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Stochastic Load Balancing

* m unrelated machines

* n jobs with stochastic sizes such that job j has size X;; ~ /\__on machine i
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* Stochastic setting focused on non-adaptive policies

* Non-adaptive algorithm that O (1)-approximates optimal non-adaptive policy
(LP rounding + effective SiZE) [Gupta, Kumar, Nagarajan, Shen, Math. Oper. Res. 2021]
logm

log log m)
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Our Results

Theorem: There exists an efficient algorithm for stochastic load balancing on
logm

unrelated machines that O ( )-approximates the optimal adaptive

loglogm
policy. Further, the algorithm is non-adaptive.

* Also give O(1)-approximate adaptive policy for related machines

First general result for stochastic load balancing compared to optimal adaptive policy

Gives tight upper bound on adaptivity gap

Can be generalized to variety of other resource allocation problems and online setting

New Idea: Show that there exists near-optimal adaptive policy that behaves similarly to a
non-adaptive policy
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* Assume all jobs are small: X;; € [0, [E Opt] for all i, j

* Suffices to control expected load on each machine (concentration + Union)
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Main Challenge: How to handle jobs that aren’t reasonably bounded?
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truncated exceptional

* Problem is easy if jobs are small = make jobs small and deal with big
jobs separately

e Given truncation threshold 7,

* the truncated part of Xj; is: XlTj = Xjj - 1XUST
* the exceptional part is: Xl-Ej = Xjj - 1Xij>T

* = handle truncated parts by controlling max expected load

Question: How to control expected max load of exceptional parts?
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Exceptional parts

* Bound contribution of exceptional parts: [E [miaX Zj_>iXiEj]

* Only have trivial upper bound:

E . . .
E lmiaxszU 1L

* Algorithm goal: assign jobs to machines non adaptively such that each machine

has expected truncated load O(IE Opt) and the total expected exceptional load
O(E Opt)

Total expected

< E . 1. .
_EiEJ]E[XU Ll exceptional load

Question: Does there exist such an assignment?
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Benefit of Adaptivity

Problem: Optimal adaptive

policy can have total expected
* One Bernoulli job, m — 1 deterministic exceptional load Q(m) - E Opt

* One fast machine, m — 1 slow

T~ E Opt
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* For truncation threshold T ~ [E Opt, there exists an adaptive policy
Opt such that:
* (near optimal) IE[O?t] < 2-[E|Opt]
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Opt is at most 2 - E [Opt]



Structure Theorem

* For truncation threshold 7 ~ E Opt, there exists an adaptive policy
Opt such that:
* (near optimal) IE[O?t] < 2-[E|Opt]
* (small total expected exceptional load) The total expected exceptional load of
Opt is at most 2 - E [Opt]

* = natural assignment LP that ensures expected truncated load on
each machine is O (E Opt) and total expected exceptional load is
O (E Opt) is feasible

e = can round offline
* = can use potential function online
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Structure Theorem

* For truncation threshold 7 ~ E Opt, there exists an adaptive policy
Opt such that:
* (near optimal) IE[O?t] < 2-[E|Opt]
* (small total expected exceptional load) The total expected exceptional load of
Opt is at most 2 - E [Opt]

* = natural assignment LP that ensures expected truncated load on
each machine is O (E Opt) and total expected exceptional load is
O (E Opt) is feasible

e = can round offline
* = can use potential function online

Idea: Forget when we get unlucky
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policy. Further, the algorithm is non-adaptive.

* Many extensions: online, adaptive policies for related machines,
stochastic routing, etc.

* Structure theorem for near-optimal adaptive policies



Conclusion

Theorem: There exists an efficient algorithm for stochastic load balancing on
logm

unrelated machines that O ( )-approximates the optimal adaptive

loglogm
policy. Further, the algorithm is non-adaptive.

* Many extensions: online, adaptive policies for related machines,
stochastic routing, etc.

* Structure theorem for near-optimal adaptive policies
Questions:
* Improve using adaptivity?
 Hardness of approximation?
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