Configuration Balancing for
Stochastic Request

Franziska Eberle, Anupam Gupta, Nicole Megow

Benjamin Moseley, Rudy Zhou

Stochastic Load Balancing

* m unrelated machines

* n jobs with stochastic sizes such that job j has size X;; ~ /_on machine i

Job 1 Job 2 Job 3

Stochastic Load Balancing

* m unrelated machines

* n jobs with stochastic sizes such that job j has size X;; ~ /_on machine i

Job 1 Job 2 Job 3

e

Stochastic Load Balancing

* m unrelated machines

* n jobs with stochastic sizes such that job j has size X;; ~ /_on machine i

Job 1 Job 2 Job 3

Stochastic Load Balancing

* m unrelated machines

* n jobs with stochastic sizes such that job j has size X;; ~ /_on machine i

Job 1 Job 2 Job 3

Stochastic Load Balancing

* m unrelated machines

* n jobs with stochastic sizes such that job j has size X;; ~ /__on machine i

Job1 -~ /\ ob2 /N _—~_ b3 _— \ /\

] N
]

Stochastic Load Balancing

* m unrelated machines

* n jobs with stochastic sizes such that job j has size X;; ~ /__on machine i

Jobl -~ /\ ob2 /N _—~_ b3 _— \ /\

Egy
Hgy

Stochastic Load Balancing

* m unrelated machines

* n jobs with stochastic sizes such that job j has size X;; ~ /__on machine i

Job1 -~ /\ ob2 /N _—~_ b3 _— \ /\

Hgy
Hgy

Max load

Minimize expected max load ..compared to optimal adaptive policy

Stochastic Load Balancing

* m unrelated machines

* n jobs with stochastic sizes such that job j has size X;; ~ /__on machine i

Job1 -~ /\ ob2 /N _—~_ b3 _— \ /\

Adaptive: Non-adaptive:
/\—
mil 1 -
size < 10 size > 10 I:l N\
ml /\
=R =R =t
Max load | |

Minimize expected max load ..compared to optimal adaptive policy

Related Work

* Deterministic setting well-studied
e 2-approximation offline (LP rounding) [Lenstra, Shmoys, Tardos, Math. Prog. 1990]

* O(log m)-competitive online (potential function) [Aspnes, Azar, Fiat, Plotkin, Waarts, J.
ACM 1997]

 Variety of generalizations (multidimensional, norm objective, etc.)

Related Work

* Deterministic setting well-studied
e 2-approximation offline (LP rounding) [Lenstra, Shmoys, Tardos, Math. Prog. 1990]

. 0(10g m)—competitive online (potential function) [Aspnes, Azar, Fiat, Plotkin, Waarts, J.
ACM 1997]

 Variety of generalizations (multidimensional, norm objective, etc.)

* Stochastic setting focused on non-adaptive policies

* Non-adaptive algorithm that O (1)-approximates optimal non-adaptive policy
(LP rounding + effective SiZE) [Gupta, Kumar, Nagarajan, Shen, Math. Oper. Res. 2021]
logm

log log m)

 Adaptivity gap is Q(

Our Results

Theorem: There exists an efficient algorithm for stochastic load balancing on
1
unrelated machines that O (e

log log m)'apprommates the optimal adaptive
policy. Further, the algorithm is non-adaptive.

* Also give O(1)-approximate adaptive policy for related machines

Our Results

Theorem: There exists an efficient algorithm for stochastic load balancing on
logm

unrelated machines that O ()-approximates the optimal adaptive

loglogm
policy. Further, the algorithm is non-adaptive.

* Also give O(1)-approximate adaptive policy for related machines

 First general result for stochastic load balancing compared to optimal adaptive policy
* Gives tight upper bound on adaptivity gap

* Can be generalized to variety of other resource allocation problems and online setting

Our Results

Theorem: There exists an efficient algorithm for stochastic load balancing on
logm

unrelated machines that O ()-approximates the optimal adaptive

loglogm
policy. Further, the algorithm is non-adaptive.

* Also give O(1)-approximate adaptive policy for related machines

First general result for stochastic load balancing compared to optimal adaptive policy

Gives tight upper bound on adaptivity gap

Can be generalized to variety of other resource allocation problems and online setting

New Idea: Show that there exists near-optimal adaptive policy that behaves similarly to a
non-adaptive policy

Warm Up: Small jobs

* Assume all jobs are small: X;; € [0, [E Opt] for all i, j

* Suffices to control expected load on each machine

Max expected load

CJE[AN+ 4 B[V]

O(E Opt)

Warm Up: Small jobs

* Assume all jobs are small: X;; € 10,[E Opt]| forall i,

* Suffices to control expected load on each machine (concentration + Union)

Max expected load Expected max load

L) I I
[I

- J |]

O(E Opt) O(logm) E Opt

Warm Up: Small jobs

* Assume all jobs are small: X;; € [0, [E Opt] for all i, j

* Suffices to control expected load on each machine (concentration + Union)

Max expected load Expected max load

L) I I
[I

- J |]

Main Challenge: How to handle jobs that aren’t reasonably bounded?

Truncation

* Problem is easy if jobs are small = make jobs small and deal with big
jobs separately

Truncation P

truncated exceptional

* Problem is easy if jobs are small = make jobs small and deal with big
jobs separately

e Given truncation threshold 7,

* the truncated part of Xj; is: XlTj = Xjj - 1XUST

* the exceptional part is: Xl-Ej = Xjj - 1Xij>T

Truncation P

truncated exceptional

* Problem is easy if jobs are small = make jobs small and deal with big
jobs separately

e Given truncation threshold 7,

* the truncated part of Xj; is: XlTj = Xjj - 1XUST
* the exceptional part is: Xl-Ej = Xjj - 1Xij>T

* = handle truncated parts by controlling max expected load

Question: How to control expected max load of exceptional parts?

Exceptional parts

* Bound contribution of exceptional parts: [E [miaX Zj_>iXiEj]

* Only have trivial upper bound:

E . . .
E lmiaxszU 1L

<) > EXE- 1]
| & j

Exceptional parts

* Bound contribution of exceptional parts: [E [miaX Zj_>iXiEj]

* Only have trivial upper bound:

E . . .
E lmiaxszU 1L

* Algorithm goal: assign jobs to machines non adaptively such that each machine

has expected truncated load O(IE Opt) and the total expected exceptional load
O(E Opt)

Total expected

< E . 1. .
_EiEJ]E[XU Ll exceptional load

Question: Does there exist such an assignment?

Benefit of Adaptivity

* One machine, m — 1 slow

* One job, m — 1 deterministic
[
L]

T~ [E Opt

Benefit of Adaptivity

* One fast machine, m — 1 slow
* One Bernoulli job, m — 1 deterministic

-y
[

T~ [E Opt

Benefit of Adaptivity

* One fast machine, m — 1 slow
* One Bernoulli job, m — 1 deterministic

LiAE - N
-

-

T~ [E Opt

Benefit of Adaptivity

* One fast machine, m — 1 slow
* One Bernoulli job, m — 1 deterministic

-,

T~ E Opt

Benefit of Adaptivity

Problem: Optimal adaptive

policy can have total expected
* One Bernoulli job, m — 1 deterministic exceptional load Q(m) - E Opt

* One fast machine, m — 1 slow

T~ E Opt

Structure Theorem

* For truncation threshold T ~ [E Opt, there exists an adaptive policy
Opt such that:
* (near optimal) IE[O?t] < 2-[E|Opt]

* (small total expected exceptional load) The total expected exceptional load of
Opt is at most 2 - E [Opt]

Structure Theorem

* For truncation threshold 7 ~ E Opt, there exists an adaptive policy
Opt such that:
* (near optimal) IE[O?t] < 2-[E|Opt]
* (small total expected exceptional load) The total expected exceptional load of
Opt is at most 2 - E [Opt]

* = natural assignment LP that ensures expected truncated load on
each machine is O (E Opt) and total expected exceptional load is
O (E Opt) is feasible

e = can round offline
* = can use potential function online

Proof

* Simulate Opt, but forget when we get unlucky

(Existential) Algorithm:

1. Given jobs J, follow optimal
policy Opt(J)

2. If Opt(]) assigns j — i such
that X;; becomes exceptional
(X;j > 1 =2-E[0pt(])])

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs R C |

Proof

* Simulate Opt, but forget when we get unlucky

(Existential) Algorithm:

1. Given jobs J, follow optimal
policy Opt(J)

2. If Opt(]) assigns j — i such
that X;; becomes exceptional
(X;j > 1 =2-E[0pt(])])

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs R C |

Proof

* Simulate Opt, but forget when we get unlucky

(Existential) Algorithm:

1. Given jobs J, follow optimal
policy Opt(J)

2. If Opt(]) assigns j — i such
that X;; becomes exceptional
(X;j > 1 =2-E[0pt(])])

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs R C |

Proof

* Simulate Opt, but forget when we get unlucky

(Existential) Algorithm:
1. Given jobs J, follow optimal

-]
policy Opt(J)

2. If Opt(]) assigns j — i such
that X;; becomes exceptional
(X;j > 1 =2-E[0pt(])])

3. Forget all previously-accrued

machine loads, and recurse on
remaining jobs R C |

Proof

* Simulate Opt, but forget when we get unlucky

(Existential) Algorithm:

1. Given jobs J, follow optimal
policy Opt(J)

2. If Opt(]) assigns j — i such
that X;; becomes exceptional
(X;j > 1 =2-E[0pt(])])

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs R C |

Proof

* Simulate Opt, but forget when we get unlucky

(Existential) Algorithm:

1. Given jobs J, follow optimal
policy Opt(J)

2. If Opt(]) assigns j — i such
that X;; becomes exceptional
(X;j > 1 =2-E[0pt(])])

3. Forget all previously-accrued
machine loads, and recurse on
remaining jobs R C |

Proof

* Simulate Opt, but forget when we get unlucky

* Makespan < E[Opt())] Same but scaled by
e < 1 exceptional job P(recurse) < %
(Existential) Algorithm: , A || |
1. Given jobs J, follow optimal
policy Opt(J)

2. If Opt(]) assigns j — i such
that X;; becomes exceptional
(X;j > 1 =2-E[0pt(])])

3. Forget all previously-accrued

machine loads, and recurse on
remaining jobs R C |

Proof

* Simulate Opt, but forget when we get unlucky

* Makespan < E[Opt())] Same but scaled by
e < 1 exceptional job P(recurse) < %
(Existential) Algorithm: , A || |
1. Given jobs J, follow optimal
policy Opt(J)

2. If Opt(]) assigns j — i such
that X;; becomes exceptional
(X;j > 1 =2-E[0pt(])])

3. Forget all previously-accrued

machine loads, and recurse on
remaining jobs R C |

E[Opt(J)] + %E[Opt(])] + % E[Opt(D] + -

Structure Theorem

* For truncation threshold 7 ~ E Opt, there exists an adaptive policy
Opt such that:
* (near optimal) IE[O?t] < 2-[E|Opt]
* (small total expected exceptional load) The total expected exceptional load of
Opt is at most 2 - E [Opt]

* = natural assignment LP that ensures expected truncated load on
each machine is O (E Opt) and total expected exceptional load is
O (E Opt) is feasible

e = can round offline
* = can use potential function online

Idea: Forget when we get unlucky

Conclusion

Theorem: There exists an efficient algorithm for stochastic load balancing on
logm

unrelated machines that O ()-approximates the optimal adaptive

loglogm
policy. Further, the algorithm is non-adaptive.

* Many extensions: online, adaptive policies for related machines,
stochastic routing, etc.

* Structure theorem for near-optimal adaptive policies

Conclusion

Theorem: There exists an efficient algorithm for stochastic load balancing on
logm

unrelated machines that O ()-approximates the optimal adaptive

loglogm
policy. Further, the algorithm is non-adaptive.

* Many extensions: online, adaptive policies for related machines,
stochastic routing, etc.

* Structure theorem for near-optimal adaptive policies
Questions:
* Improve using adaptivity?
 Hardness of approximation?

	Slide 1: Configuration Balancing for Stochastic Request
	Slide 2: Stochastic Load Balancing
	Slide 3: Stochastic Load Balancing
	Slide 4: Stochastic Load Balancing
	Slide 5: Stochastic Load Balancing
	Slide 6: Stochastic Load Balancing
	Slide 7: Stochastic Load Balancing
	Slide 8: Stochastic Load Balancing
	Slide 9: Stochastic Load Balancing
	Slide 10: Related Work
	Slide 11: Related Work
	Slide 12: Our Results
	Slide 13: Our Results
	Slide 14: Our Results
	Slide 15: Warm Up: Small jobs
	Slide 16: Warm Up: Small jobs
	Slide 17: Warm Up: Small jobs
	Slide 18: Truncation
	Slide 19: Truncation
	Slide 20: Truncation
	Slide 21: Exceptional parts
	Slide 22: Exceptional parts
	Slide 23: Benefit of Adaptivity
	Slide 24: Benefit of Adaptivity
	Slide 25: Benefit of Adaptivity
	Slide 26: Benefit of Adaptivity
	Slide 27: Benefit of Adaptivity
	Slide 28: Structure Theorem
	Slide 29: Structure Theorem
	Slide 30: Proof
	Slide 31: Proof
	Slide 32: Proof
	Slide 33: Proof
	Slide 34: Proof
	Slide 35: Proof
	Slide 36: Proof
	Slide 37: Proof
	Slide 38: Structure Theorem
	Slide 39: Conclusion
	Slide 40: Conclusion

