ReLU Neural Networks of Polynomial Size for Exact Maximum Flow Computation

Christoph Hertrich

LSE

Leon Sering

started at:

IPCO, Madison, WI, USA June 21, 2023

Neural Networks in Action

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks" (NeurIPS 2012)

Neural Networks in Action

Gatys et al. "Image style transfer using convolutional neural networks" (CVPR 2016)

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks" (NeurIPS 2012)

Neural Networks in Action

Gatys et al. "Image style transfer using convolutional neural networks" (CVPR 2016)

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks" (NeurIPS 2012)

DeepL Translator DeepL Pro	Why DeepL? Login
Translate text 26 languages I pdf, doox, pptx	
German (detected) 🗸	English (UK) V Glossary
Das Pferd frisst × keinen Gurkensalat.	The horse does not eat cucumber salad.

Screenshot deepl.com (Feb 18, 2022)

A Single ReLU Neuron

A Single ReLU Neuron

Rectified linear unit (ReLU): $relu(x) = max\{0, x\}$

Image created with GeoGebra (geogebra.org)

ReLU Feedforward Neural Networks

Acyclic (layered) digraph of ReLU neurons

ReLU Feedforward Neural Networks

Acyclic (layered) digraph of ReLU neurons

Computes function

$$T_k \circ \operatorname{relu} \circ T_{k-1} \circ \cdots \circ T_2 \circ \operatorname{relu} \circ T_1$$

with affine transformations T_i .

ReLU Feedforward Neural Networks

Acyclic (layered) digraph of ReLU neurons

Computes function

$$T_k \circ \mathsf{relu} \circ T_{k-1} \circ \cdots \circ T_2 \circ \mathsf{relu} \circ T_1$$

with affine transformations T_i .

Example: Computing the Maximum of Two Numbers

$$\max\{x, y\} = \max\{x - y, 0\} + y$$

Example: Computing the Maximum of Two Numbers

$$\max\{x, y\} = \max\{x - y, 0\} + y$$

Example: Computing the Maximum of Four Numbers

Example: Computing the Maximum of Four Numbers

 Inductively: Max of n numbers with depth O(log n) and size O(n).

Example: Computing the Maximum of Four Numbers

 Inductively: Max of n numbers with depth O(log n) and size O(n).

Minimum similarly.

Representing Arbitrary Piecewise Linear Functions

Observation

Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).

Representing Arbitrary Piecewise Linear Functions

Observation

Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).

Theorem (Arora, Basu, Mianjy, Mukherjee (ICLR 2018)) Every CPWL function $f : \mathbb{R}^n \to \mathbb{R}$ can be represented by a ReLU NN with depth $\mathcal{O}(\log n)$. Theorem (Arora, Basu, Mianjy, Mukherjee (ICLR 2018)) Every CPWL function $f : \mathbb{R}^n \to \mathbb{R}$ can be represented by a ReLU NN with depth $\mathcal{O}(\log n)$. Theorem (Arora, Basu, Mianjy, Mukherjee (ICLR 2018)) Every CPWL function $f : \mathbb{R}^n \to \mathbb{R}$ can be represented by a ReLU NN with depth $\mathcal{O}(\log n)$.

1. Is logarithmic depth best possible?

Theorem (Arora, Basu, Mianjy, Mukherjee (ICLR 2018)) Every CPWL function $f : \mathbb{R}^n \to \mathbb{R}$ can be represented by a ReLU NN with depth $\mathcal{O}(\log n)$.

1. Is logarithmic depth best possible?

2. Which functions can we represent with polynomial size?

Our Results

Our Results

Neural Networks as Model of Real-Valued Computation

Neural Networks as Model of Real-Valued Computation

Neural Networks

Arithmetic circuits with (weighted) sums and maxima gates

Neural Networks as Model of **Real-Valued** Computation

Neural Networks

Arithmetic circuits with (weighted) sums and maxima gates

Polynomial-Size NNs

Strongly polynomial algorithms with restricted set of operations

Input: $x, y \in \mathbb{R}$ $v_1 = x - y$ $v_2 = \max\{0, v_1\}$ $m = v_2 + y$ return m.

Why Edmonds-Karp does not work

Assume *s*-*t*-distance of length $\geq k$ in residual network. Need to find an augmenting *s*-*t*-flow which

- uses only arcs along paths of length k,
- is feasible in the residual network, and
- saturates at least one arc (if distance = k).

Assume *s*-*t*-distance of length $\geq k$ in residual network. Need to find an augmenting *s*-*t*-flow which

- uses only arcs along paths of length k,
- is feasible in the residual network, and
- saturates at least one arc (if distance = k).

Then: Similar analysis to Edmonds-Karp

1. Compute fattest path values $a_{i,v}$: maximum amount of flow that can be pushed on a single path of length exactly *i* from *v* to *t*:

$$a_{i,v} = \max_{vw \in E} \{\min\{c_{vw}, a_{i-1,w}\}\}$$

1. Compute fattest path values $a_{i,v}$: maximum amount of flow that can be pushed on a single path of length exactly *i* from *v* to *t*:

$$a_{i,v} = \max_{vw \in E} \{\min\{c_{vw}, a_{i-1,w}\}\}$$

Observe: dist $(v, t) = \min\{i \mid a_{i,v} > 0\}$.

1. Compute fattest path values $a_{i,v}$: maximum amount of flow that can be pushed on a single path of length exactly *i* from *v* to *t*:

$$a_{i,v} = \max_{vw \in E} \{\min\{c_{vw}, a_{i-1,w}\}\}$$

Observe: dist $(v, t) = \min\{i \mid a_{i,v} > 0\}.$

2. Push greedily flow from s to t, while ensuring that in *i*-th pushing phase flow arriving at v does not exceed $a_{k-i,v}$.

1. Compute fattest path values $a_{i,v}$: maximum amount of flow that can be pushed on a single path of length exactly *i* from *v* to *t*:

$$a_{i,v} = \max_{vw \in E} \{\min\{c_{vw}, a_{i-1,w}\}\}$$

Observe: dist $(v, t) = \min\{i \mid a_{i,v} > 0\}$.

- 2. Push greedily flow from s to t, while ensuring that in *i*-th pushing phase flow arriving at v does not exceed $a_{k-i,v}$.
- 3. Clean-up to restore flow conservation.

push phase; after i = 4

push phase; after i = 3

push phase; after i = 1

clean-up; after i = 2

clean-up; after i = 3

Hertrich, Sering (IPCO 2023)

Which functions can be represented by poly-size NNs?

- Which functions can be represented by poly-size NNs?
- Mininum Cost Flows, Matchings, general LPs?

- Which functions can be represented by poly-size NNs?
- Mininum Cost Flows, Matchings, general LPs?
- Are there CPWL functions computable in strongly polynomial time which are not representable by poly-size NNs?

- Which functions can be represented by poly-size NNs?
- Mininum Cost Flows, Matchings, general LPs?
- Are there CPWL functions computable in strongly polynomial time which are not representable by poly-size NNs?
- Might extended formulations help?