
Configuration Balancing for
Stochastic Request

Franziska Eberle, Anupam Gupta, Nicole Megow

Benjamin Moseley, Rudy Zhou

Stochastic Load Balancing

• 𝑚 unrelated machines

• 𝑛 jobs with stochastic sizes such that job 𝑗 has size 𝑋𝑖𝑗 ∼ on machine 𝑖

Job 1 Job 2 Job 3

Stochastic Load Balancing

• 𝑚 unrelated machines

• 𝑛 jobs with stochastic sizes such that job 𝑗 has size 𝑋𝑖𝑗 ∼ on machine 𝑖

Job 1 Job 2 Job 3

Stochastic Load Balancing

• 𝑚 unrelated machines

• 𝑛 jobs with stochastic sizes such that job 𝑗 has size 𝑋𝑖𝑗 ∼ on machine 𝑖

Job 1 Job 2 Job 3

Stochastic Load Balancing

• 𝑚 unrelated machines

• 𝑛 jobs with stochastic sizes such that job 𝑗 has size 𝑋𝑖𝑗 ∼ on machine 𝑖

Job 1 Job 2 Job 3

Stochastic Load Balancing

• 𝑚 unrelated machines

• 𝑛 jobs with stochastic sizes such that job 𝑗 has size 𝑋𝑖𝑗 ∼ on machine 𝑖

Job 1 Job 2 Job 3

Stochastic Load Balancing

• 𝑚 unrelated machines

• 𝑛 jobs with stochastic sizes such that job 𝑗 has size 𝑋𝑖𝑗 ∼ on machine 𝑖

Job 1 Job 2 Job 3

Stochastic Load Balancing

• 𝑚 unrelated machines

• 𝑛 jobs with stochastic sizes such that job 𝑗 has size 𝑋𝑖𝑗 ∼ on machine 𝑖

Job 1 Job 2 Job 3

Max load

Minimize expected max load …compared to optimal adaptive policy

Stochastic Load Balancing

• 𝑚 unrelated machines

• 𝑛 jobs with stochastic sizes such that job 𝑗 has size 𝑋𝑖𝑗 ∼ on machine 𝑖

Job 1 Job 2 Job 3

Max load

Minimize expected max load …compared to optimal adaptive policy

→

𝑠𝑖𝑧𝑒 ≤ 10 𝑠𝑖𝑧𝑒 > 10

→ →… …

Adaptive: Non-adaptive:

…

…

Related Work

• Deterministic setting well-studied
• 2-approximation offline (LP rounding) [Lenstra, Shmoys, Tardos, Math. Prog. 1990]

• 𝑂(log 𝑚)-competitive online (potential function) [Aspnes, Azar, Fiat, Plotkin, Waarts, J.
ACM 1997]

• Variety of generalizations (multidimensional, norm objective, etc.)

• Stochastic setting focused on non-adaptive policies
• Non-adaptive algorithm that 𝑂(1)-approximates optimal non-adaptive policy

(LP rounding + effective size) [Gupta, Kumar, Nagarajan, Shen, Math. Oper. Res. 2021]

• Adaptivity gap is Ω(
log 𝑚

log log 𝑚
)

Related Work

• Deterministic setting well-studied
• 2-approximation offline (LP rounding) [Lenstra, Shmoys, Tardos, Math. Prog. 1990]

• 𝑂(log 𝑚)-competitive online (potential function) [Aspnes, Azar, Fiat, Plotkin, Waarts, J.
ACM 1997]

• Variety of generalizations (multidimensional, norm objective, etc.)

• Stochastic setting focused on non-adaptive policies
• Non-adaptive algorithm that 𝑂(1)-approximates optimal non-adaptive policy

(LP rounding + effective size) [Gupta, Kumar, Nagarajan, Shen, Math. Oper. Res. 2021]

• Adaptivity gap is Ω(
log 𝑚

log log 𝑚
)

Our Results

• Also give 𝑂(1)-approximate adaptive policy for related machines

• First general result for stochastic load balancing compared to optimal adaptive policy

• Gives tight upper bound on adaptivity gap

• Can be generalized to variety of other resource allocation problems and online setting

• New Idea: Show that there exists near-optimal adaptive policy that behaves similarly to a
non-adaptive policy

Theorem: There exists an efficient algorithm for stochastic load balancing on

unrelated machines that 𝑂(
log 𝑚

log log 𝑚
)-approximates the optimal adaptive

policy. Further, the algorithm is non-adaptive.

Our Results

• Also give 𝑂(1)-approximate adaptive policy for related machines

• First general result for stochastic load balancing compared to optimal adaptive policy

• Gives tight upper bound on adaptivity gap

• Can be generalized to variety of other resource allocation problems and online setting

• New Idea: Show that there exists near-optimal adaptive policy that behaves similarly to a
non-adaptive policy

Theorem: There exists an efficient algorithm for stochastic load balancing on

unrelated machines that 𝑂(
log 𝑚

log log 𝑚
)-approximates the optimal adaptive

policy. Further, the algorithm is non-adaptive.

Our Results

• Also give 𝑂(1)-approximate adaptive policy for related machines

• First general result for stochastic load balancing compared to optimal adaptive policy

• Gives tight upper bound on adaptivity gap

• Can be generalized to variety of other resource allocation problems and online setting

• New Idea: Show that there exists near-optimal adaptive policy that behaves similarly to a
non-adaptive policy

Theorem: There exists an efficient algorithm for stochastic load balancing on

unrelated machines that 𝑂(
log 𝑚

log log 𝑚
)-approximates the optimal adaptive

policy. Further, the algorithm is non-adaptive.

𝔼 + ⋯ + 𝔼[]

Warm Up: Small jobs

• Assume all jobs are small: 𝑋𝑖𝑗 ∈ [0, 𝔼 𝑂𝑝𝑡] for all 𝑖, 𝑗

• Suffices to control expected load on each machine

…

𝔼 + ⋯ + 𝔼[]

𝔼 + ⋯ + 𝔼[]

𝑂(𝔼 𝑂𝑝𝑡)

Max expected load

Warm Up: Small jobs

• Assume all jobs are small: 𝑋𝑖𝑗 ∈ [0, 𝔼 𝑂𝑝𝑡] for all 𝑖, 𝑗

• Suffices to control expected load on each machine (Concentration + Union)

…

𝑂(𝔼 𝑂𝑝𝑡) 𝑂 log 𝑚 𝔼 𝑂𝑝𝑡

Max expected load Expected max load

Warm Up: Small jobs

• Assume all jobs are small: 𝑋𝑖𝑗 ∈ [0, 𝔼 𝑂𝑝𝑡] for all 𝑖, 𝑗

• Suffices to control expected load on each machine (Concentration + Union)

…

𝑂(𝔼 𝑂𝑝𝑡) 𝑂 log 𝑚 𝔼 𝑂𝑝𝑡

Max expected load Expected max load

Main Challenge: How to handle jobs that aren’t reasonably bounded?

Truncation

• Problem is easy if jobs are small ⇒ make jobs small and deal with big
jobs separately

• Given truncation threshold 𝜏,

• the truncated part of 𝑋𝑖𝑗 is: 𝑋𝑖𝑗
𝑇 = 𝑋𝑖𝑗 ⋅ 1𝑋𝑖𝑗≤𝜏

• the exceptional part is: 𝑋𝑖𝑗
𝐸 = 𝑋𝑖𝑗 ⋅ 1𝑋𝑖𝑗>𝜏

• ⇒ handle truncated parts by controlling max expected load

Truncation

• Problem is easy if jobs are small ⇒ make jobs small and deal with big
jobs separately

• Given truncation threshold 𝜏,

• the truncated part of 𝑋𝑖𝑗 is: 𝑋𝑖𝑗
𝑇 = 𝑋𝑖𝑗 ⋅ 1𝑋𝑖𝑗≤𝜏

• the exceptional part is: 𝑋𝑖𝑗
𝐸 = 𝑋𝑖𝑗 ⋅ 1𝑋𝑖𝑗>𝜏

• ⇒ handle truncated parts by controlling max expected load

𝜏 ∼ 𝔼 𝑂𝑃𝑇

truncated exceptional

Truncation

• Problem is easy if jobs are small ⇒ make jobs small and deal with big
jobs separately

• Given truncation threshold 𝜏,

• the truncated part of 𝑋𝑖𝑗 is: 𝑋𝑖𝑗
𝑇 = 𝑋𝑖𝑗 ⋅ 1𝑋𝑖𝑗≤𝜏

• the exceptional part is: 𝑋𝑖𝑗
𝐸 = 𝑋𝑖𝑗 ⋅ 1𝑋𝑖𝑗>𝜏

• ⇒ handle truncated parts by controlling max expected load

𝜏 ∼ 𝔼 𝑂𝑃𝑇

truncated exceptional

Question: How to control expected max load of exceptional parts?

Exceptional parts

• Bound contribution of exceptional parts: 𝔼 max
𝑖

σ𝑗→𝑖 𝑋𝑖𝑗
𝐸

• Only have trivial upper bound:

𝔼 max
𝑖

𝑗

𝑋𝑖𝑗
𝐸 ⋅ 1𝑗→𝑖 ≤

𝑖

𝑗
𝔼[𝑋𝑖𝑗

𝐸 ⋅ 1𝑗→𝑖]

• Algorithm goal: assign jobs to machines non adaptively such that each machine
has expected truncated load 𝑂(𝔼 𝑂𝑝𝑡) and the total expected exceptional load
𝑂(𝔼 𝑂𝑝𝑡)

Exceptional parts

• Bound contribution of exceptional parts: 𝔼 max
𝑖

σ𝑗→𝑖 𝑋𝑖𝑗
𝐸

• Only have trivial upper bound:

𝔼 max
𝑖

𝑗

𝑋𝑖𝑗
𝐸 ⋅ 1𝑗→𝑖 ≤

𝑖

𝑗
𝔼[𝑋𝑖𝑗

𝐸 ⋅ 1𝑗→𝑖]

• Algorithm goal: assign jobs to machines non adaptively such that each machine
has expected truncated load 𝑂(𝔼 𝑂𝑝𝑡) and the total expected exceptional load
𝑂(𝔼 𝑂𝑝𝑡)

Total expected
exceptional load

Question: Does there exist such an assignment?

Benefit of Adaptivity

• One fast machine, 𝑚 − 1 slow

• One Bernoulli job, 𝑚 − 1 deterministic

…

𝜏 ~ 𝔼 𝑂𝑝𝑡

Benefit of Adaptivity

• One fast machine, 𝑚 − 1 slow

• One Bernoulli job, 𝑚 − 1 deterministic

…

𝜏 ~ 𝔼 𝑂𝑝𝑡

Benefit of Adaptivity

• One fast machine, 𝑚 − 1 slow

• One Bernoulli job, 𝑚 − 1 deterministic

…

𝜏 ~ 𝔼 𝑂𝑝𝑡

…

Benefit of Adaptivity

• One fast machine, 𝑚 − 1 slow

• One Bernoulli job, 𝑚 − 1 deterministic

…

𝜏 ~ 𝔼 𝑂𝑝𝑡

Benefit of Adaptivity

• One fast machine, 𝑚 − 1 slow

• One Bernoulli job, 𝑚 − 1 deterministic

…

𝜏 ~ 𝔼 𝑂𝑝𝑡

Problem: Optimal adaptive
policy can have total expected

exceptional load Ω 𝑚 ⋅ 𝔼 𝑂𝑝𝑡

Structure Theorem

• For truncation threshold 𝜏 ~ 𝔼 𝑂𝑝𝑡, there exists an adaptive policy
෪𝑂𝑝𝑡 such that:
• (near optimal) 𝔼 ෪𝑂𝑝𝑡 ≤ 2 ⋅ 𝔼 𝑂𝑝𝑡

• (small total expected exceptional load) The total expected exceptional load of
෪𝑂𝑝𝑡 is at most 2 ⋅ 𝔼 𝑂𝑝𝑡

• ⇒ natural assignment LP that ensures expected truncated load on
each machine is 𝑂(𝔼 𝑂𝑝𝑡) and total expected exceptional load is
𝑂(𝔼 𝑂𝑝𝑡) is feasible
• ⇒ can round offline

• ⇒ can use potential function online

Structure Theorem

• For truncation threshold 𝜏 ~ 𝔼 𝑂𝑝𝑡, there exists an adaptive policy
෪𝑂𝑝𝑡 such that:
• (near optimal) 𝔼 ෪𝑂𝑝𝑡 ≤ 2 ⋅ 𝔼 𝑂𝑝𝑡

• (small total expected exceptional load) The total expected exceptional load of
෪𝑂𝑝𝑡 is at most 2 ⋅ 𝔼 𝑂𝑝𝑡

• ⇒ natural assignment LP that ensures expected truncated load on
each machine is 𝑂(𝔼 𝑂𝑝𝑡) and total expected exceptional load is
𝑂(𝔼 𝑂𝑝𝑡) is feasible
• ⇒ can round offline

• ⇒ can use potential function online

Proof

• Simulate 𝑂𝑝𝑡, but forget when we get unlucky

(Existential) Algorithm:
1. Given jobs 𝐽, follow optimal

policy 𝑂𝑝𝑡(𝐽)
2. If 𝑂𝑝𝑡(𝐽) assigns 𝑗 → 𝑖 such

that 𝑋𝑖𝑗 becomes exceptional

(𝑋𝑖𝑗 > 𝜏 ≥ 2 ⋅ 𝔼 𝑂𝑝𝑡 𝐽)

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs 𝑅 ⊂ 𝐽

Proof

• Simulate 𝑂𝑝𝑡, but forget when we get unlucky

(Existential) Algorithm:
1. Given jobs 𝐽, follow optimal

policy 𝑂𝑝𝑡(𝐽)
2. If 𝑂𝑝𝑡(𝐽) assigns 𝑗 → 𝑖 such

that 𝑋𝑖𝑗 becomes exceptional

(𝑋𝑖𝑗 > 𝜏 ≥ 2 ⋅ 𝔼 𝑂𝑝𝑡 𝐽)

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs 𝑅 ⊂ 𝐽

Proof

• Simulate 𝑂𝑝𝑡, but forget when we get unlucky

(Existential) Algorithm:
1. Given jobs 𝐽, follow optimal

policy 𝑂𝑝𝑡(𝐽)
2. If 𝑂𝑝𝑡(𝐽) assigns 𝑗 → 𝑖 such

that 𝑋𝑖𝑗 becomes exceptional

(𝑋𝑖𝑗 > 𝜏 ≥ 2 ⋅ 𝔼 𝑂𝑝𝑡 𝐽)

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs 𝑅 ⊂ 𝐽

Proof

• Simulate 𝑂𝑝𝑡, but forget when we get unlucky

(Existential) Algorithm:
1. Given jobs 𝐽, follow optimal

policy 𝑂𝑝𝑡(𝐽)
2. If 𝑂𝑝𝑡(𝐽) assigns 𝑗 → 𝑖 such

that 𝑋𝑖𝑗 becomes exceptional

(𝑋𝑖𝑗 > 𝜏 ≥ 2 ⋅ 𝔼 𝑂𝑝𝑡 𝐽)

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs 𝑅 ⊂ 𝐽

Proof

• Simulate 𝑂𝑝𝑡, but forget when we get unlucky

(Existential) Algorithm:
1. Given jobs 𝐽, follow optimal

policy 𝑂𝑝𝑡(𝐽)
2. If 𝑂𝑝𝑡(𝐽) assigns 𝑗 → 𝑖 such

that 𝑋𝑖𝑗 becomes exceptional

(𝑋𝑖𝑗 > 𝜏 ≥ 2 ⋅ 𝔼 𝑂𝑝𝑡 𝐽)

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs 𝑅 ⊂ 𝐽

Proof

• Simulate 𝑂𝑝𝑡, but forget when we get unlucky

(Existential) Algorithm:
1. Given jobs 𝐽, follow optimal

policy 𝑂𝑝𝑡(𝐽)
2. If 𝑂𝑝𝑡(𝐽) assigns 𝑗 → 𝑖 such

that 𝑋𝑖𝑗 becomes exceptional

(𝑋𝑖𝑗 > 𝜏 ≥ 2 ⋅ 𝔼 𝑂𝑝𝑡 𝐽)

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs 𝑅 ⊂ 𝐽

…

Proof

• Simulate 𝑂𝑝𝑡, but forget when we get unlucky

(Existential) Algorithm:
1. Given jobs 𝐽, follow optimal

policy 𝑂𝑝𝑡(𝐽)
2. If 𝑂𝑝𝑡(𝐽) assigns 𝑗 → 𝑖 such

that 𝑋𝑖𝑗 becomes exceptional

(𝑋𝑖𝑗 > 𝜏 ≥ 2 ⋅ 𝔼 𝑂𝑝𝑡 𝐽)

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs 𝑅 ⊂ 𝐽

…

• Makespan ≤ 𝔼 𝑂𝑝𝑡 𝐽
• ≤ 1 exceptional job

Same but scaled by

𝑃 𝑟𝑒𝑐𝑢𝑟𝑠𝑒 ≤
1

2

Proof

• Simulate 𝑂𝑝𝑡, but forget when we get unlucky

(Existential) Algorithm:
1. Given jobs 𝐽, follow optimal

policy 𝑂𝑝𝑡(𝐽)
2. If 𝑂𝑝𝑡(𝐽) assigns 𝑗 → 𝑖 such

that 𝑋𝑖𝑗 becomes exceptional

(𝑋𝑖𝑗 > 𝜏 ≥ 2 ⋅ 𝔼 𝑂𝑝𝑡 𝐽)

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs 𝑅 ⊂ 𝐽

…

• Makespan ≤ 𝔼 𝑂𝑝𝑡 𝐽
• ≤ 1 exceptional job

Same but scaled by

𝑃 𝑟𝑒𝑐𝑢𝑟𝑠𝑒 ≤
1

2

𝔼 𝑂𝑝𝑡 𝐽 +
1

2
𝔼 𝑂𝑝𝑡 𝐽 +

1

4
𝔼 𝑂𝑝𝑡 𝐽 + ⋯

Structure Theorem

• For truncation threshold 𝜏 ~ 𝔼 𝑂𝑝𝑡, there exists an adaptive policy
෪𝑂𝑝𝑡 such that:
• (near optimal) 𝔼 ෪𝑂𝑝𝑡 ≤ 2 ⋅ 𝔼 𝑂𝑝𝑡

• (small total expected exceptional load) The total expected exceptional load of
෪𝑂𝑝𝑡 is at most 2 ⋅ 𝔼 𝑂𝑝𝑡

• ⇒ natural assignment LP that ensures expected truncated load on
each machine is 𝑂(𝔼 𝑂𝑝𝑡) and total expected exceptional load is
𝑂(𝔼 𝑂𝑝𝑡) is feasible
• ⇒ can round offline

• ⇒ can use potential function online

Idea: Forget when we get unlucky

Conclusion

• Many extensions: online, adaptive policies for related machines,
stochastic routing, etc.

• Structure theorem for near-optimal adaptive policies

Theorem: There exists an efficient algorithm for stochastic load balancing on

unrelated machines that 𝑂(
log 𝑚

log log 𝑚
)-approximates the optimal adaptive

policy. Further, the algorithm is non-adaptive.

Conclusion

• Many extensions: online, adaptive policies for related machines,
stochastic routing, etc.

• Structure theorem for near-optimal adaptive policies

Theorem: There exists an efficient algorithm for stochastic load balancing on

unrelated machines that 𝑂(
log 𝑚

log log 𝑚
)-approximates the optimal adaptive

policy. Further, the algorithm is non-adaptive.

Questions:
• Improve using adaptivity?
• Hardness of approximation?

	Slide 1: Configuration Balancing for Stochastic Request
	Slide 2: Stochastic Load Balancing
	Slide 3: Stochastic Load Balancing
	Slide 4: Stochastic Load Balancing
	Slide 5: Stochastic Load Balancing
	Slide 6: Stochastic Load Balancing
	Slide 7: Stochastic Load Balancing
	Slide 8: Stochastic Load Balancing
	Slide 9: Stochastic Load Balancing
	Slide 10: Related Work
	Slide 11: Related Work
	Slide 12: Our Results
	Slide 13: Our Results
	Slide 14: Our Results
	Slide 15: Warm Up: Small jobs
	Slide 16: Warm Up: Small jobs
	Slide 17: Warm Up: Small jobs
	Slide 18: Truncation
	Slide 19: Truncation
	Slide 20: Truncation
	Slide 21: Exceptional parts
	Slide 22: Exceptional parts
	Slide 23: Benefit of Adaptivity
	Slide 24: Benefit of Adaptivity
	Slide 25: Benefit of Adaptivity
	Slide 26: Benefit of Adaptivity
	Slide 27: Benefit of Adaptivity
	Slide 28: Structure Theorem
	Slide 29: Structure Theorem
	Slide 30: Proof
	Slide 31: Proof
	Slide 32: Proof
	Slide 33: Proof
	Slide 34: Proof
	Slide 35: Proof
	Slide 36: Proof
	Slide 37: Proof
	Slide 38: Structure Theorem
	Slide 39: Conclusion
	Slide 40: Conclusion

