1$ for i = 1, 2, then it contains the bad triangle or bad dual triangles as a relevant minor.