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ReLU Feedforward Neural Networks

I Acyclic (layered) digraph of ReLU neurons
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Tk ◦ relu ◦ Tk−1 ◦ · · · ◦ T2 ◦ relu ◦ T1

with affine transformations Ti .

I Example: depth 3, size 5.
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Example: Computing the Maximum of Two Numbers
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Example: Computing the Maximum of Four Numbers
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I Inductively:
Max of n numbers with depth O(log n) and size O(n).

I Minimum similarly.
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Representing Arbitrary Piecewise Linear Functions

Observation
Every function represented by a ReLU NN is continuous and
piecewise linear (CPWL).

Theorem (Arora, Basu, Mianjy, Mukherjee (ICLR 2018))

Every CPWL function f : Rn → R can be represented by a ReLU
NN with depth O(log n).
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1. Is logarithmic depth best possible?

2. Which functions can we represent with polynomial size?
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Our Results

Hertrich, Sering (IPCO 2023)
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Neural Networks as Model of Real-Valued Computation

Neural Networks

=

Arithmetic circuits with (weighted) sums and maxima gates

Polynomial-Size NNs
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⇔

Strongly polynomial algorithms
with restricted set of operations

Input: x, y ∈ R
v1 = x − y
v2 = max{0, v1}
m = v2 + y
return m.
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Why Edmonds-Karp does not work
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What to do instead?

Assume s-t-distance of length ≥ k in residual network. Need to
find an augmenting s-t-flow which

I uses only arcs along paths of length k ,

I is feasible in the residual network, and

I saturates at least one arc (if distance = k).

Then: Similar analysis to Edmonds-Karp
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How to find augmenting flow

1. Compute fattest path values ai ,v : maximum amount of flow
that can be pushed on a single path of length exactly i from v
to t:

ai ,v = max
vw∈E

{min{cvw , ai−1,w}}

Observe: dist(v , t) = min{i | ai ,v > 0}.
2. Push greedily flow from s to t, while ensuring that in i-th

pushing phase flow arriving at v does not exceed ak−i ,v .

3. Clean-up to restore flow conservation.
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I Which functions can be represented by poly-size NNs?

I Mininum Cost Flows, Matchings, general LPs?

I Are there CPWL functions computable in strongly polynomial
time which are not representable by poly-size NNs?

I Might extended formulations help?
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