ReLU Neural Networks of Polynomial Size for Exact Maximum Flow Computation

Christoph Hertrich
ISE

Leon Sering
ETHzürich
started at:
$\square \frac{.5}{\frac{5}{\square}}$

IPCO, Madison, WI, USA
June 21, 2023

Neural Networks in Action

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks" (NeurIPS 2012)

Neural Networks in Action

Gatys et al. "Image style transfer using convolutional neural networks" (CVPR 2016)

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks" (NeurIPS 2012)

Neural Networks in Action

Gatys et al. "Image style transfer using convolutional neural networks" (CVPR 2016)

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks" (NeurIPS 2012)

DeepL Translator DeepL Pro Why DeepL? Login 三

Translate text 26 languagesTranslate files .pdf, .docx, pptx

German (detected) \checkmark
English (UK) \checkmark Glossary \rightleftarrows

Das Pferd frisst keinen Gurkensalat.

The horse does not eat cucumber salad.

A Single ReLU Neuron

A Single ReLU Neuron

Rectified linear unit $(\operatorname{ReLU}): \operatorname{relu}(x)=\max \{0, x\}$

Image created with GeoGebra (geogebra.org)

ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

- Computes function

$$
T_{k} \circ \text { relu } \circ T_{k-1} \circ \cdots \circ T_{2} \circ \text { relu } \circ T_{1}
$$

with affine transformations T_{i}.

ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

- Computes function

$$
T_{k} \circ \text { relu } \circ T_{k-1} \circ \cdots \circ T_{2} \circ \text { relu } \circ T_{1}
$$

with affine transformations T_{i}.

- Example: depth 3, size 5 .

Example: Computing the Maximum of Two Numbers

$$
\max \{x, y\}=\max \{x-y, 0\}+y
$$

Example: Computing the Maximum of Two Numbers

$$
\max \{x, y\}=\max \{x-y, 0\}+y
$$

Example: Computing the Maximum of Four Numbers

Example: Computing the Maximum of Four Numbers

- Inductively:

Max of n numbers with depth $\mathcal{O}(\log n)$ and size $\mathcal{O}(n)$.

Example: Computing the Maximum of Four Numbers

- Inductively:

Max of n numbers with depth $\mathcal{O}(\log n)$ and size $\mathcal{O}(n)$.

- Minimum similarly.

Representing Arbitrary Piecewise Linear Functions

Observation
Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).

Representing Arbitrary Piecewise Linear Functions

Observation
Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).

Theorem (Arora, Basu, Mianjy, Mukherjee (ICLR 2018))
Every CPWL function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented by a ReLU $N N$ with depth $\mathcal{O}(\log n)$.

Open Questions

Theorem (Arora, Basu, Mianjy, Mukherjee (ICLR 2018))
Every CPWL function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented by a ReLU $N N$ with depth $\mathcal{O}(\log n)$.

Open Questions

Theorem (Arora, Basu, Mianjy, Mukherjee (ICLR 2018))
Every CPWL function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented by a ReLU $N N$ with depth $\mathcal{O}(\log n)$.

1. Is logarithmic depth best possible?

Open Questions

Theorem (Arora, Basu, Mianjy, Mukherjee (ICLR 2018))
Every CPWL function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented by a ReLU $N N$ with depth $\mathcal{O}(\log n)$.

1. Is logarithmic depth best possible?
2. Which functions can we represent with polynomial size?

Our Results

Hertrich, Sering (IPCO 2023)

Our Results

Hertrich, Sering (IPCO 2023)

Neural Networks as Model of Real-Valued Computation

Neural Networks as Model of Real-Valued Computation

Neural Networks

Arithmetic circuits with (weighted) sums and maxima gates

Neural Networks as Model of Real-Valued Computation

Neural Networks
$=$
Arithmetic circuits with (weighted) sums and maxima gates

Polynomial-Size NNs

Strongly polynomial algorithms with restricted set of operations
\Leftrightarrow

Why Edmonds-Karp does not work

Network with	Flow after first iteration
arc capacities	of Edmonds-Karp

What to do instead?

Assume s - t-distance of length $\geq k$ in residual network. Need to find an augmenting s - t-flow which

- uses only arcs along paths of length k,
- is feasible in the residual network, and
- saturates at least one arc (if distance $=k$).

What to do instead?

Assume s - t-distance of length $\geq k$ in residual network. Need to find an augmenting s - t-flow which

- uses only arcs along paths of length k,
- is feasible in the residual network, and
- saturates at least one arc (if distance $=k$).

Then: Similar analysis to Edmonds-Karp

How to find augmenting flow

1. Compute fattest path values $a_{i, v}$: maximum amount of flow that can be pushed on a single path of length exactly i from v to t :

$$
a_{i, v}=\max _{v w \in E}\left\{\min \left\{c_{v w}, a_{i-1, w}\right\}\right\}
$$

How to find augmenting flow

1. Compute fattest path values $a_{i, v}$: maximum amount of flow that can be pushed on a single path of length exactly i from v to t :

$$
a_{i, v}=\max _{v w \in E}\left\{\min \left\{c_{v w}, a_{i-1, w}\right\}\right\}
$$

Observe: $\operatorname{dist}(v, t)=\min \left\{i \mid a_{i, v}>0\right\}$.

How to find augmenting flow

1. Compute fattest path values $a_{i, v}$: maximum amount of flow that can be pushed on a single path of length exactly i from v to t :

$$
a_{i, v}=\max _{v w \in E}\left\{\min \left\{c_{v w}, a_{i-1, w}\right\}\right\}
$$

Observe: $\operatorname{dist}(v, t)=\min \left\{i \mid a_{i, v}>0\right\}$.
2. Push greedily flow from s to t, while ensuring that in i-th pushing phase flow arriving at v does not exceed $a_{k-i, v}$.

How to find augmenting flow

1. Compute fattest path values $a_{i, v}$: maximum amount of flow that can be pushed on a single path of length exactly i from v to t :

$$
a_{i, v}=\max _{v w \in E}\left\{\min \left\{c_{v w}, a_{i-1, w}\right\}\right\}
$$

Observe: $\operatorname{dist}(v, t)=\min \left\{i \mid a_{i, v}>0\right\}$.
2. Push greedily flow from s to t, while ensuring that in i-th pushing phase flow arriving at v does not exceed $a_{k-i, v}$.
3. Clean-up to restore flow conservation.

push phase; after $i=4$

$$
\boldsymbol{Y}_{v_{2}}^{3}=4
$$

push phase; after $i=3$

push phase; after $i=2$

push phase; after $i=1$

clean-up; after $i=2$

clean-up; after $i=3$

Outlook

Hertrich, Sering (IPCO 2023)

Outlook

Hertrich, Sering (IPCO 2023)

Outlook

Hertrich, Sering (IPCO 2023)

- Which functions can be represented by poly-size NNs?

Outlook

Hertrich, Sering (IPCO 2023)

- Which functions can be represented by poly-size NNs?
- Mininum Cost Flows, Matchings, general LPs?

Outlook

Hertrich, Sering (IPCO 2023)

- Which functions can be represented by poly-size NNs?
- Mininum Cost Flows, Matchings, general LPs?
- Are there CPWL functions computable in strongly polynomial time which are not representable by poly-size NNs?

Outlook

Hertrich, Sering (IPCO 2023)

- Which functions can be represented by poly-size NNs?
- Mininum Cost Flows, Matchings, general LPs?
- Are there CPWL functions computable in strongly polynomial time which are not representable by poly-size NNs?
- Might extended formulations help?

