Problem Set for IPCO 2023 Summer School

Amitabh Basu*

June 19, 2023

1. We proved in the lecture the upper bound $O\left(n 2^{n} \log (R)\right)$ on information complexity of pure integer feasibility.
(a) Prove the upper bound $O\left(d(n+d) 2^{n} \log \left(\frac{R}{\rho}\right)\right)$ for testing mixed-integer feasibility. Recall that we are considering the following family of closed, convex sets C as our constraints: $C \subseteq[-R, R]^{n+d}$ and if $C \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)$ is nonempty, then there exists $(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \in \mathbb{Z}^{n} \times \mathbb{R}^{d}$ such that $\left.\left\{(\overline{\mathbf{x}}, \mathbf{y}):\|\mathbf{y}-\overline{\mathbf{y}}\|_{\infty} \leq \rho\right)\right\} \subseteq C$.
(b) Prove the upper bound $O\left(d(n+d) 2^{n} \log \left(\frac{M R}{\rho \varepsilon}\right)\right)$ for finding ε-approximate solutions to the problem $\left.\min \left\{f(\mathbf{x}, \mathbf{y}):(\mathbf{x}, \mathbf{y}) \in C, \mathbf{x} \in \mathbb{Z}^{n}, \mathbf{y} \in \mathbb{R}^{d}\right)\right\}$. Recall that we assume the function f is M-Lipschitz, i.e., $\left|f(\mathbf{z})-f\left(\mathbf{z}^{\prime}\right)\right| \leq M\left\|\mathbf{z}-\mathbf{z}^{\prime}\right\|_{\infty}$.

Hint: Generalize the centerpoint algorithm discussed in the lecture that used the fact that for any probability distribution μ supported on $\mathbb{Z}^{n} \times \mathbb{R}^{d}$, there always exists $\mathbf{z}^{\star} \in$ $\mathbb{Z}^{n} \times \mathbb{R}^{d}$ such that every halfspace H containing \mathbf{z}^{\star} satisfies $\mu(H) \geq \frac{1}{2^{n}(d+1)}$.
Moreover, for the general optimization upper bound, the following lemma could be useful.

Lemma 0.1. Let $C \subseteq \mathbb{R}^{k}$ be a closed, convex set such that $\left\{\mathbf{z} \in \mathbb{R}^{k}:\|\mathbf{z}-\mathbf{a}\|_{\infty} \leq\right.$ $\rho\} \subseteq C \subseteq[-R, R]^{k}$, for some $R, \rho \in \mathbb{R}_{+}$and $\mathbf{a} \in \mathbb{R}^{k}$. Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a convex function that is M-Lipschitz continuous. For any $\varepsilon \leq 2 M R$ and for any $\mathbf{z}^{\star} \in C$, the set $\left\{\mathbf{z} \in C: f(\mathbf{z}) \leq f\left(\mathbf{z}^{\star}\right)+\varepsilon\right\}$ contains an $\|\cdot\|_{\infty}$ ball of radius $\frac{\varepsilon \rho}{2 M R}$ with center lying on the line segment between \mathbf{z}^{\star} and \mathbf{a}.

Prove this lemma.
2. Prove the "continuous" version of the centerpoint guarantee, using Helly's theorem. Recall Helly's theorem says

Given convex sets $C_{1}, \ldots, C_{k} \subseteq \mathbb{R}^{d}$, if $C_{1} \cap \ldots \cap C_{k}=\emptyset$, then there exist i_{1}, \ldots, i_{j} with $j \leq d+1$ such that $C_{i_{1}} \cap \ldots C_{i_{j}}=\emptyset$.

Show this implies that for any probability distribution μ on \mathbb{R}^{d}, there always exists $\mathbf{z}^{\star} \in \mathbb{R}^{d}$ such that every halfspace H containing \mathbf{z}^{\star} satisfies $\mu(H) \geq \frac{1}{d+1}$. Use this idea to prove the general mixed-integer version stated in Question 1 above.

[^0]
[^0]: *Department of Applied Mathematics and Statistics, The Johns Hopkins University

