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• First general result for stochastic load balancing compared to optimal adaptive policy

• Gives tight upper bound on adaptivity gap

• Can be generalized to variety of other resource allocation problems and online setting

• New Idea: Show that there exists near-optimal adaptive policy that behaves similarly to a 
non-adaptive policy

Theorem: There exists an efficient algorithm for stochastic load balancing on 

unrelated machines that 𝑂(
log 𝑚
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Main Challenge: How to handle jobs that aren’t reasonably bounded?
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Question: How to control expected max load of exceptional parts?



Exceptional parts
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Question: Does there exist such an assignment?
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Benefit of Adaptivity

• One fast machine, 𝑚 − 1 slow

• One Bernoulli job, 𝑚 − 1 deterministic

…

𝜏 ~ 𝔼 𝑂𝑝𝑡

Problem: Optimal adaptive 
policy can have total expected 

exceptional load Ω 𝑚 ⋅ 𝔼 𝑂𝑝𝑡



Structure Theorem

• For truncation threshold 𝜏 ~ 𝔼 𝑂𝑝𝑡, there exists an adaptive policy 
෪𝑂𝑝𝑡 such that:
• (near optimal) 𝔼 ෪𝑂𝑝𝑡 ≤ 2 ⋅ 𝔼 𝑂𝑝𝑡

• (small total expected exceptional load) The total expected exceptional load of 
෪𝑂𝑝𝑡 is at most 2 ⋅ 𝔼 𝑂𝑝𝑡

• ⇒ natural assignment LP that ensures expected truncated load on 
each machine is 𝑂(𝔼 𝑂𝑝𝑡) and total expected exceptional load is 
𝑂(𝔼 𝑂𝑝𝑡) is feasible
• ⇒ can round offline

• ⇒ can use potential function online
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Proof

• Simulate 𝑂𝑝𝑡, but forget when we get unlucky

(Existential) Algorithm:
1. Given jobs 𝐽, follow optimal 

policy 𝑂𝑝𝑡(𝐽)
2. If 𝑂𝑝𝑡(𝐽) assigns 𝑗 → 𝑖 such 

that 𝑋𝑖𝑗  becomes exceptional 

(𝑋𝑖𝑗 > 𝜏 ≥ 2 ⋅ 𝔼 𝑂𝑝𝑡 𝐽 )

3. Forget all previously-accrued 
machine loads, and recurse on 
remaining jobs 𝑅 ⊂ 𝐽
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Structure Theorem
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• Structure theorem for near-optimal adaptive policies
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log 𝑚
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)-approximates the optimal adaptive 

policy. Further, the algorithm is non-adaptive.
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• Structure theorem for near-optimal adaptive policies

Theorem: There exists an efficient algorithm for stochastic load balancing on 

unrelated machines that 𝑂(
log 𝑚

log log 𝑚
)-approximates the optimal adaptive 

policy. Further, the algorithm is non-adaptive.

Questions:
• Improve using adaptivity?
• Hardness of approximation?
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