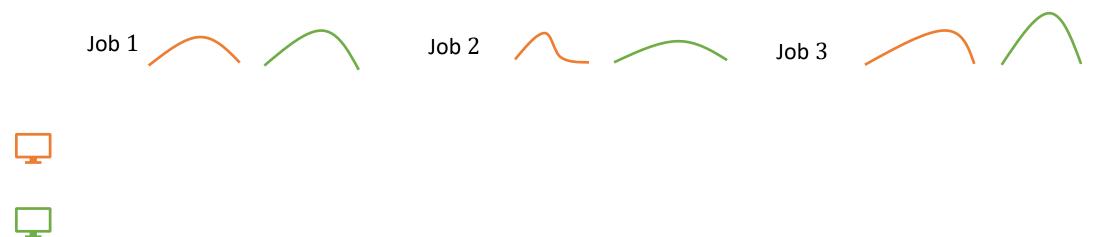
Configuration Balancing for Stochastic Request

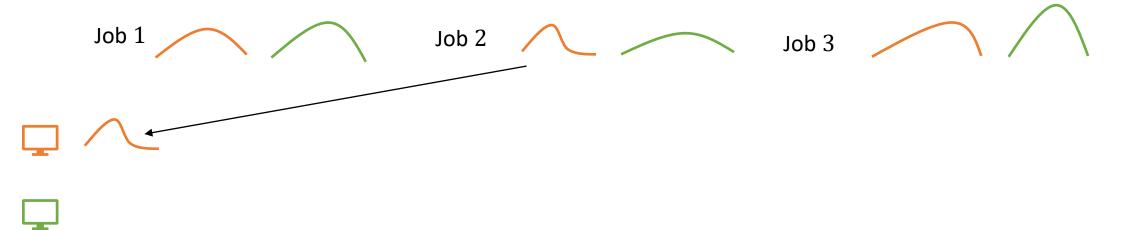
Franziska Eberle, Anupam Gupta, Nicole Megow

Benjamin Moseley, Rudy Zhou

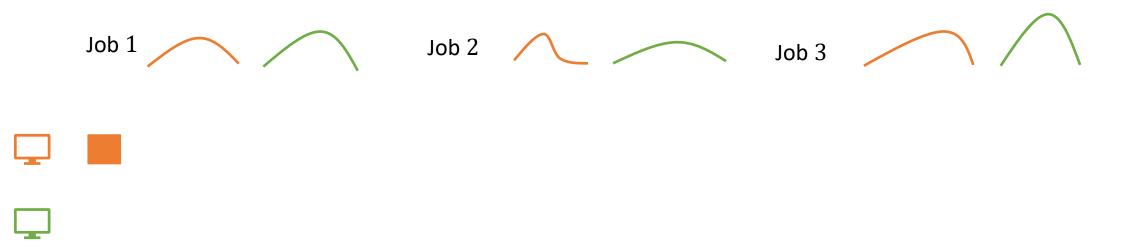
- *m* unrelated machines
- *n* jobs with stochastic sizes such that job *j* has size $X_{ij} \sim \bigwedge$ on machine *i*



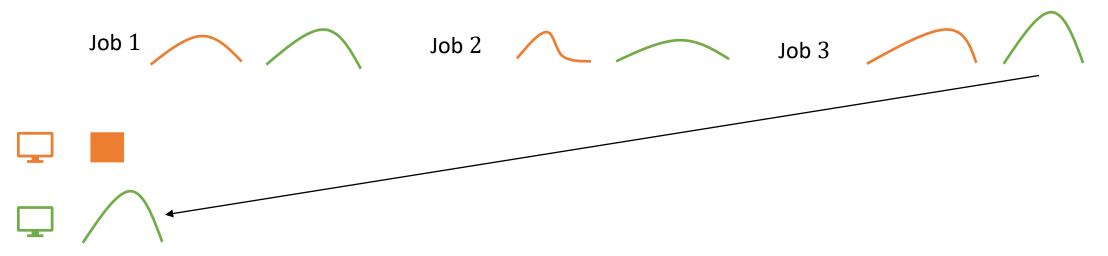
- *m* unrelated machines
- *n* jobs with stochastic sizes such that job *j* has size $X_{ij} \sim \bigwedge$ on machine *i*



- *m* unrelated machines
- *n* jobs with stochastic sizes such that job *j* has size $X_{ij} \sim \bigwedge$ on machine *i*

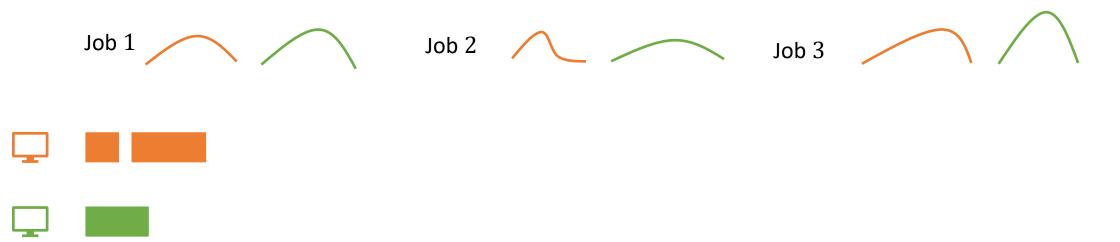


- *m* unrelated machines
- *n* jobs with stochastic sizes such that job *j* has size $X_{ij} \sim \bigwedge$ on machine *i*

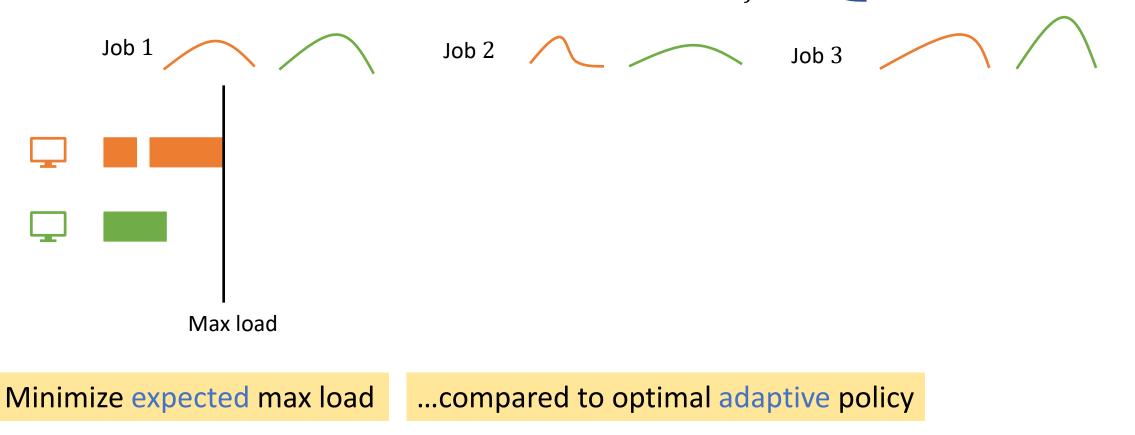


- *m* unrelated machines
- *n* jobs with stochastic sizes such that job *j* has size $X_{ij} \sim \bigwedge$ on machine *i*

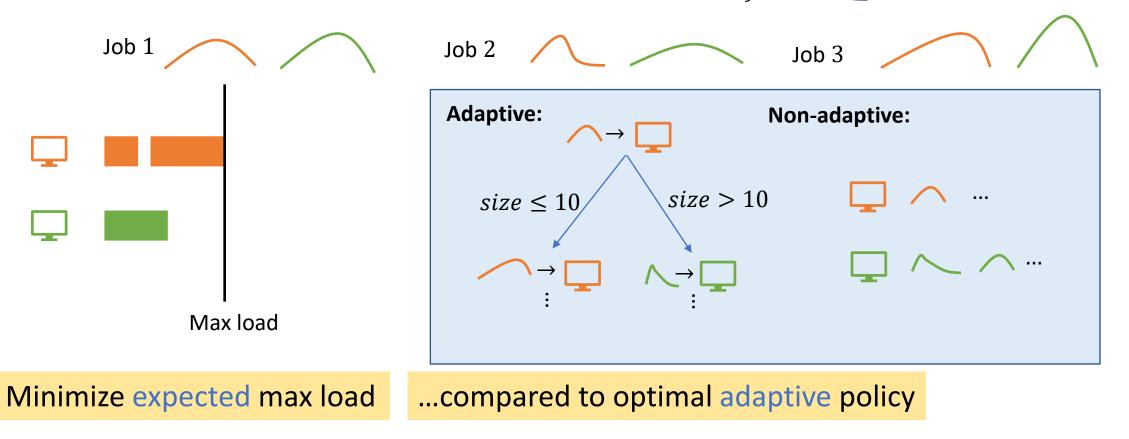
- *m* unrelated machines
- *n* jobs with stochastic sizes such that job *j* has size $X_{ij} \sim \bigwedge$ on machine *i*



- *m* unrelated machines
- *n* jobs with stochastic sizes such that job *j* has size $X_{ij} \sim \bigwedge$ on machine *i*



- *m* unrelated machines
- *n* jobs with stochastic sizes such that job *j* has size $X_{ij} \sim \bigwedge$ on machine *i*



Related Work

- Deterministic setting well-studied
 - 2-approximation offline (LP rounding) [Lenstra, Shmoys, Tardos, Math. Prog. 1990]
 - $O(\log m)$ -competitive online (potential function) [Aspnes, Azar, Fiat, Plotkin, Waarts, J. ACM 1997]
 - Variety of generalizations (multidimensional, norm objective, etc.)

Related Work

- Deterministic setting well-studied
 - 2-approximation offline (LP rounding) [Lenstra, Shmoys, Tardos, Math. Prog. 1990]
 - $O(\log m)$ -competitive online (potential function) [Aspnes, Azar, Fiat, Plotkin, Waarts, J. ACM 1997]
 - Variety of generalizations (multidimensional, norm objective, etc.)
- Stochastic setting focused on non-adaptive policies
 - Non-adaptive algorithm that O(1)-approximates optimal non-adaptive policy (LP rounding + effective size) [Gupta, Kumar, Nagarajan, Shen, Math. Oper. Res. 2021]
 - Adaptivity gap is $\Omega(\frac{\log m}{\log \log m})$

Our Results

Theorem: There exists an efficient algorithm for stochastic load balancing on unrelated machines that $O(\frac{\log m}{\log \log m})$ -approximates the optimal adaptive policy. Further, the algorithm is non-adaptive.

• Also give O(1)-approximate adaptive policy for related machines

Our Results

Theorem: There exists an efficient algorithm for stochastic load balancing on unrelated machines that $O(\frac{\log m}{\log \log m})$ -approximates the optimal adaptive policy. Further, the algorithm is non-adaptive.

- Also give O(1)-approximate adaptive policy for related machines
- First general result for stochastic load balancing compared to optimal adaptive policy
- Gives tight upper bound on adaptivity gap
- Can be generalized to variety of other resource allocation problems and online setting

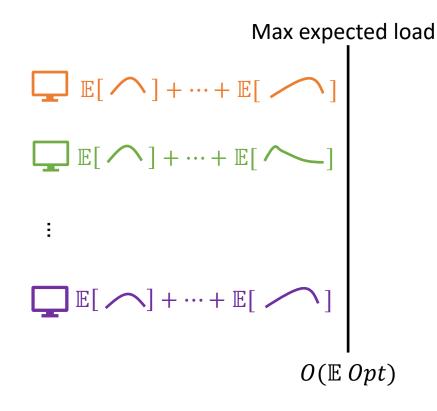
Our Results

Theorem: There exists an efficient algorithm for stochastic load balancing on unrelated machines that $O(\frac{\log m}{\log \log m})$ -approximates the optimal adaptive policy. Further, the algorithm is non-adaptive.

- Also give O(1)-approximate adaptive policy for related machines
- First general result for stochastic load balancing compared to optimal adaptive policy
- Gives tight upper bound on adaptivity gap
- Can be generalized to variety of other resource allocation problems and online setting
- New Idea: Show that there exists near-optimal adaptive policy that behaves similarly to a non-adaptive policy

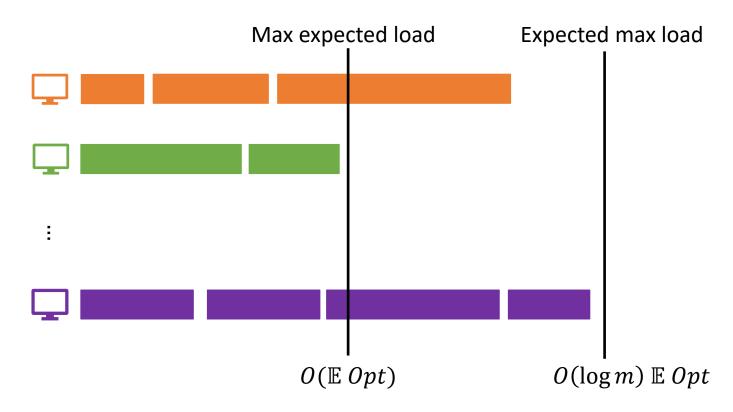
Warm Up: Small jobs

- Assume all jobs are small: $X_{ij} \in [0, \mathbb{E} \ Opt]$ for all i, j
- Suffices to control expected load on each machine



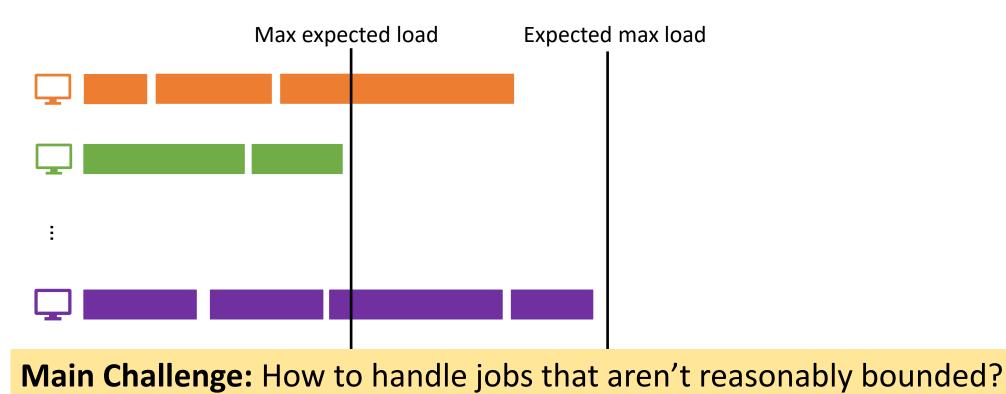
Warm Up: Small jobs

- Assume all jobs are small: $X_{ij} \in [0, \mathbb{E} \ Opt]$ for all i, j
- Suffices to control expected load on each machine (Concentration + Union)



Warm Up: Small jobs

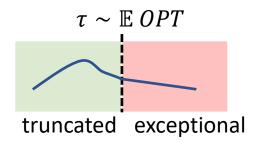
- Assume all jobs are small: $X_{ij} \in [0, \mathbb{E} \ Opt]$ for all i, j
- Suffices to control expected load on each machine (Concentration + Union)



Truncation

 Problem is easy if jobs are small ⇒ make jobs small and deal with big jobs separately

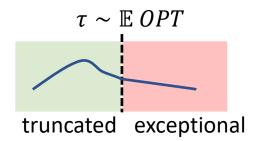
Truncation



- Problem is easy if jobs are small ⇒ make jobs small and deal with big jobs separately
- Given truncation threshold au,
- the truncated part of X_{ij} is: $X_{ij}^T = X_{ij} \cdot 1_{X_{ij} \leq \tau}$
- the exceptional part is:

$$X_{ij}^E = X_{ij} \cdot \mathbf{1}_{X_{ij} > \tau}$$

Truncation



- Problem is easy if jobs are small ⇒ make jobs small and deal with big jobs separately
- Given truncation threshold au,
- the truncated part of X_{ij} is: $X_{ij}^T = X_{ij} \cdot 1_{X_{ij} \le \tau}$
- the exceptional part is: $X_{ij}^E = X_{ij} \cdot 1_{X_{ij} > \tau}$

$$\Rightarrow$$
 handle truncated parts by controlling max expected load

Question: How to control expected max load of exceptional parts?

Exceptional parts

- Bound contribution of exceptional parts: $\mathbb{E}\left[\max_{i} \sum_{j \to i} X_{ij}^{E}\right]$
- Only have trivial upper bound:

$$\mathbb{E}\left[\max_{i}\sum_{j}X_{ij}^{E}\cdot 1_{j\rightarrow i}\right] \leq \sum_{i}\sum_{j}\mathbb{E}[X_{ij}^{E}\cdot 1_{j\rightarrow i}]$$

Exceptional parts

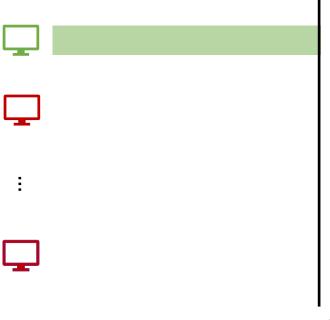
- Bound contribution of exceptional parts: $\mathbb{E}\left[\max_{i} \sum_{j \to i} X_{ij}^{E}\right]$
- Only have trivial upper bound:

$$\mathbb{E}\left[\max_{i}\sum_{j}X_{ij}^{E}\cdot 1_{j\rightarrow i}\right] \leq \sum_{i}\sum_{j}\mathbb{E}[X_{ij}^{E}\cdot 1_{j\rightarrow i}] \quad \begin{array}{l} \text{Total expected} \\ \text{exceptional load} \end{array}$$

Algorithm goal: assign jobs to machines non adaptively such that each machine has expected truncated load O(E Opt) and the total expected exceptional load O(E Opt)

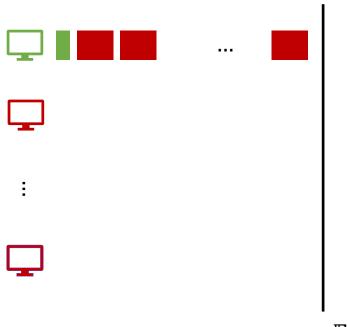
Question: Does there exist such an assignment?

- One fast machine, m-1 slow
- One Bernoulli job, m-1 deterministic

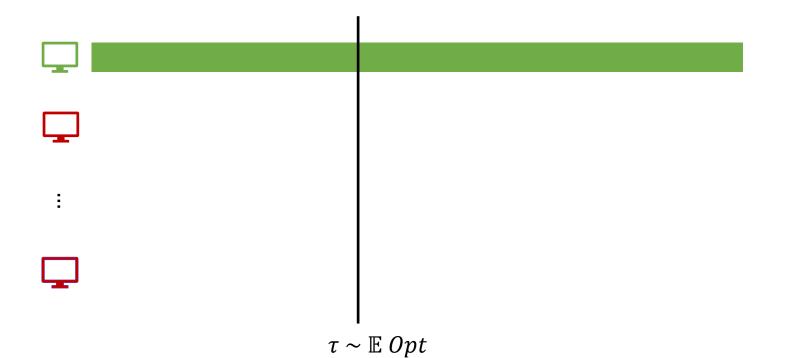


- One fast machine, m-1 slow
- One Bernoulli job, m-1 deterministic

- One fast machine, m-1 slow
- One Bernoulli job, m-1 deterministic

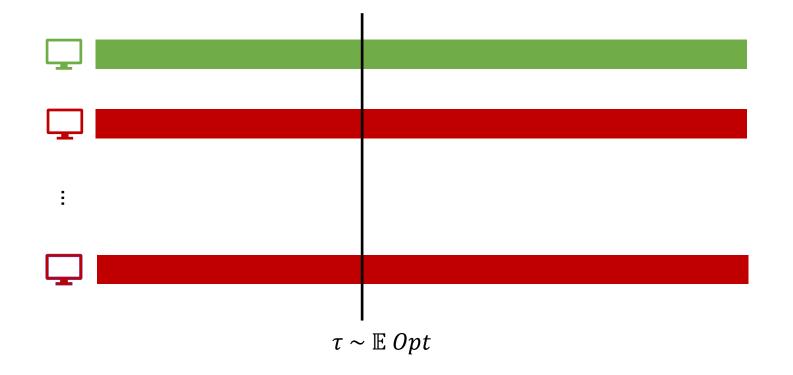


- One fast machine, m-1 slow
- One Bernoulli job, m-1 deterministic



- One fast machine, m-1 slow
- One Bernoulli job, m-1 deterministic

Problem: Optimal adaptive policy can have total expected exceptional load $\Omega(m) \cdot \mathbb{E} Opt$



Structure Theorem

- For truncation threshold $\tau \sim \mathbb{E} Opt$, there exists an adaptive policy \widetilde{Opt} such that:
 - (near optimal) $\mathbb{E}[\widetilde{Opt}] \leq 2 \cdot \mathbb{E}[Opt]$
 - (small total expected exceptional load) The total expected exceptional load of \widetilde{Opt} is at most $2 \cdot \mathbb{E}[Opt]$

Structure Theorem

- For truncation threshold $\tau \sim \mathbb{E} Opt$, there exists an adaptive policy \widetilde{Opt} such that:
 - (near optimal) $\mathbb{E}[\widetilde{Opt}] \leq 2 \cdot \mathbb{E}[Opt]$
 - (small total expected exceptional load) The total expected exceptional load of \widetilde{Opt} is at most $2 \cdot \mathbb{E}[Opt]$
- \Rightarrow natural assignment LP that ensures expected truncated load on each machine is $O(\mathbb{E} \ Opt)$ and total expected exceptional load is $O(\mathbb{E} \ Opt)$ is feasible
 - \Rightarrow can round offline
 - \Rightarrow can use potential function online

• Simulate *Opt*, but forget when we get unlucky

- Given jobs *J*, follow optimal policy *Opt*(*J*)
- 2. If Opt(J) assigns $j \rightarrow i$ such that X_{ij} becomes exceptional $(X_{ij} > \tau \ge 2 \cdot \mathbb{E}[Opt(J)])$
- 3. Forget all previously-accrued machine loads, and recurse on remaining jobs $R \subset J$

• Simulate *Opt*, but forget when we get unlucky

- Given jobs *J*, follow optimal policy *Opt*(*J*)
- 2. If Opt(J) assigns $j \rightarrow i$ such that X_{ij} becomes exceptional $(X_{ij} > \tau \ge 2 \cdot \mathbb{E}[Opt(J)])$
- 3. Forget all previously-accrued machine loads, and recurse on remaining jobs $R \subset J$

• Simulate *Opt*, but forget when we get unlucky

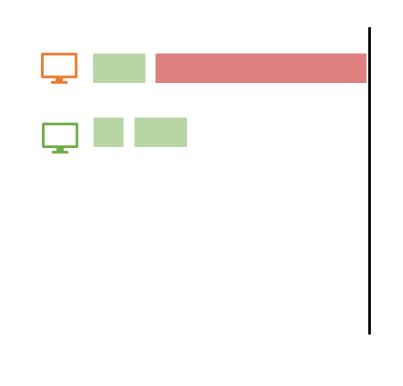
- Given jobs *J*, follow optimal policy *Opt*(*J*)
- 2. If Opt(J) assigns $j \rightarrow i$ such that X_{ij} becomes exceptional $(X_{ij} > \tau \ge 2 \cdot \mathbb{E}[Opt(J)])$
- 3. Forget all previously-accrued machine loads, and recurse on remaining jobs $R \subset J$

• Simulate *Opt*, but forget when we get unlucky

- Given jobs *J*, follow optimal policy *Opt*(*J*)
- 2. If Opt(J) assigns $j \rightarrow i$ such that X_{ij} becomes exceptional $(X_{ij} > \tau \ge 2 \cdot \mathbb{E}[Opt(J)])$
- 3. Forget all previously-accrued machine loads, and recurse on remaining jobs $R \subset J$

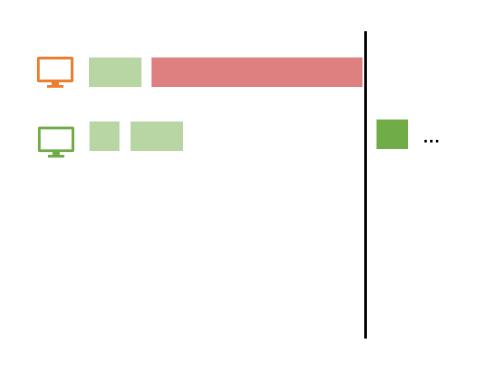
• Simulate *Opt*, but forget when we get unlucky

- Given jobs *J*, follow optimal policy *Opt*(*J*)
- 2. If Opt(J) assigns $j \rightarrow i$ such that X_{ij} becomes exceptional $(X_{ij} > \tau \ge 2 \cdot \mathbb{E}[Opt(J)])$
- 3. Forget all previously-accrued machine loads, and recurse on remaining jobs $R \subset J$



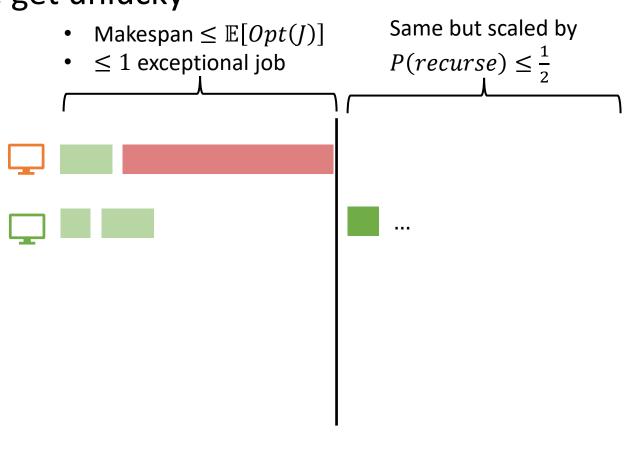
• Simulate *Opt*, but forget when we get unlucky

- Given jobs *J*, follow optimal policy *Opt*(*J*)
- 2. If Opt(J) assigns $j \rightarrow i$ such that X_{ij} becomes exceptional $(X_{ij} > \tau \ge 2 \cdot \mathbb{E}[Opt(J)])$
- 3. Forget all previously-accrued machine loads, and recurse on remaining jobs $R \subset J$



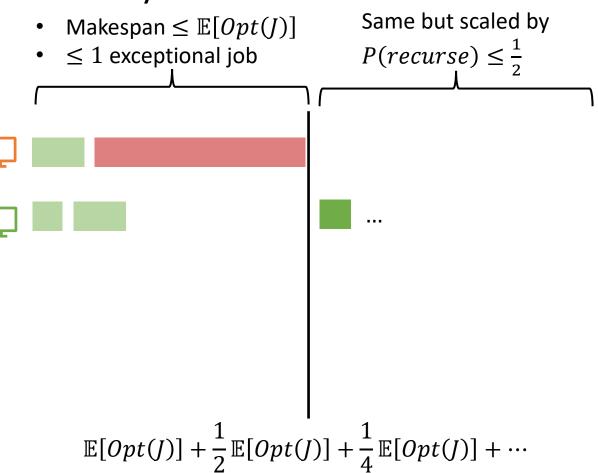
• Simulate *Opt*, but forget when we get unlucky

- Given jobs *J*, follow optimal policy *Opt*(*J*)
- 2. If Opt(J) assigns $j \rightarrow i$ such that X_{ij} becomes exceptional $(X_{ij} > \tau \ge 2 \cdot \mathbb{E}[Opt(J)])$
- 3. Forget all previously-accrued machine loads, and recurse on remaining jobs $R \subset J$



• Simulate *Opt*, but forget when we get unlucky

- Given jobs *J*, follow optimal policy *Opt*(*J*)
- 2. If Opt(J) assigns $j \rightarrow i$ such that X_{ij} becomes exceptional $(X_{ij} > \tau \ge 2 \cdot \mathbb{E}[Opt(J)])$
- 3. Forget all previously-accrued machine loads, and recurse on remaining jobs $R \subset J$



Structure Theorem

- For truncation threshold $\tau \sim \mathbb{E} Opt$, there exists an adaptive policy \widetilde{Opt} such that:
 - (near optimal) $\mathbb{E}[\widetilde{Opt}] \leq 2 \cdot \mathbb{E}[Opt]$
 - (small total expected exceptional load) The total expected exceptional load of \widetilde{Opt} is at most $2 \cdot \mathbb{E}[Opt]$
- \Rightarrow natural assignment LP that ensures expected truncated load on each machine is $O(\mathbb{E} \ Opt)$ and total expected exceptional load is $O(\mathbb{E} \ Opt)$ is feasible
 - \Rightarrow can round offline
 - \Rightarrow can use potential function online

Idea: Forget when we get unlucky

Conclusion

Theorem: There exists an efficient algorithm for stochastic load balancing on unrelated machines that $O(\frac{\log m}{\log \log m})$ -approximates the optimal adaptive policy. Further, the algorithm is non-adaptive.

- Many extensions: online, adaptive policies for related machines, stochastic routing, etc.
- Structure theorem for near-optimal adaptive policies

Conclusion

Theorem: There exists an efficient algorithm for stochastic load balancing on unrelated machines that $O(\frac{\log m}{\log \log m})$ -approximates the optimal adaptive policy. Further, the algorithm is non-adaptive.

- Many extensions: online, adaptive policies for related machines, stochastic routing, etc.
- Structure theorem for near-optimal adaptive policies

Questions:

- Improve using adaptivity?
- Hardness of approximation?